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Outline of This Talk 
• Approach to solving four- and five-particle bound and 

scattering problems:  
§  Combining hyperspherical coordinates, explicitly 

correlated Gaussian basis functions and stochastic 
variational technique. 

§  Formalism and first results. 

• Bosons in a spherically symmetric harmonic trap: 
§  Confronting effective field theory results with highly 

accurate numerical results for finite-range interactions. 

•  Few-particle system in a box with periodic boundary 
conditions:  
§  A possible path towards obtaining accurate results. 



General Consideration 
• We are interested in low-energy phenomena (justified for 

ultracold atomic samples):  
§  Physics is governed by just a few (one) partial waves. 

•  The details of the two-body atom-atom interaction do not 
matter. Universal if s-wave scattering length as >> range of 
two-body potential r0. 

• Can replace van der Waals (vdW) potential by model 
potential. 
§  vdW potential: hundreds of bound states. 
§  model potential: zero or one bound states. 

•  In nuclear physics: Might be able to get away with “simple 
soft potentials” that reproduce low-energy phase shifts. 



Hyperspherical Coordinate Approach 
and Effective Potential Curves 
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Two heavy identical fermions and one light impurity with  
positive s-wave scattering length (zero-range interactions): 

Hyperradial coordinate measures the overall size of the  
system (five angles have been integrated out) 

Kartavtsev 
and Malykh, 
JPB 40, 1429 
(2007). 

Yields 
bound and 
scattering 
states. 



General Formalism: Similar to Born-
Oppenheimer Approximation 

• Hyperspherical coordinate approach: hyperradius R and 
hyperangles Ω.  

•  Idea: H = TΩ + TR + Vint = Hadia(R) + TR 

• Step 1: Solve Hadia(R) Φν(R;Ω) = Uν(R) Φν(R;Ω) (this is like 
integrating out the fast electronic degrees of freedom). 

• Step 2: Solve (TR + Uν(R) + Σν’ couplingν’ν) Fνq(R) = Eνq Fνq(R) 
(this is like solving the nuclear Schroedinger equation). 

•  For convenience, write Uν(R) = ħ2[(sν(R))2 – ¼] / (2µR2) 



How Do We Solve Hyperangular 
Schrodinger Equation? 

• Use explicitly correlated Gaussians to expand 
hyperangular channel functions [see von Stecher and 
Greene, PRA (2009) for treatment of 0+ states]. 

• Φν(R;Ω) = Σk ck [f(x, u1
(k), u2

(k))] exp[- ½ xT A(k) x] |R 

•  Transform basis functions to hyperspherical coordinates 
and perform 2N-1 hyperangular integrals analytically. 

•  For N=4 (N=5), this leave one (two) numerical integration(s). 

• Explicitly correlated Gaussian depend on non-linear 
variational parameters: Optimize using stochastic 
variational “trial and error” approach [minimize Uν(R)]. 



Proof-of-Principle Calculation for 
Equal-Mass (2,2) System at Unitarity 

von Stecher and  
Greene, PRA (2009); 

HECG approach 

Rakshit, Daily, Blume, 
PRA (2012); extracted 
from trap spectrum 

Red symbols: this work. 
Solid line: fit. 

0+ symmetry: 1- symmetry: 

Hyperspherical explicitly correlated Gaussian approach can 
be applied to states with finite angular momentum. 
Finite L matrix elements are tedious to derive (applicable to 
“any N”)… numerics is tractable for N=4, (5)… 

Rakshit and Blume, unpublished. 

Red symbols: this work. 
Solid line: fit. 



Convergence of Eigenvalue of 
Hyperangular Schroedinger Equation 
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Potential Curve for (3,1) System with 1+ 
Symmetry and Positive as 

Dimer threshold. 
Trimer threshold. 
Expect: Four-body 
bound state. 

This is work in progress: Go to larger hyperradii; calculate 
excited curves  and coupling elements; and solve coupled 
channel equations in R. 

mass ratio 9.75 



• Universal four-body bound 
states exist for mass ratio 
>9.5. 

• Properties are fully 
determined by as. 

•  Four-body states are tied to 
three-body states. 

D. Blume, arXiv:1208.2907. 

Dashed blue: Two-body state. 

Red: Universal three-body states [see 
Kartavtsev and Malykh, JPB 40, 1429 (2007)]. 

Black: Away from resonance-like feature, 
universal four-body states. 

k=9.5 

k=9.75 

k=10 

Heavy-Light (3,1) System with LΠ=1+ 
and Positive as  (no fixed R!) 



Under Which Conditions Do Universal 
States Exist?  

•  (TR + Uν(R) + Σν’ couplingν’ν) Fνq(R) = Eνq Fνq(R) 

•  For finite as, small R and r0=0:  
•  Uν(R) + Σν’ couplingν’ν  ~ ħ2[(s0,unit)2 – ¼] / (2µR2) 

•  S0,unit>1 [for (2,1), mass ratio κ<8.6]: Only “regular” solution 
contributes (wave fct. vanishes at small R). 

•  1>s0,unit>0 (8.6<κ<13.607): In principle, “regular” and “irregular” 
solutions can contribute (depends on two-body potential). See 
work by Petrov, Nishida, Tan, Son, Werner, Castin,… 

•  Our earlier work on (2,1) systems with Gaussian interactions at 
unitarity shows that regular solution dominates for mass ratios 
considered here [see Blume and Daily, PRL and PRA (2010)].  



Hyperangular Eigenvalue for Various 
Mass Ratios: (3,1) System with LΠ=1+ 
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Conclusion: Universal bound states in heavy light mixtures with 
positive interspecies s-wave sc. length exist for mass ratio > 9.5. 
 
Conclusion supported by (i) close link between 3- and 4-body free-
space energy, (ii) hyperradial densities, (iii) s0 value at unitarity. 

Interspecies  
s-wave  
scattering 
length is  
infinitely  
large. 

Pr
el

im
in

ar
y 

s 0
,u

ni
t 



Harmonically Trapped Bose Gas with 
Small s-wave Scattering Length 

Well known: 
Interaction energy (IE) of N bosons ≠ N(N-1)/2 × IE of 2 bosons 
 
 
 
 
Question: 
How to “divide” IE of N identical bosons in an isotropic 
harmonic trap into two-body, three-body, four-body,… 
contributions? 
 
Our approach: 
Apply perturbation theory for small as (this is conveniently 
done by applying formalism of second quantization to 
Hamiltonian with zero-range interactions); renormalization via 
effective field theory ideas. 
 

boson 3 affects how bosons 
1 and 2 interact (boson 3 is 
not a spectator). 



Series in as and Effective Range reff: 
Effective N-Body Interactions 
E(N) = ENI + U2 Npair + U3 Ntrimer + U4 Ntetramer +…, 
 
where UN are effective N-body interactions: 
 
U2 = c2,(1) as/aho + c2,(2) (as/aho)2 + c2,(3) (as/aho)3 + … 
        
     + d2,(1,2)(reffas

2)/aho
3 + …  

 
U3 =                      c3,(2) (as/aho)2 + c3,(3) (as/aho)3 + … 
 
U4 =                                               c4,(3) (as/aho)3 + … 
 
Leading-order effective four-body interaction “competes” 
with effective range term: kcot(δ(k))=-1/as+reff k2/2.   
 

1st order PT 
2nd order PT 
3rd order PT 

Johnson, Tiesinga, Porto, Williams, New J. Phys. 11, 093022 (2009); 
Johnson, Blume, Yin, Flynn, Tiesinga, New J. Phys. 14, 053037 (2012). 



Harmonically Trapped Five-Boson 
System: Illustration of Convergence 

r0 = 0.01aho 
as = 0.0096aho 
 

 
For each Nb, try  
a few 1000 and  
keep the best. 
ΔE ~ 2x10-8hν. 
(as/aho)4 ~ 10-8. 

Used energy to benchmark effective  
field theory Hamiltonian:  
Johnson, Blume, Yin, Flynn,  
Tiesinga, NJP (2012). 



Condensate Fraction N/N0 of Weakly-
Interacting Trapped Bose Gas 

N=2 

N=3 

N=3 
N=2 



Condensate Fraction N/N0 of Weakly-
Interacting Trapped Bose Gas 

•  Expect: N/N0 is determined by as and reff. But new parameter…  

 
 

•  Broader implication: Two low-energy Hamiltonian that yield the 
same energy do not necessarily yield the same condensate 
fraction, momentum distribution,… 

Daily, Yin, Blume, PRA 85, 053614 (2012). 

N=2 

N=3 

not needed to describe energy 
(two-body parameter) 



Few-Particle System in a Box with 
Periodic Boundary Conditions 

• Application of explicitly 
correlated Gaussian to 
periodic systems. 

•  Few-boson system in a box 
(so far, 1D). 

• Extension to 3D is possible. 

• Weakly-interacting 3D Bose 
gas studied by Savage et al. 
and Tan, motivated by lattice 
calculations.  
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Summary 
• Explicitly correlated Gaussian evaluated at fixed 

hyperradius R provide promising basis to be used in 
hyperspherical framework: 
§  Provides access to bound state and scattering 

continuum (N=4 and 5). 

• Construction and testing of effective low-energy 
Hamiltonian: 
§  Observables besides the energy. 
§  Highly accurate benchmark calculations. 

•  Few-body systems with periodic boundary conditions: 
§  A potential alternative approach... 


