

Few-Body Physics of Cold Atoms: Techniques and Results that May be of Interest to Nuclear Physics/Physicists

Doerte Blume

Dept. of Physics and Astronomy, Washington State University, Pullman

Supported by NSF and ARO. In collaboration with graduate students Debraj Rakshit, Xiangyu (Desmond) Yin and Kevin Daily. Trapped boson work with Phil Johnson and Eite Tiesinga.

Outline of This Talk

- **Approach to solving four- and five-particle bound and scattering problems:**
	- § **Combining hyperspherical coordinates, explicitly correlated Gaussian basis functions and stochastic variational technique.**
	- § **Formalism and first results.**
- **Bosons in a spherically symmetric harmonic trap:**
	- § **Confronting effective field theory results with highly accurate numerical results for finite-range interactions.**
- **Few-particle system in a box with periodic boundary conditions:**
	- § **A possible path towards obtaining accurate results.**

General Consideration

- **We are interested in low-energy phenomena (justified for ultracold atomic samples):**
	- § **Physics is governed by just a few (one) partial waves.**
- **The details of the two-body atom-atom interaction do not matter. Universal if s-wave scattering length a. >> range of** two-body potential r₀.
- **Can replace van der Waals (vdW) potential by model potential.**
	- § **vdW potential: hundreds of bound states.**
	- model potential: zero or one bound states.
- **In nuclear physics: Might be able to get away with "simple soft potentials" that reproduce low-energy phase shifts.**

Hyperspherical Coordinate Approach and Effective Potential Curves

Two heavy identical fermions and one light impurity with positive s-wave scattering length (zero-range interactions):

General Formalism: Similar to Born-Oppenheimer Approximation

- **Hyperspherical coordinate approach: hyperradius R and hyperangles Ω.**
- **Idea: H =** T_{Ω} **+** T_{R} **+** V_{int} **=** $H_{\text{adia}}(R)$ **+** T_{R}
- Step 1: Solve $H_{\text{adia}}(R) \Phi_{\text{v}}(R;\Omega) = U_{\text{v}}(R) \Phi_{\text{v}}(R;\Omega)$ (this is like **integrating out the fast electronic degrees of freedom).**
- Step 2: Solve $(T_R + U_v(R) + \Sigma_v$ coupling_{v'v}) $F_{va}(R) = E_{va} F_{va}(R)$ **(this is like solving the nuclear Schroedinger equation).**
- For convenience, write $U_v(R) = \hbar^2[(s_v(R))^2 \frac{1}{4}] / (2\mu R^2)$

How Do We Solve Hyperangular Schrodinger Equation?

- **Use explicitly correlated Gaussians to expand hyperangular channel functions [see von Stecher and** Greene, PRA (2009) for treatment of 0⁺ states].
- $\Phi_{v}(R;\Omega) = \Sigma_{k} c_{k} [f(\mathbf{x}, \mathbf{u}_{1}^{(k)}, \mathbf{u}_{2}^{(k)})] exp[-\frac{1}{2} \times \mathbf{X}^{T} \mathbf{A}^{(k)} \times] |_{R}$
- **Transform basis functions to hyperspherical coordinates and perform 2N-1 hyperangular integrals analytically.**
- **For N=4 (N=5), this leave one (two) numerical integration(s).**
- **Explicitly correlated Gaussian depend on non-linear variational parameters: Optimize using stochastic variational "trial and error" approach [minimize U_v(R)].**

Proof-of-Principle Calculation for Equal-Mass (2,2) System at Unitarity

0⁺ symmetry:

 symmetry:

Hyperspherical explicitly correlated Gaussian approach can be applied to states with finite angular momentum. Finite L matrix elements are tedious to derive (applicable to "any N")… numerics is tractable for N=4, (5)…

Rakshit and Blume, unpublished.

Convergence of Eigenvalue of Hyperangular Schroedinger Equation

Potential Curve for (3,1) System with 1+ Symmetry and Positive as

This is work in progress: Go to larger hyperradii; calculate excited curves and coupling elements; and solve coupled channel equations in R.

Heavy-Light (3,1) System with L^Π=1+ and Positive a. (no fixed R!)

Dashed blue: Two-body state.

Red: Universal three-body states [see Kartavtsev and Malykh, JPB 40, 1429 (2007)].

Black: Away from resonance-like feature, universal four-body states.

- **Universal four-body bound states exist for mass ratio >9.5.**
- **Properties are fully** determined by a_s.
- **Four-body states are tied to three-body states.**

Under Which Conditions Do Universal States Exist?

- $(T_R + U_v(R) + \Sigma_v$ coupling_{v'v}) $F_{va}(R) = E_{va} F_{va}(R)$
- For finite a_s , small R and $r_0=0$:
- **U**_v(R) + Σ_v coupling_{v'v} ~ $\hbar^2[(s_{0,\text{unit}})^2 \frac{1}{4}]$ / (2µR²)
- S_{0.unit}>1 [for (2,1), mass ratio **k**<8.6]: Only "regular" solution **contributes (wave fct. vanishes at small R).**
- 1>s_{0.unit}>0 (8.6<k<13.607): In principle, "regular" and "irregular" **solutions can contribute (depends on two-body potential). See work by Petrov, Nishida, Tan, Son, Werner, Castin,…**
- **Our earlier work on (2,1) systems with Gaussian interactions at unitarity shows that regular solution dominates for mass ratios considered here [see Blume and Daily, PRL and PRA (2010)].**

Hyperangular Eigenvalue for Various Mass Ratios: (3,1) System with L^Π=1+

Conclusion: Universal bound states in heavy light mixtures with positive interspecies s-wave sc. length exist for mass ratio > 9.5.

Conclusion supported by (i) close link between 3- and 4-body freespace energy, (ii) hyperradial densities, (iii) s₀ value at unitarity.

Harmonically Trapped Bose Gas with Small s-wave Scattering Length

Well known:

Interaction energy (IE) of N bosons ≠ **N(N-1)/2** × **IE of 2 bosons**

boson 3 affects how bosons 1 and 2 interact (boson 3 is not a spectator).

Question:

How to "**divide**" **IE of N identical bosons in an isotropic harmonic trap into two-body, three-body, four-body,… contributions?**

Our approach:

Apply perturbation theory for small as (this is conveniently done by applying formalism of second quantization to Hamiltonian with zero-range interactions); renormalization via effective field theory ideas.

Leading-order effective four-body interaction "**competes**" with effective range term: $kcot(\delta(k)) = -1/a_s + r_{eff} k^2/2$.

> **Johnson, Tiesinga, Porto, Williams, New J. Phys. 11, 093022 (2009); Johnson, Blume, Yin, Flynn, Tiesinga, New J. Phys. 14, 053037 (2012)**.

Harmonically Trapped Five-Boson System: Illustration of Convergence

Condensate Fraction N/N₀ of Weakly-Interacting Trapped Bose Gas

$$
\langle \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{q}} \rangle = \frac{\langle \psi_0^{(k)} | \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{q}} | \psi_0^{(k)} \rangle}{\langle \psi_0^{(k)} | \psi_0^{(k)} \rangle} \qquad N_0/N = 1 - 0.420004(N - 1) \left[\frac{a_s(0)}{a_{\text{HO}}} \right]^2
$$

+
$$
[-0.373241(N - 1) + 0.439464(N - 1)(N - 2)] \left[\frac{a_s(0)}{a_{\text{HO}}} \right]^3 + \dots
$$

Condensate Fraction N/N₀ of Weakly-Interacting Trapped Bose Gas

• **Expect: N/N0 is determined by as and reff. But new parameter…**

• **Broader implication: Two low-energy Hamiltonian that yield the same energy do not necessarily yield the same condensate fraction, momentum distribution,…**

Daily, Yin, Blume, PRA 85, 053614 (2012).

Few-Particle System in a Box with Periodic Boundary Conditions

- **Application of explicitly correlated Gaussian to periodic systems.**
- **Few-boson system in a box (so far, 1D).**
- **Extension to 3D is possible.**
- **Weakly-interacting 3D Bose gas studied by Savage et al. and Tan, motivated by lattice calculations.**

Summary

- **Explicitly correlated Gaussian evaluated at fixed hyperradius R provide promising basis to be used in hyperspherical framework:**
	- § **Provides access to bound state and scattering continuum (N=4 and 5).**
- **Construction and testing of effective low-energy Hamiltonian:**
	- § **Observables besides the energy.**
	- § **Highly accurate benchmark calculations.**
- **Few-body systems with periodic boundary conditions:**
	- § **A potential alternative approach...**