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What Can We Learn From Photo Reactions?

1 Understanding of the systems at hand.
2 A test of the Hamiltonian at regimes not accessible by elastic reactions.
3 Reaction rates as input for experiments or applications (e.g. astrophysics).
4 Underlying degrees of freedom.
5 The transition from single particle to collective behavior.
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Photo Reactions

The Interaction Hamiltonian between the photon field A(x) and the
atomic/nuclear system

HI = −
e
c

∫
dxA(x) · J(x)

The current is a sum of convection and spin currents

J(x) = Jc(x) +∇× µ(x)

HI = −
e
c

∫
dx {A(x) · Jc(x) + B(x) · µ(x)}

00

(E  ,     )

P

Pffω

(E  ,     )

Classically, the convection current Jc = ∑i Zivi is the flow of the charged particles.

In nuclear physics, the convection current is dominant

Ultracold atoms are neutral Jc(x) = 0 and the current µ(x) is dominated by the spins.
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Efimov Physics and Universality

Borromean regime: A 3-body bound state
E3 < 0 exists even if the 2-body system is
unbound E2 > 0.

In nuclear physics, 6He is bound while 5He,
n− n - not.

The unitary limit: E2 = 0, as −→ ∞.

In 1970 V. Efimov found out that if E2 = 0
the 3-body system will have an infinite
number of bound states.

The 3-body spectrum is En = E0e−2πn/s0

with s0 = 1.00624.

In atomic traps, as can be manipulated
through the Feshbach resonance.

Particle losses in traps are closely related to
Efimov’s physics through the 3-body
recombination process

A + A + A −→ A2 + A

F. Ferlaino and R. Grimm, Physics 3, 9 (2010)
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Efimov Physics in Ultracold Atoms

39K
M. Zaccanti et. al,
Nature Phys. 5, 586 (2009).

7Li
N. Gross, Z. Shotan, S. Kokkelmans,
and L. Khaykovich,
Phys. Rev. Lett. 103, 163202 (2009).

7Li
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Photoassociation of Atomic Molecules

RF-induce atom loss resonances for different values of bias magnetic fields.

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, Phys. Rev. Lett. 108, 210406 (2012)
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The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

For a system of identical particles

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

For a system of identical particles

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

ρ(k) ≈
A

∑
i

Zi + i
A

∑
i

Zik · ri −
A

∑
i

Zi(k · ri)
2

For a system of identical particles

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

ρ(k) ≈
A

∑
i

Zi + i
A

∑
i

Zik · ri −
A

∑
i

Zi(k · ri)
2

For a system of identical particles

ρ(k) ≈ AZ1 + iAZ1k ·Rcm −
1
2

Z1

A

∑
i

( k2r2
i

6
+ 4π

k2r2
i

15 ∑
m

Y2−m(k̂)Y2m(r̂i)
)

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

ρ(k) ≈
A

∑
i

Zi + i
A

∑
i

Zik · ri −
A

∑
i

Zi(k · ri)
2

For a system of identical particles

ρ(k) ≈ AZ1 + iAZ1k ·Rcm −
1
2

Z1

A

∑
i

( k2r2
i

6
+ 4π

k2r2
i

15 ∑
m

Y2−m(k̂)Y2m(r̂i)
)

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i

Ziδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i

Zieik·ri

In the long wavelength limit k −→ 0

ρ(k) ≈
A

∑
i

Zi + i
A

∑
i

Zik · ri −
A

∑
i

Zi(k · ri)
2

For a system of identical particles

ρ(k) ≈ AZ1 + iAZ1k ·Rcm −
1
2

Z1

A

∑
i

( k2r2
i

6
+ 4π

k2r2
i

15 ∑
m

Y2−m(k̂)Y2m(r̂i)
)

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are R̂2 and Q̂.

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 8 / 31



Photo Reactions with Ultracold Atoms

For RF photons in the few MHz region the wave
length is meters so kR� 1.

The atoms reside in a strong magnetic field, thus
spins are “frozen”

|Ψ0〉 = Φ0(ri)|m1
Fm2

F . . . mA
F 〉

In the final state the photon can either change one of
the spins or leave them untouched.

Spin-flip reaction

|m1
Fm2

F . . . mA
F 〉 −→ |m1

Fm2
F ± 1 . . . mA

F 〉

Frozen-Spin reaction

|m1
Fm2

F . . . mA
F 〉 −→ |m1

Fm2
F . . . mA

F 〉

N. Gross and L. Khaykovich,
Phys. Rev. A 77, 023604 (2008)
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Photo Reactions with Ultracold Atoms

For Spin-flip reactions the Franck-Condon factor dominates the transition

R(ω) = Ck
∫
∑
f ,λ

∣∣〈Φf |Φ0〉
∣∣2 δ(Ef − E0 −ω)

For Frozen-Spin reactions we get a sum of the monopole operator M̂ = R2 = ∑ r2
i and the

Quadrupole operator Q̂ = ∑ r2
i Y2(r̂i)

O = αM̂ + βQ̂

The response is given by

R(ω) = k5
∫
∑
f ,λ

∣∣〈Φf |O|Φ0〉
∣∣2 δ(Ef − E0 −ω)
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Photoassociation of the Atomic Dimer

For the dimer case the response function can be written as

R(ω) = Cω5
[

1
62 |〈ψ0‖M̂‖ϕ0(q)〉|2 +

1
5 · 152 |〈ψ0‖Q̂‖ϕ2(q)〉|2

]
Where the bound state wave function is given by

ψ0 = Y0
√

2κe−κr/r ; κ ≈ 1/as

The continuum state is given by ϕ`(q) = Y`(r̂)χ`(r)/r

χ`(r) = 2qr[cos δ`j`(qr)− sin δ`n`(qr)]

The ` = 0 matrix element

|〈ψ0‖M̂‖ϕ0(q)〉|2 =
1

4π

(
4q
√

2κ

(q2 + κ2)3

)2 [
cos δ0(3κ2 − q2)− sin δ0

κ

q
(3q2 − κ2)

]2

The ` = 2 matrix element, assuming δ2 = 0

|〈ψ0‖Q̂‖ϕ2(q)〉|2 =
5

4π

[
16q3
√

2κ

(q2 + κ2)3

]2
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Photoassociation of the Atomic Dimer

The s-wave and d-wave
components in the response
function

upper panel a/reff = 2

lower panel a/reff = 200

red - r2 monopole

blue - quadrupole

black - their sum

0.0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3

N
or

m
al

iz
ed

tr
an

si
ti

on
M

.E
.[

n.
d.

]

q/κ [n.d.]

0.0

0.2

0.4

0.6

0.8

1.0

Betzalel Bazak (HUJI) EM Reactions in Ultracold Atoms INT, 7 November, 2012 12 / 31



Dimer Photoassociation Rates

Photoassociation of 7Li dimers
as = 1000a0
T = 25µK (upper panel)
T = 5µK (lower panel)

red - r2 monopole, blue - quadrupole, black - sum

The relative contribution to the peak
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Photoassociation of the Atomic Dimer

Comparison to the Khaykovich group data:

as =820 a0

T =3.9 K
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The fitted values of as and T are in reasonable agreement with the estimates of the
experimental group.

High amplitude RF causes power broadening

Finite time effect

Disagreement are due to 3-body (4-body?) association.

Effects of δ2 6= 0 are negligible.
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Road-map for Efimov Physics

To get analytical results for the 3-body problem,

Assume short-range interaction and large scattering length

Remove center of mass and adopt the hyper-spherical coordinates

(r1, r2, r3)→ (RCM, xi, yi)→ (RCM, ρ, αi, x̂i, ŷi)

Use the adiabatic expansion (Born-Oppenheimer like), where ρ is the slow coordinate

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω)

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

Φn(ρ, Ω) = ∑i φn,i(ρ, Ωi)

For given ρ, solve the hyper-angular equation for Φn(ρ, Ω)

The result is a 1-D equation for f (ρ) and E, with an effective 1
ρ2 potential
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The Hyper-Spherical Coordinates

To eliminate center of mass, we use the Jacobi coordinates,
(r1, r2, r3)→ (RCM, xi, yi):

xi =
rj − rk√

2
, yi =

√
2
3

(
−ri +

rj + rk

2

)
Now using the hyper-spherical coordinates,
(xi, yi)→ (ρ, αi, x̂i, ŷi):

ρ2 = x2
i + y2

i , tan αi = xi/yi,

The Hamiltonian H = (T + ∑i<j V(|ri − rj|) reads,

T = − h̄2

2m

(
∂2

∂ρ2 +
5
ρ

∂

∂ρ
− K̂2

ρ2

)
where

K̂2 = − 1
sin 2α

∂2

∂α2 sin 2α +
l̂2x

sin2 α
+

l̂2y
cos2 α

− 4

and
∑
i<j

V(|ri − rj|) = ∑
i

V(
√

2ρ sin αi)
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The Adiabatic Expansion

Next we apply the adiabatic expansion,

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω),

Φn(ρ, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue ν2
n,(

K̂2 +
2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

fn(ρ) is the solution of the hyper-radial equation,(
− ∂2

∂ρ2 +
2m
h̄2 (Veff(ρ)− E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)

where the effective potential is

Veff(ρ) =
h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω
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h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω
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The Faddeev Decomposition

Using Faddeev decomposition,

Φn(ρ, Ω) = ∑
i

φn,i(ρ, Ωi)

We assume our interaction is of zero range and s-wave only, Therefore the only partial wave to
be considered for the bound state is lx = 0, ly = L.

Now the solution is,

φn,i(ρ, Ωi) =
gν,L(αi)

sin(2αi)
YL,M

lx ,ly
(x̂i, ŷi)

where

gν,L(αi) = cosL α

(
∂

∂α

1
cos α

)L
sin
[
ν
(

α− π

2

)]
,

YL,M
lx ,ly

(x̂, ŷ) = ∑
mx ,my

〈lxmxlymy|LM〉Ymx
lx
(x̂)Y

my
ly
(ŷ)

In the low energy limit, the boundary condition reads[
1

2αiΦ
∂

∂αi
2αiΦ

]
αi=0

= −
√

2ρ
1
as

A. Cobis, D.V. Fedorov, and A.S. Jensen, Phys. Rev. Lett. 79, 2411 (1997).
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Applying Boundary Condition

Plugging the angular wave functions, the equation for L = 0 reads,

ν cos(νπ/2)− 8√
3

sin(νπ/6) =

√
2ρ

a
sin(νπ/2)

For L = 2 the equation reads,

ν(4− ν2) cos(νπ/2) + 24ν cos(νπ/6) +
8√
3
(ν2 − 10) sin(νπ/6) = − ρ

a
(ν2 − 1) sin(νπ/2)
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The Unitary Limit

In the unitary limit, |a| → ∞, ν is not depend on ρ, and therefore Pn,n′ = 0 = Qn,n′ !
The hyper-radial equation is similar to the Bessel equation,

− d2f (ρ)
dρ2 +

ν2
L(ρ)− 1/4

ρ2 f (ρ) = εf (ρ)

with ν0 ≈ 1.00624i, and ν2 ≈ 2.82334.

1 Bound state, En = −h̄2κ2
n/2m < 0:

f (n)B (ρ) ∝ κn
√

ρKν0 (κnρ)

where to ignore the Thomas collapse, a 3-body repulsive force is to be introduced, for
example U(ρ ≤ ρ0) = ∞ for some finite ρ0, resulting in the famous Efimov spectrum,

En

E0
= e−2πn/|ν0 | ≈ 515−n.

2 Scattering state, E = h̄2q2/2m > 0:

fL(ρ) ∝
√

qρ

R
[
sin δLJνL (qρ) + cos δLYνL (qρ)

]
where the 3-body phase shift is determined by fL(ρ0) = 0.
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Matrix Elements Calculation

The r2 operator reads ∑i r2
i = ρ2 + 3R2

CM.

For the Q̂ operator, ri = R−
√

2
3 yi,

r2
i YM

2 (r̂i) = ρ2 cos2 αiYM
2 (ŷi)

∣∣〈f |ĤI |i
〉∣∣2 ∝

 1
62

∣∣∣∣∣
〈

ψB‖∑
i

r2
i Y0‖ψs

〉∣∣∣∣∣
2

+
1

152

∣∣∣∣∣
〈

ψB‖∑
i

r2
i Y2(r̂i)‖ψd

〉∣∣∣∣∣
2
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Matrix Elements Calculation

Note that the transition rate should include all appropriate final and initial states,
conserving energy and angular momentum.

∑n,ν
∣∣〈fn|ĤI |iν

〉∣∣2 δ(Ef − E0 − h̄ω) is to be calculated.
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n but contribute at lower energy.

Only ν0,1 ≈ 4.465 and ν2,1 ≈ 5.508 (dashed) contribute.
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Trimer Photoasociation: Results

kBT = E3 kBT = 0.2E3
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Comparison to Experiment
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Quadrupole Response

The quadrupole response of the trimer photo-disintegration -

R(ω) = C
∫
∑
f ,λ

∣∣〈Φf |Q̂|Φ0〉
∣∣2 δ(Ef − E0 − h̄ω)

Using the hyper-spherical harmonics (HH) expansion up to Kmax = 70, we calculate the Lorentz
integral transform (LIT)

L(σ) =
∫

dω
R(ω)

(ω− σ)2 + Γ2 = 〈Ψ̃(σ)|Ψ̃(σ)〉

where
(Ĥ− E0 − σ− iΓ)|Ψ̃(σ)〉 = Q̂|Ψ0〉

and invert the transform to get the response R(ω)
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Quadrupole Response
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Photodisintegration Sum Rules

Sn ≡
∫ ∞

ωth

dω ωn R(ω)

The sum rule Sn

Exists if R(ω) −→ 0 faster than ω−n−1.

Can be expressed as GS observable utilizing the closure of the eigenstates of H.

S1 = 〈0| [O, [H, O]] |0〉 = 〈0|O (H− E0)O|0〉
S0 = 〈0|OO|0〉

S−1 = 〈0|O 1
H− E0

O|0〉
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Naive Scaling

We use as < 0, therefore the only energy scale is the trimer energy

Using simple dimensional arguments we expect that

r ∼ 1/
√

E

The Quadrupole operator behaves as r2 so

R(ω) ∼ r4/E ∼ 1/E3

It follows that the sum rules should have the relations

Sn ∼ 1/E2−n

or
S0 ∼ 1/E2

S−1 ∼ 1/E3

S0/S−1 ∼ E
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Calculated Sum Rules
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Naive Scaling Does Not Work !!!

For S1 we got a power of 0.55 instead of 1.

For S0 we got a power of 1.33 instead of 2.

For S−1 we got a power of 2.13 instead of 3.

The ration Sn/Sn−1 ∼ E0.8 instead of Sn/Sn−1 ∼ E.

The results seems to be independent of the short range specifications of the potential.
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Summary and Conclusions

1 The new RF experiments in ultracold-atoms systems carry much in common with
photo-reactions and charged current reactions in nuclei.

2 For spin-flip reaction, the Franck-Condon factor is the leading contribution to the
cross-section, and R(ω) ∝ ω.

3 For frozen-spin reactions the monopole R2 and the Quadrupole are the leading terms, and
R(ω) ∝ ω5.

4 We have studied the dimer formation and found that the reaction mechanism changes from
monopole to quadrupole with increasing gas temperature.

5 The trimer formation was studied, with similar dependence on temperature.
6 The trimer photo-disintegration quadrupole response was calculated
7 Sum rules were calculated and found to be independent of the particular potential model

used, with unexpected exponents.
8 Lev’s experiment is still wait to be fully understood...
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