Electromagnetic Reactions in Ultracold Atoms

Betzalel Bazak

The Racah institute for Physics The Hebrew University, Jerusalem, Israel

INT Workshop Electroweak properties of light nuclei 7 November, 2012

∢ □ ▶ ⊣ *←* D ▶

Outline

[Introduction](#page-2-0)

- **[Photo Reactions](#page-3-0)**
- [Efimov Physics and Ultracold Atoms](#page-10-0)
- ² [Multipole Expansion](#page-20-0)
- [Dimer Photoassociation](#page-35-0)
- **[Trimer Photoassociation](#page-45-0)**
- ⁵ [Quadrupole Response](#page-76-0) [Sum Rules](#page-79-0)

References:

- E. Liverts, B. Bazak, and N. Barnea, Phys. Rev. Lett. **108**, 112501 (2012)
- B. Bazak, E. Liverts, and N. Barnea, Phys. Rev. A **86**, 043611 (2012)
- B. Bazak, E. Liverts, and N. Barnea, Few-Body Systems 10.1007/s00601-012-0437-8 (2012)
- B. Bazak and N. Barnea, *in preparation*

 $2Q$

K ロ ト 4 御 ト 4 ヨ ト 4

Outline

- [Photo Reactions](#page-3-0)
- [Efimov Physics and Ultracold Atoms](#page-10-0)

² [Multipole Expansion](#page-20-0)

⁵ [Quadrupole Response](#page-76-0) [Sum Rules](#page-79-0)

What Can We Learn From Photo Reactions?

- **1** Understanding of the systems at hand.
- ² A test of the Hamiltonian at regimes not accessible by elastic reactions.
- ³ Reaction rates as input for experiments or applications (e.g. astrophysics).
- ⁴ Underlying degrees of freedom.
- ⁵ The transition from single particle to collective behavior.

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

-
-
-

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

The current is a sum of convection and spin currents

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

-
-
-

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

The current is a sum of convection and spin currents

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

-
- In nuclear physics, the convection current is dominant
-

 Ω

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

The current is a sum of convection and spin currents

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

Classically, the convection current $J_c = \sum_i Z_i v_i$ is the flow of the charged particles.

In nuclear physics, the convection current is dominant

 Ω

イロト イ押ト イヨト イヨト

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

The current is a sum of convection and spin currents

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

- Classically, the convection current $J_c = \sum_i Z_i v_i$ is the flow of the charged particles.
- In nuclear physics, the convection current is dominant
-

 Ω

イロト イ押 トイヨ トイヨト

The Interaction Hamiltonian between the photon field $A(x)$ and the atomic/nuclear system

$$
H_I = -\frac{e}{c} \int dx A(x) \cdot J(x)
$$

The current is a sum of convection and spin currents

$$
J(x) = J_c(x) + \nabla \times \mu(x)
$$

$$
H_I = -\frac{e}{c} \int dx \left\{ A(x) \cdot J_c(x) + B(x) \cdot \mu(x) \right\}
$$

- Classically, the convection current $J_c = \sum_i Z_i v_i$ is the flow of the charged particles.
- In nuclear physics, the convection current is dominant
- Ultracold atoms are neutral $J_c(x) = 0$ and the current $\mu(x)$ is dominated by the spins.

 $2Q$

イロト イ押 トイヨ トイヨト

-
- \bullet In nuclear physics, ⁶He is bound while ⁵He,
-
-
-
-
-

K ロ ▶ K 伊 ▶ K ミ

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

 Ω

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He,
-
-
-
-
-

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.

-
- In 1970 V. Efimov found out that if $E_2 = 0$
-
-
-

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state $E_3 < 0$ exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.
- The unitary limit: $E_2 = 0$, $a_s \rightarrow \infty$.
- In 1970 V. Efimov found out that if $E_2 = 0$
-
-
-

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.
- The unitary limit: $E_2 = 0$, $a_s \rightarrow \infty$.
- In 1970 V. Efimov found out that if $E_2 = 0$ the 3-body system will have an **infinite** number of bound states.
-
- In atomic traps, a_s can be manipulated
-

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.
- The unitary limit: $E_2 = 0$, $a_s \rightarrow \infty$.
- In 1970 V. Efimov found out that if $E_2 = 0$ the 3-body system will have an **infinite** number of bound states.
- The 3-body spectrum is $E_n = E_0 e^{-2\pi n/s_0}$ with $s_0 = 1.00624$.
- In atomic traps, a_s can be manipulated
- Particle losses in traps are closely related to

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.
- The unitary limit: $E_2 = 0$, $a_s \rightarrow \infty$.
- In 1970 V. Efimov found out that if $E_2 = 0$ the 3-body system will have an **infinite** number of bound states.
- The 3-body spectrum is $E_n = E_0 e^{-2\pi n/s_0}$ with $s_0 = 1.00624$.
- \bullet In atomic traps, a_s can be manipulated through the Feshbach resonance.
- Particle losses in traps are closely related to

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

- Borromean regime: A 3-body bound state E_3 < 0 exists even if the 2-body system is unbound $E_2 > 0$.
- \bullet In nuclear physics, ⁶He is bound while ⁵He, *n* − *n* − not.
- The unitary limit: $E_2 = 0$, $a_s \rightarrow \infty$.
- In 1970 V. Efimov found out that if $E_2 = 0$ the 3-body system will have an **infinite** number of bound states.
- The 3-body spectrum is $E_n = E_0 e^{-2\pi n/s_0}$ with $s_0 = 1.00624$.
- \bullet In atomic traps, a_s can be manipulated through the Feshbach resonance.
- Particle losses in traps are closely related to Efimov's physics through the 3-body recombination process

 $A + A + A \longrightarrow A_2 + A$

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

Efimov Physics in Ultracold Atoms

Photoassociation of Atomic Molecules

RF-induce atom loss resonances for different values of bias magnetic fields.

←ロト ← 伊

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, Phys. Rev. Lett. **108**, 210406 (2012)

 290

Outline

• [Photo Reactions](#page-3-0)

[Efimov Physics and Ultracold Atoms](#page-10-0)

² [Multipole Expansion](#page-20-0)

⁵ [Quadrupole Response](#page-76-0) [Sum Rules](#page-79-0)

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

$$
\rho(k) = \int dx \rho(x) e^{ik \cdot x} = \sum_{i=1}^{A} Z_i e^{ik \cdot r_i}
$$

-
-

 Ω

K ロ ト K 伊 ト K ヨ ト

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

• The Fourier Transform

$$
\rho(\mathbf{k}) = \int d\mathbf{x} \rho(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}} = \sum_{i}^{A} Z_i e^{i\mathbf{k} \cdot \mathbf{r}_i}
$$

For a system of **identical** particles

-
-

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

• The Fourier Transform

$$
\rho(\mathbf{k}) = \int d\mathbf{x} \rho(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}} = \sum_{i}^{A} Z_i e^{i\mathbf{k} \cdot \mathbf{r}_i}
$$

• In the long wavelength limit $k \rightarrow 0$

$$
\rho(\mathbf{k}) \approx \sum_{i}^{A} Z_i + i \sum_{i}^{A} Z_i \mathbf{k} \cdot \mathbf{r}_i - \sum_{i}^{A} Z_i (\mathbf{k} \cdot \mathbf{r}_i)^2
$$

For a system of **identical** particles

- **Conclusion A:** In general the Dipole is the leading term.
-

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

• The Fourier Transform

$$
\rho(\mathbf{k}) = \int d\mathbf{x} \rho(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}} = \sum_{i}^{A} Z_i e^{i\mathbf{k} \cdot \mathbf{r}_i}
$$

• In the long wavelength limit $k \rightarrow 0$

$$
\rho(\mathbf{k}) \approx \sum_{i}^{A} Z_i + i \sum_{i}^{A} Z_i \mathbf{k} \cdot \mathbf{r}_i - \sum_{i}^{A} Z_i (\mathbf{k} \cdot \mathbf{r}_i)^2
$$

For a system of **identical** particles

$$
\rho(\mathbf{k}) \approx A Z_1 + i A Z_1 \mathbf{k} \cdot \mathbf{R}_{cm} - \frac{1}{2} Z_1 \sum_{i}^{A} \left(\frac{k^2 r_i^2}{6} + 4 \pi \frac{k^2 r_i^2}{15} \sum_{m} Y_{2-m}(\hat{k}) Y_{2m}(\hat{r}_i) \right)
$$

- **Conclusion A:** In general the Dipole is the leading term.
- **Conclusion B:** For identical particles the leading terms are \hat{R}^2 and \hat{Q} .

 Ω

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

• The Fourier Transform

$$
\rho(\mathbf{k}) = \int d\mathbf{x} \rho(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}} = \sum_{i}^{A} Z_i e^{i\mathbf{k} \cdot \mathbf{r}_i}
$$

• In the long wavelength limit $k \rightarrow 0$

$$
\rho(\mathbf{k}) \approx \sum_{i}^{A} Z_i + i \sum_{i}^{A} Z_i \mathbf{k} \cdot \mathbf{r}_i - \sum_{i}^{A} Z_i (\mathbf{k} \cdot \mathbf{r}_i)^2
$$

For a system of **identical** particles

$$
\rho(\mathbf{k}) \approx A Z_1 + i A Z_1 \mathbf{k} \cdot \mathbf{R}_{cm} - \frac{1}{2} Z_1 \sum_{i}^{A} \left(\frac{k^2 r_i^2}{6} + 4 \pi \frac{k^2 r_i^2}{15} \sum_{m} Y_{2-m}(\hat{k}) Y_{2m}(\hat{r}_i) \right)
$$

Conclusion A: In general the Dipole is the leading term.

• Conclusion B: For identical particles the leading terms are \hat{R}^2 and \hat{Q} .

 Ω

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

The response of an A-particle system is closely related to the static moments of the charge density

$$
\rho(\mathbf{x}) = \sum_{i}^{A} Z_i \delta(\mathbf{x} - \mathbf{r}_i)
$$

• The Fourier Transform

$$
\rho(\mathbf{k}) = \int d\mathbf{x} \rho(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}} = \sum_{i}^{A} Z_i e^{i\mathbf{k} \cdot \mathbf{r}_i}
$$

• In the long wavelength limit $k \rightarrow 0$

$$
\rho(\mathbf{k}) \approx \sum_{i}^{A} Z_i + i \sum_{i}^{A} Z_i \mathbf{k} \cdot \mathbf{r}_i - \sum_{i}^{A} Z_i (\mathbf{k} \cdot \mathbf{r}_i)^2
$$

For a system of **identical** particles

$$
\rho(\mathbf{k}) \approx AZ_1 + iAZ_1 \mathbf{k} \cdot \mathbf{R}_{cm} - \frac{1}{2} Z_1 \sum_{i}^{A} \Big(\frac{k^2 r_i^2}{6} + 4\pi \frac{k^2 r_i^2}{15} \sum_{m} Y_{2-m}(\hat{k}) Y_{2m}(\hat{r}_i) \Big)
$$

- **Conclusion A:** In general the Dipole is the leading term.
- **Conclusion B:** For identical particles the leading terms are \hat{R}^2 and \hat{O} .

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

- For RF photons in the few MHz region the wave length is meters so $kR \ll 1$.
- The atoms reside in a strong magnetic field, thus

- In the final state the photon can either change one of
-

$$
|m_F^1m_F^2\ldots m_F^A\rangle \longrightarrow |m_F^1m_F^2\pm 1\ldots m_F^A\rangle
$$

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \dots m_F^A\rangle
$$

 $2Q$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

- For RF photons in the few MHz region the wave length is meters so $kR \ll 1$.
- The atoms reside in a strong magnetic field, thus spins are "frozen"

 $|\Psi_0\rangle = \Phi_0(r_i)|m_F^1 m_F^2 \dots m_F^A\rangle$

- In the final state the photon can either change one of
- Spin-flip reaction

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \pm 1 \dots m_F^A\rangle
$$

$$
\left| \left| m_{F}^{1} m_{F}^{2} \ldots m_{F}^{A} \right| \longrightarrow \left| m_{F}^{1} m_{F}^{2} \ldots m_{F}^{A} \right\rangle \right|
$$

∢ □ ▶ ⊣ *←* D ▶

N. Gross and L. Khaykovich, Phys. Rev. **A** 77, 023604 (2008)

 Ω

- For RF photons in the few MHz region the wave length is meters so $kR \ll 1$.
- The atoms reside in a strong magnetic field, thus spins are "frozen"

$$
|\Psi_0\rangle = \Phi_0(r_i)|m_F^1 m_F^2 \dots m_F^A\rangle
$$

- In the final state the photon can either change one of the spins or leave them untouched.
- Spin-flip reaction

$$
|m_F^1m_F^2\ldots m_F^A\rangle \longrightarrow |m_F^1m_F^2 \pm 1\ldots m_F^A\rangle
$$

• Frozen-Spin reaction

$$
\left|\,|m_F^1m_F^2\ldots m_F^A\rangle\longrightarrow |m_F^1m_F^2\ldots m_F^A\rangle\,\right|
$$

K ロ ▶ K 伊 ▶

N. Gross and L. Khaykovich, Phys. Rev. **A** 77, 023604 (2008)

- For RF photons in the few MHz region the wave length is meters so $kR \ll 1$.
- The atoms reside in a strong magnetic field, thus spins are "frozen"

$$
|\Psi_0\rangle = \Phi_0(r_i)|m_F^1 m_F^2 \dots m_F^A\rangle
$$

- In the final state the photon can either change one of the spins or leave them untouched.
- Spin-flip reaction

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \pm 1 \dots m_F^A\rangle
$$

• Frozen-Spin reaction

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \dots m_F^A\rangle
$$

N. Gross and L. Khaykovich, Phys. Rev. **A** 77, 023604 (2008)

- For RF photons in the few MHz region the wave length is meters so $kR \ll 1$.
- The atoms reside in a strong magnetic field, thus spins are "frozen"

$$
|\Psi_0\rangle = \Phi_0(r_i)|m_F^1 m_F^2 \dots m_F^A\rangle
$$

- In the final state the photon can either change one of the spins or leave them untouched.
- Spin-flip reaction

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \pm 1 \dots m_F^A\rangle
$$

Frozen-Spin reaction

$$
|m_F^1 m_F^2 \dots m_F^A\rangle \longrightarrow |m_F^1 m_F^2 \dots m_F^A\rangle
$$

N. Gross and L. Khaykovich, Phys. Rev. **A** 77, 023604 (2008)

• For Spin-flip reactions the Franck-Condon factor dominates the transition

$$
R(\omega) = Ck \sum_{f,\lambda} |\langle \Phi_f | \Phi_0 \rangle|^2 \delta(E_f - E_0 - \omega)
$$

$$
O = \alpha \hat{M} + \beta \hat{Q}
$$

• The response is given by

$$
R(\omega) = k^5 \sum_{f,\lambda} \left| \langle \Phi_f | O | \Phi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)
$$

 $2Q$

K ロ ト K 倒 ト K ヨ ト K

• For Spin-flip reactions the Franck-Condon factor dominates the transition

$$
R(\omega) = Ck \sum_{f,\lambda} |\langle \Phi_f | \Phi_0 \rangle|^2 \delta(E_f - E_0 - \omega)
$$

For Frozen-Spin reactions we get a sum of the monopole operator $\hat{M} = R^2 = \sum r_i^2$ and the Quadrupole operator $\hat{Q} = \sum r_i^2 Y_2(\hat{r}_i)$

$$
O = \alpha \hat{M} + \beta \hat{Q}
$$

• The response is given by

$$
R(\omega) = k^5 \sum_{f,\lambda} \left| \langle \Phi_f | O | \Phi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)
$$

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

• For Spin-flip reactions the Franck-Condon factor dominates the transition

$$
R(\omega) = Ck \sum_{f,\lambda} |\langle \Phi_f | \Phi_0 \rangle|^2 \delta(E_f - E_0 - \omega)
$$

For Frozen-Spin reactions we get a sum of the monopole operator $\hat{M} = R^2 = \sum r_i^2$ and the Quadrupole operator $\hat{Q} = \sum r_i^2 Y_2(\hat{r}_i)$

$$
O = \alpha \hat{M} + \beta \hat{Q}
$$

• The response is given by

$$
R(\omega) = k^5 \sum_{f,\lambda} \left| \langle \Phi_f | \mathbf{O} | \Phi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)
$$

∢ ロ ▶ ィ 伊 ▶ ィ

 Ω

Outline

- [Photo Reactions](#page-3-0)
- [Efimov Physics and Ultracold Atoms](#page-10-0)

² [Multipole Expansion](#page-20-0)

³ [Dimer Photoassociation](#page-35-0)

⁵ [Quadrupole Response](#page-76-0) [Sum Rules](#page-79-0)

For the dimer case the response function can be written as

$$
R(\omega) = C \omega^5 \left[\frac{1}{6^2} |\langle \psi_0 \| \hat{M} \| \varphi_0(q) \rangle|^2 + \frac{1}{5 \cdot 15^2} |\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 \right]
$$

• Where the bound state wave function is given by

$$
\psi_0 = Y_0 \sqrt{2\kappa} e^{-\kappa r}/r \ ; \ \kappa \approx 1/a_s
$$

• The continuum state is given by $\varphi_{\ell}(q) = Y_{\ell}(\hat{r}) \chi_{\ell}(r)/r$

$$
\chi_{\ell}(r) = 2qr[\cos \delta_{\ell} j_{\ell}(qr) - \sin \delta_{\ell} n_{\ell}(qr)]
$$

$$
|\langle\psi_0\|\hat{M}\|\phi_0(q)\rangle|^2=\frac{1}{4\pi}\left(\frac{4q\sqrt{2\kappa}}{(q^2+\kappa^2)^3}\right)^2\left[\cos\delta_0(3\kappa^2-q^2)-\sin\delta_0\frac{\kappa}{q}(3q^2-\kappa^2)\right]^2
$$

$$
|\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 = \frac{5}{4\pi} \left[\frac{16q^3\sqrt{2\kappa}}{(q^2+\kappa^2)^3} \right]^2
$$

 $2Q$

K ロ ト K 伊 ト K ヨ ト

For the dimer case the response function can be written as

$$
R(\omega) = C\omega^5 \left[\frac{1}{6^2} |\langle \psi_0 || \hat{M} || \varphi_0(q) \rangle|^2 + \frac{1}{5 \cdot 15^2} |\langle \psi_0 || \hat{Q} || \varphi_2(q) \rangle|^2 \right]
$$

• Where the bound state wave function is given by

$$
\psi_0 = Y_0 \sqrt{2\kappa} e^{-\kappa r}/r \quad ; \quad \kappa \approx 1/a_s
$$

• The continuum state is given by $\varphi_{\ell}(q) = Y_{\ell}(\hat{r}) \chi_{\ell}(r)/r$

$$
\chi_{\ell}(r) = 2qr[\cos \delta_{\ell} j_{\ell}(qr) - \sin \delta_{\ell} n_{\ell}(qr)]
$$

$$
|\langle\psi_0\|\hat{M}\|\phi_0(q)\rangle|^2=\frac{1}{4\pi}\left(\frac{4q\sqrt{2\kappa}}{(q^2+\kappa^2)^3}\right)^2\left[\cos\delta_0(3\kappa^2-q^2)-\sin\delta_0\frac{\kappa}{q}(3q^2-\kappa^2)\right]^2
$$

$$
|\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 = \frac{5}{4\pi} \left[\frac{16q^3\sqrt{2\kappa}}{(q^2 + \kappa^2)^3} \right]^2
$$

 $2Q$

K ロ ト 4 御 ト 4 ヨ ト 4

For the dimer case the response function can be written as

$$
R(\omega) = C\omega^5 \left[\frac{1}{6^2} |\langle \psi_0 || \hat{M} || \varphi_0(q) \rangle|^2 + \frac{1}{5 \cdot 15^2} |\langle \psi_0 || \hat{Q} || \varphi_2(q) \rangle|^2 \right]
$$

• Where the bound state wave function is given by

$$
\psi_0 = Y_0 \sqrt{2\kappa} e^{-\kappa r}/r \quad ; \quad \kappa \approx 1/a_s
$$

• The continuum state is given by $\varphi_{\ell}(q) = Y_{\ell}(\hat{r}) \chi_{\ell}(r)/r$

$$
\chi_{\ell}(r) = 2qr[\cos \delta_{\ell} j_{\ell}(qr) - \sin \delta_{\ell} n_{\ell}(qr)]
$$

$$
|\langle\psi_0\|\hat{M}\|\phi_0(q)\rangle|^2=\frac{1}{4\pi}\left(\frac{4q\sqrt{2\kappa}}{(q^2+\kappa^2)^3}\right)^2\left[\cos\delta_0(3\kappa^2-q^2)-\sin\delta_0\frac{\kappa}{q}(3q^2-\kappa^2)\right]^2
$$

• The $\ell = 2$ matrix element, assuming $\delta_2 = 0$

$$
|\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 = \frac{5}{4\pi} \left[\frac{16q^3\sqrt{2\kappa}}{(q^2+\kappa^2)^3} \right]^2
$$

 $2Q$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ

For the dimer case the response function can be written as

$$
R(\omega) = C\omega^5 \left[\frac{1}{6^2} |\langle \psi_0 || \hat{M} || \varphi_0(q) \rangle|^2 + \frac{1}{5 \cdot 15^2} |\langle \psi_0 || \hat{Q} || \varphi_2(q) \rangle|^2 \right]
$$

• Where the bound state wave function is given by

$$
\psi_0 = Y_0 \sqrt{2\kappa} e^{-\kappa r}/r \quad ; \quad \kappa \approx 1/a_s
$$

• The continuum state is given by $\varphi_{\ell}(q) = Y_{\ell}(\hat{r}) \chi_{\ell}(r)/r$

$$
\chi_{\ell}(r) = 2qr[\cos \delta_{\ell} j_{\ell}(qr) - \sin \delta_{\ell} n_{\ell}(qr)]
$$

• The $\ell = 0$ matrix element

$$
|\langle\psi_0\|\hat{M}\|\phi_0(q)\rangle|^2=\frac{1}{4\pi}\left(\frac{4q\sqrt{2\kappa}}{(q^2+\kappa^2)^3}\right)^2\left[\cos\delta_0(3\kappa^2-q^2)-\sin\delta_0\frac{\kappa}{q}(3q^2-\kappa^2)\right]^2
$$

• The $\ell = 2$ matrix element, assuming $\delta_2 = 0$

$$
|\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 = \frac{5}{4\pi} \left[\frac{16q^3\sqrt{2\kappa}}{(q^2+\kappa^2)^3} \right]^2
$$

 $2Q$

K ロ ト 4 御 ト 4 ヨ ト 4

For the dimer case the response function can be written as

$$
R(\omega) = C\omega^5 \left[\frac{1}{6^2} |\langle \psi_0 || \hat{M} || \varphi_0(q) \rangle|^2 + \frac{1}{5 \cdot 15^2} |\langle \psi_0 || \hat{Q} || \varphi_2(q) \rangle|^2 \right]
$$

• Where the bound state wave function is given by

$$
\psi_0 = Y_0 \sqrt{2\kappa} e^{-\kappa r}/r \quad ; \quad \kappa \approx 1/a_s
$$

• The continuum state is given by $\varphi_{\ell}(q) = Y_{\ell}(\hat{r}) \chi_{\ell}(r)/r$

$$
\chi_{\ell}(r) = 2qr[\cos \delta_{\ell} j_{\ell}(qr) - \sin \delta_{\ell} n_{\ell}(qr)]
$$

• The $\ell = 0$ matrix element

$$
|\langle\psi_0\|\hat{M}\|\phi_0(q)\rangle|^2=\frac{1}{4\pi}\left(\frac{4q\sqrt{2\kappa}}{(q^2+\kappa^2)^3}\right)^2\left[\cos\delta_0(3\kappa^2-q^2)-\sin\delta_0\frac{\kappa}{q}(3q^2-\kappa^2)\right]^2
$$

• The $\ell = 2$ matrix element, assuming $\delta_2 = 0$

$$
|\langle \psi_0 \| \hat{Q} \| \varphi_2(q) \rangle|^2 = \frac{5}{4\pi} \left[\frac{16q^3\sqrt{2\kappa}}{(q^2 + \kappa^2)^3} \right]^2
$$

 QQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The s-wave and d-wave components in the response function

- upper panel $a/r_{\text{eff}} = 2$
- lower panel $a/r_{\text{eff}} = 200$
- red *r* ² monopole
- blue quadrupole
- black their sum

4 D F \leftarrow \rightarrow

Photoassociation of ⁷**Li dimers**

 $a_s = 1000a_0$ $T = 25 \mu K$ (upper panel) $T = 5\mu$ K (lower panel)

red - *r* ² monopole, blue - quadrupole, black - sum

4 **D F**

Photoassociation of ⁷**Li dimers**

 $a_s = 1000a_0$ $T = 25 \mu K$ (upper panel) $T = 5 \mu K$ (lower panel)

red - *r* ² monopole, blue - quadrupole, black - sum

The relative contribution to the peak

4 0 8

 Ω

- The fitted values of a_5 and *T* are in reasonable agreement with the estimates of the experimental group.
- High amplitude RF causes power broadening
- Finite time effect \bullet
- Disagreement are due to 3-body (4-body?) association.
- **•** Effects of $\delta_2 \neq 0$ are negligible.

4日 9

Outline

- [Photo Reactions](#page-3-0)
- [Efimov Physics and Ultracold Atoms](#page-10-0)

² [Multipole Expansion](#page-20-0)

⁴ [Trimer Photoassociation](#page-45-0)

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

Use the adiabatic expansion (Born-Oppenheimer like), where *ρ* is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

$$
\left[\Phi_n(\rho,\Omega)=\sum_i\phi_{n,i}(\rho,\Omega_i)\right]
$$

-
-

 Ω

K ロ ▶ K 伊 ▶ K ミ

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

 $(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \rightarrow (\mathbf{R}_{CM}, \mathbf{x}_i, \mathbf{y}_i) \rightarrow (\mathbf{R}_{CM}, \rho, \alpha_i, \hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i)$

Use the adiabatic expansion (Born-Oppenheimer like), where *ρ* is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

$$
\Phi_n(\rho,\Omega)=\sum_i\phi_{n,i}(\rho,\Omega_i)
$$

-
-

 Ω

≮ロ ▶ (伊 ▶ (ミ)

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

$$
(r_1,r_2,r_3)\rightarrow (R_{CM},x_i,y_i)\rightarrow (R_{CM},\rho,\alpha_i,\hat{x}_i,\hat{y}_i)
$$

 \bullet Use the adiabatic expansion (Born-Oppenheimer like), where ρ is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

- For given *ρ*, solve the hyper-angular equation for Φ*n*(*ρ*, Ω)
-

 Ω

K ロ ト 4 御 ト 4 ヨ ト 4

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

$$
(r_1,r_2,r_3)\rightarrow (R_{CM},x_i,y_i)\rightarrow (R_{CM},\rho,\alpha_i,\hat{x}_i,\hat{y}_i)
$$

Use the adiabatic expansion (Born-Oppenheimer like), where *ρ* is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

 $\Phi_n(\rho,\Omega) = \sum_i \phi_{n,i}(\rho,\Omega_i)$

- For given *ρ*, solve the hyper-angular equation for Φ*n*(*ρ*, Ω)
-

 Ω

≮ロト ⊀ 伊 ト ⊀ ヨ ト ⊀

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

$$
(r_1,r_2,r_3)\rightarrow (R_{CM},x_i,y_i)\rightarrow (R_{CM},\rho,\alpha_i,\hat{x}_i,\hat{y}_i)
$$

Use the adiabatic expansion (Born-Oppenheimer like), where *ρ* is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

$$
\Phi_n(\rho,\Omega)=\sum_i \phi_{n,i}(\rho,\Omega_i)
$$

• For given ρ , solve the hyper-angular equation for $\Phi_n(\rho,\Omega)$

 Ω

≮ロ ⊁ ⊀ 伊 ⊁ ⊀ ヨ ▶

To get analytical results for the 3-body problem,

- Assume short-range interaction and large scattering length
- Remove center of mass and adopt the hyper-spherical coordinates

$$
(r_1,r_2,r_3)\rightarrow (R_{CM},x_i,y_i)\rightarrow (R_{CM},\rho,\alpha_i,\hat{x}_i,\hat{y}_i)
$$

Use the adiabatic expansion (Born-Oppenheimer like), where *ρ* is the slow coordinate

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega)
$$

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

$$
\Phi_n(\rho,\Omega)=\sum_i\phi_{n,i}(\rho,\Omega_i)
$$

- **•** For given *ρ*, solve the hyper-angular equation for $\Phi_n(\rho, \Omega)$
- The result is a 1-D equation for $f(\rho)$ and *E*, with an effective $\frac{1}{\rho^2}$ potential

 Ω

←ロ ▶ → 伊 ▶ → ヨ ▶ →

To eliminate center of mass, we use the Jacobi coordinates, $(r_1, r_2, r_3) \rightarrow (R_{CM}, x_i, y_i)$:

$$
x_i = \frac{r_j - r_k}{\sqrt{2}}, \quad y_i = \sqrt{\frac{2}{3}} \left(-r_i + \frac{r_j + r_k}{2} \right)
$$

$$
\rho^2 = x_i^2 + y_i^2, \quad \tan \alpha_i = x_i/y_i,
$$

$$
T = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{K}^2}{\rho^2} \right)
$$

$$
\hat{K}^2 = -\frac{1}{\sin 2\alpha} \frac{\partial^2}{\partial \alpha^2} \sin 2\alpha + \frac{\hat{I}_x^2}{\sin^2 \alpha} + \frac{\hat{I}_y^2}{\cos^2 \alpha} - 4
$$

$$
\sum_{i < j} V(|r_i - r_j|) = \sum_i V(\sqrt{2}\rho \sin \alpha_i)
$$

 $2Q$

K ロ ト 4 御 ト 4 ヨ ト 4

The Hyper-Spherical Coordinates

To eliminate center of mass, we use the Jacobi coordinates, $(r_1, r_2, r_3) \rightarrow (R_{CM}, x_i, y_i)$:

$$
x_i = \frac{r_j - r_k}{\sqrt{2}}, \quad y_i = \sqrt{\frac{2}{3}} \left(-r_i + \frac{r_j + r_k}{2} \right)
$$

$$
\rho^2 = x_i^2 + y_i^2, \quad \tan \alpha_i = x_i/y_i,
$$

$$
T = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{K}^2}{\rho^2} \right)
$$

$$
\hat{K}^2 = -\frac{1}{\sin 2\alpha} \frac{\partial^2}{\partial \alpha^2} \sin 2\alpha + \frac{\hat{I}_x^2}{\sin^2 \alpha} + \frac{\hat{I}_y^2}{\cos^2 \alpha} - 4
$$

$$
\sum_{i < j} V(|r_i - r_j|) = \sum_i V(\sqrt{2}\rho \sin \alpha_i)
$$

 $2Q$

イロト イ押ト イヨト イ

The Hyper-Spherical Coordinates

To eliminate center of mass, we use the Jacobi coordinates, $(r_1, r_2, r_3) \rightarrow (R_{CM}, x_i, y_i)$:

$$
x_i = \frac{r_j - r_k}{\sqrt{2}}, \quad y_i = \sqrt{\frac{2}{3}} \left(-r_i + \frac{r_j + r_k}{2} \right)
$$

Now using the hyper-spherical coordinates, $(x_i, y_i) \rightarrow (\rho, \alpha_i, \hat{x}_i, \hat{y}_i)$:

$$
\rho^2 = x_i^2 + y_i^2, \quad \tan \alpha_i = x_i/y_i,
$$

• The Hamiltonian
$$
\mathcal{H} = (T + \sum_{i < j} V(|\mathbf{r}_i - \mathbf{r}_j|)
$$
 reads,

$$
T = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{K}^2}{\rho^2} \right)
$$

where

$$
\hat{K}^2 = -\frac{1}{\sin 2\alpha} \frac{\partial^2}{\partial \alpha^2} \sin 2\alpha + \frac{\hat{I}_x^2}{\sin^2 \alpha} + \frac{\hat{I}_y^2}{\cos^2 \alpha} - 4
$$

ˆ

and

 $V(\sqrt{2}\rho \sin \alpha_i)$ $\sum_{i < j} V(|r_i - r_j|) = \sum_i$ **K ロ ト K 伊 ト K**

 $2Q$

Next we apply the adiabatic expansion,

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega),
$$

$$
\left(\hat{K}^2 + \frac{2m}{\hbar^2}\rho^2\sum_i V(\sqrt{2}\rho\sin\alpha_i) + 4\right)\Phi_n(\rho,\Omega) = v_n^2\Phi_n(\rho,\Omega)
$$

 \bullet $f_n(\rho)$ is the solution of the hyper-radial equation,

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{2m}{\hbar^2} (V_{\text{eff}}(\rho) - E) \right) f_n(\rho) = \sum_{n \neq n'} (2P_{nn'} \frac{\partial}{\partial \rho} + Q_{nn'}) f_{n'}(\rho)
$$

$$
V_{\text{eff}}(\rho) = \frac{\hbar^2}{2m} \frac{v_n^2(\rho) - 1/4}{\rho^2} - Q_m
$$

$$
P_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial}{\partial \rho} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

$$
Q_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial^2}{\partial \rho^2} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

 290

≮ □ ▶ ₹ @ ▶ ₹

The Adiabatic Expansion

Next we apply the adiabatic expansion,

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega),
$$

 $Φ$ _{*n*}(*ρ*, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue $ν_n²$,

$$
\left(\hat{K}^2+\frac{2m}{\hbar^2}\rho^2\sum_iV(\sqrt{2}\rho\sin\alpha_i)+4\right)\Phi_n(\rho,\Omega)=\nu_n^2\Phi_n(\rho,\Omega).
$$

 \bullet $f_n(\rho)$ is the solution of the hyper-radial equation,

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{2m}{\hbar^2} (V_{\text{eff}}(\rho) - E) \right) f_n(\rho) = \sum_{n \neq n'} (2P_{nn'} \frac{\partial}{\partial \rho} + Q_{nn'}) f_{n'}(\rho)
$$

• where the effective potential is

$$
V_{\text{eff}}(\rho) = \frac{\hbar^2}{2m} \frac{v_n^2(\rho) - 1/4}{\rho^2} - Q_m
$$

$$
P_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial}{\partial \rho} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

$$
Q_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial^2}{\partial \rho^2} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

The Adiabatic Expansion

Next we apply the adiabatic expansion,

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega),
$$

 $Φ$ _{*n*}($ρ$, $Ω$) is the solution of the hyper angular equation corresponding to the eigenvalue $ν_n²$,

$$
\left(\hat{K}^2+\frac{2m}{\hbar^2}\rho^2\sum_iV(\sqrt{2}\rho\sin\alpha_i)+4\right)\Phi_n(\rho,\Omega)=\nu_n^2\Phi_n(\rho,\Omega).
$$

 \bullet $f_n(\rho)$ is the solution of the hyper-radial equation,

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{2m}{\hbar^2} (V_{\text{eff}}(\rho) - E) \right) f_n(\rho) = \sum_{n \neq n'} (2P_{nn'} \frac{\partial}{\partial \rho} + Q_{nn'}) f_{n'}(\rho)
$$

• where the effective potential is

$$
V_{\rm eff}(\rho) = \frac{\hbar^2}{2m} \frac{v_n^2(\rho) - 1/4}{\rho^2} - Q_m
$$

$$
P_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial}{\partial \rho} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

$$
Q_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial^2}{\partial \rho^2} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

The Adiabatic Expansion

Next we apply the adiabatic expansion,

$$
\Psi(\rho,\Omega)=\sum_n \rho^{-5/2} f_n(\rho)\Phi_n(\rho,\Omega),
$$

 $Φ$ _{*n*}($ρ$, $Ω$) is the solution of the hyper angular equation corresponding to the eigenvalue $ν_n²$,

$$
\left(\hat{K}^2+\frac{2m}{\hbar^2}\rho^2\sum_iV(\sqrt{2}\rho\sin\alpha_i)+4\right)\Phi_n(\rho,\Omega)=\nu_n^2\Phi_n(\rho,\Omega).
$$

 \bullet $f_n(\rho)$ is the solution of the hyper-radial equation,

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{2m}{\hbar^2} (V_{\text{eff}}(\rho) - E) \right) f_n(\rho) = \sum_{n \neq n'} (2P_{nn'} \frac{\partial}{\partial \rho} + Q_{nn'}) f_{n'}(\rho)
$$

• where the effective potential is

$$
V_{\text{eff}}(\rho) = \frac{\hbar^2}{2m} \frac{v_n^2(\rho) - 1/4}{\rho^2} - Q_{nn}
$$

and the non-adiabatic couplings are

$$
P_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial}{\partial \rho} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

$$
Q_{nn'}(\rho) = \left\langle \Phi_n(\rho, \Omega) \left| \frac{\partial^2}{\partial \rho^2} \right| \Phi_{n'}(\rho, \Omega) \right\rangle_{\Omega}
$$

Using Faddeev decomposition,

$$
\Phi_n(\rho,\Omega)=\sum_i \phi_{n,i}(\rho,\Omega_i)
$$

- We assume our interaction is of *zero range* and *s-wave* only, Therefore the only partial wave to
- Now the solution is,

$$
\phi_{n,i}(\rho,\Omega_i)=\frac{g_{\nu,L}(\alpha_i)}{\sin(2\alpha_i)}Y^{L,M}_{l_x,l_y}(\hat{x}_i,\hat{y}_i)
$$

$$
g_{\nu,L}(\alpha_i) = \cos^L \alpha \left(\frac{\partial}{\partial \alpha} \frac{1}{\cos \alpha}\right)^L \sin \left[\nu \left(\alpha - \frac{\pi}{2}\right)\right],
$$

$$
Y_{l_x,l_y}^{L,M}(\hat{x}, \hat{y}) = \sum_{m_x,m_y} \langle l_x m_x l_y m_y | LM \rangle Y_{l_x}^{m_x}(\hat{x}) Y_{l_y}^{m_y}(\hat{y})
$$

$$
\left[\frac{1}{2\alpha_i\Phi}\frac{\partial}{\partial\alpha_i}2\alpha_i\Phi\right]_{\alpha_i=0}=-\sqrt{2}\rho\frac{1}{a_s}
$$

 $2Q$

イロト イ母 トイヨ トイヨ

Using Faddeev decomposition,

$$
\Phi_n(\rho,\Omega)=\sum_i \phi_{n,i}(\rho,\Omega_i)
$$

- We assume our interaction is of *zero range* and *s-wave* only, Therefore the only partial wave to be considered for the bound state is $l_x = 0$, $l_y = L$.
- Now the solution is,

$$
\phi_{n,i}(\rho,\Omega_i)=\frac{g_{\nu,L}(\alpha_i)}{\sin(2\alpha_i)}Y_{l_x,l_y}^{L,M}(\hat{x}_i,\hat{y}_i)
$$

$$
g_{\nu,L}(\alpha_i) = \cos^L \alpha \left(\frac{\partial}{\partial \alpha} \frac{1}{\cos \alpha}\right)^L \sin \left[\nu \left(\alpha - \frac{\pi}{2}\right)\right],
$$

$$
Y_{l_x, l_y}^{L, M}(\hat{x}, \hat{y}) = \sum_{m_x, m_y} \langle l_x m_x l_y m_y | LM \rangle Y_{l_x}^{m_x}(\hat{x}) Y_{l_y}^{m_y}(\hat{y})
$$

• In the low energy limit, the boundary condition reads

$$
\left[\frac{1}{2\alpha_i\Phi}\frac{\partial}{\partial\alpha_i}2\alpha_i\Phi\right]_{\alpha_i=0}=-\sqrt{2}\rho\frac{1}{a_s}
$$

イロト イ押ト イヨト イヨト

Using Faddeev decomposition,

$$
\Phi_n(\rho,\Omega)=\sum_i \phi_{n,i}(\rho,\Omega_i)
$$

- We assume our interaction is of *zero range* and *s-wave* only, Therefore the only partial wave to be considered for the bound state is $l_x = 0$, $l_y = L$.
- Now the solution is,

$$
\phi_{n,i}(\rho,\Omega_i) = \frac{g_{\nu,L}(\alpha_i)}{\sin(2\alpha_i)} Y_{l_x,l_y}^{L,M}(\hat{x}_i,\hat{y}_i)
$$

where

$$
g_{\nu,L}(\alpha_i) = \cos^L \alpha \left(\frac{\partial}{\partial \alpha} \frac{1}{\cos \alpha}\right)^L \sin \left[\nu \left(\alpha - \frac{\pi}{2}\right)\right],
$$

$$
Y_{l_x,l_y}^{L,M}(\hat{x}, \hat{y}) = \sum_{m_x,m_y} \langle l_x m_x l_y m_y | L M \rangle Y_{l_x}^{m_x}(\hat{x}) Y_{l_y}^{m_y}(\hat{y})
$$

• In the low energy limit, the boundary condition reads

$$
\left[\frac{1}{2\alpha_i\Phi}\frac{\partial}{\partial\alpha_i}2\alpha_i\Phi\right]_{\alpha_i=0}=-\sqrt{2}\rho\frac{1}{a_s}
$$

 $2Q$

イロト イ押 トイヨ トイヨト

Using Faddeev decomposition,

$$
\Phi_n(\rho,\Omega)=\sum_i \phi_{n,i}(\rho,\Omega_i)
$$

- We assume our interaction is of *zero range* and *s-wave* only, Therefore the only partial wave to be considered for the bound state is $l_x = 0$, $l_y = L$.
- Now the solution is,

$$
\phi_{n,i}(\rho,\Omega_i) = \frac{g_{\nu,L}(\alpha_i)}{\sin(2\alpha_i)} Y_{l_x,l_y}^{L,M}(\hat{x}_i,\hat{y}_i)
$$

where

$$
g_{\nu,L}(\alpha_i) = \cos^L \alpha \left(\frac{\partial}{\partial \alpha} \frac{1}{\cos \alpha}\right)^L \sin \left[\nu \left(\alpha - \frac{\pi}{2}\right)\right],
$$

$$
Y_{l x, l y}^{L, M}(\hat{x}, \hat{y}) = \sum_{m_x, m_y} \langle l_x m_x l_y m_y | L M \rangle Y_{l_x}^{m_x}(\hat{x}) Y_{l_y}^{m_y}(\hat{y})
$$

• In the low energy limit, the boundary condition reads

$$
\left[\frac{1}{2\alpha_i\Phi}\frac{\partial}{\partial\alpha_i}2\alpha_i\Phi\right]_{\alpha_i=0}=-\sqrt{2}\rho\frac{1}{a_s}
$$

A. Cobis, D.V. Fedorov, and A.S. Jensen, Phys. Rev. Lett. **79**, 2411 (1997).

 $2Q$

イロト イ御 トイヨ トイヨト

Applying Boundary Condition

• Plugging the angular wave functions, the equation for $L = 0$ reads,

$$
v\cos(v\pi/2)-\frac{8}{\sqrt{3}}\sin(v\pi/6)=\frac{\sqrt{2}\rho}{a}\sin(v\pi/2)
$$

• For $L = 2$ the equation reads,

$$
v(4 - v^2)\cos(v\pi/2) + 24v\cos(v\pi/6) + \frac{8}{\sqrt{3}}(v^2 - 10)\sin(v\pi/6) = -\frac{\rho}{a}(v^2 - 1)\sin(v\pi/2)
$$

 \Rightarrow

 299

メロトメ 御 トメ 君 トメ 君 ト

Applying Boundary Condition

• Plugging the angular wave functions, the equation for $L = 0$ reads,

$$
v\cos(v\pi/2) - \frac{8}{\sqrt{3}}\sin(v\pi/6) = \frac{\sqrt{2}\rho}{a}\sin(v\pi/2)
$$

• For $L = 2$ the equation reads,

$$
v(4 - v^2)\cos(v\pi/2) + 24v\cos(v\pi/6) + \frac{8}{\sqrt{3}}(v^2 - 10)\sin(v\pi/6) = -\frac{\rho}{a}(v^2 - 1)\sin(v\pi/2)
$$

 \Rightarrow

 299

メロトメ 御 トメ 差 トメ 差 ト

Applying Boundary Condition

• Plugging the angular wave functions, the equation for $L = 0$ reads,

$$
v\cos(v\pi/2) - \frac{8}{\sqrt{3}}\sin(v\pi/6) = \frac{\sqrt{2}\rho}{a}\sin(v\pi/2)
$$

• For $L = 2$ the equation reads,

$$
v(4 - v^2)\cos(v\pi/2) + 24v\cos(v\pi/6) + \frac{8}{\sqrt{3}}(v^2 - 10)\sin(v\pi/6) = -\frac{\rho}{a}(v^2 - 1)\sin(v\pi/2)
$$

In the unitary limit, $|a| \to \infty$, ν is not depend on ρ , and therefore $P_{n,n'} = 0 = Q_{n,n'}!$

The hyper-radial equation is similar to the Bessel equation,

$$
-\frac{d^2f(\rho)}{d\rho^2} + \frac{v_L^2(\rho) - 1/4}{\rho^2}f(\rho) = ef(\rho)
$$

1 Bound state, $E_n = -\hbar^2 \kappa_n^2 / 2m < 0$:

$$
f_B^{(n)}(\rho) \propto \kappa_n \sqrt{\rho} K_{\nu_0}(\kappa_n \rho)
$$

$$
\frac{E_n}{E_0} = e^{-2\pi n/|v_0|} \approx 515^{-n}.
$$

$$
f_L(\rho) \propto \sqrt{\frac{q\rho}{R}} \left[\sin \delta_L J_{v_L}(q\rho) + \cos \delta_L Y_{v_L}(q\rho) \right]
$$

 Ω

≮ロト ⊀ 伊 ト ⊀ ヨ ト ⊀ ヨ

- In the unitary limit, $|a| \to \infty$, ν is not depend on ρ , and therefore $P_{n,n'} = 0 = Q_{n,n'}!$
- The hyper-radial equation is similar to the Bessel equation,

$$
-\frac{d^2f(\rho)}{d\rho^2} + \frac{v_L^2(\rho) - 1/4}{\rho^2}f(\rho) = \epsilon f(\rho)
$$

with $\nu_0 \approx 1.00624i$, and $\nu_2 \approx 2.82334$.

1 Bound state, $E_n = -\hbar^2 \kappa_n^2 / 2m < 0$:

$$
f_B^{(n)}(\rho) \propto \kappa_n \sqrt{\rho} K_{\nu_0}(\kappa_n \rho)
$$

$$
\frac{E_n}{E_0} = e^{-2\pi n/|v_0|} \approx 515^{-n}.
$$

$$
f_L(\rho) \propto \sqrt{\frac{q\rho}{R}} \left[\sin \delta_L J_{v_L}(q\rho) + \cos \delta_L Y_{v_L}(q\rho) \right]
$$

 Ω

K ロトメ 御 トメ 君 トメ 君

- In the unitary limit, $|a| \to \infty$, ν is not depend on ρ , and therefore $P_{n,n'} = 0 = Q_{n,n'}!$
- The hyper-radial equation is similar to the Bessel equation,

$$
-\frac{d^2f(\rho)}{d\rho^2} + \frac{v_L^2(\rho) - 1/4}{\rho^2}f(\rho) = \epsilon f(\rho)
$$

with $\nu_0 \approx 1.00624i$, and $\nu_2 \approx 2.82334$.

1 Bound state, $E_n = -\hbar^2 \kappa_n^2 / 2m < 0$:

$$
f_B^{(n)}(\rho) \propto \kappa_n \sqrt{\rho} K_{\nu_0}(\kappa_n \rho)
$$

where to ignore the Thomas collapse, a 3-body repulsive force is to be introduced, for example $U(\rho \le \rho_0) = \infty$ for some finite ρ_0 , resulting in the famous Efimov spectrum,

$$
\frac{E_n}{E_0} = e^{-2\pi n/|v_0|} \approx 515^{-n}.
$$

$$
f_L(\rho) \propto \sqrt{\frac{q\rho}{R}} \left[\sin \delta_L J_{v_L}(q\rho) + \cos \delta_L Y_{v_L}(q\rho) \right]
$$

 $2Q$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

- In the unitary limit, $|a| \to \infty$, ν is not depend on ρ , and therefore $P_{n,n'} = 0 = Q_{n,n'}!$
- The hyper-radial equation is similar to the Bessel equation,

$$
-\frac{d^2f(\rho)}{d\rho^2} + \frac{v_L^2(\rho) - 1/4}{\rho^2}f(\rho) = \epsilon f(\rho)
$$

with $\nu_0 \approx 1.00624i$, and $\nu_2 \approx 2.82334$.

6 Bound state,
$$
E_n = -\hbar^2 \kappa_n^2 / 2m < 0
$$
:

$$
f_B^{(n)}(\rho) \propto \kappa_n \sqrt{\rho} K_{\nu_0}(\kappa_n \rho)
$$

where to ignore the Thomas collapse, a 3-body repulsive force is to be introduced, for example $U(\rho \leq \rho_0) = \infty$ for some finite ρ_0 , resulting in the famous Efimov spectrum,

$$
\frac{E_n}{E_0} = e^{-2\pi n/|v_0|} \approx 515^{-n}.
$$

2 Scattering state, $E = \hbar^2 q^2 / 2m > 0$:

$$
f_L(\rho) \propto \sqrt{\frac{q\rho}{R}} \left[\sin \delta_L J_{v_L}(q\rho) + \cos \delta_L Y_{v_L}(q\rho) \right]
$$

where the 3-body phase shift is determined by $f_L(\rho_0) = 0$.

 QQ

K ロ ト K 何 ト K ヨ ト K ヨ ト

Matrix Elements Calculation

The *r*² operator reads $\sum_i r_i^2 = \rho^2 + 3R_{CM}^2$.

 Ω

K ロ ⊁ K 伊 ⊁ K

Matrix Elements Calculation

- The *r*² operator reads $\sum_i r_i^2 = \rho^2 + 3R_{CM}^2$.
- For the \hat{Q} operator, $r_i = R \sqrt{\frac{2}{3}}y_i$,

$$
r_i^2 Y_2^M(\hat{r}_i) = \rho^2 \cos^2 \alpha_i Y_2^M(\hat{y}_i)
$$

$$
\left| \langle f | \hat{H}_I | i \rangle \right|^2 \propto \left[\frac{1}{6^2} \left| \left\langle \psi_B \right| \left| \sum_i r_i^2 Y_0 \right| \right| \psi_s \right\rangle \right|^2 + \frac{1}{15^2} \left| \left\langle \psi_B \right| \left| \sum_i r_i^2 Y_2(\hat{r}_i) \right| \right| \psi_d \right\rangle \right|^2
$$

II

G

 $2Q$

K ロ ⊁ K 伊 ⊁ K
Matrix Elements Calculation

• The
$$
r^2
$$
 operator reads $\sum_i r_i^2 = \rho^2 + 3R_{CM}^2$.

For the \hat{Q} operator, $r_i = R - \sqrt{\frac{2}{3}}y_i$,

$$
r_i^2 Y_2^M(\hat{r}_i) = \rho^2 \cos^2 \alpha_i Y_2^M(\hat{y}_i)
$$

 f |*H*ˆ *I* |*i* 2 ∝ 1 6 2 * *ψB*k∑ *i r* 2 *ⁱ Y*0k*ψ^s* + 2 + 1 15² * *ψB*k∑ *i r* 2 *ⁱ Y*2(*r*ˆ*i*)k*ψ^d* + 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0 ^q ^Κ Normalized transition M. E .

D.

 299

メロトメ 倒 トメ 差 トメ 差 ト

Matrix Elements Calculation

• Note that the transition rate should include all appropriate final and initial states, conserving energy and angular momentum.

 $\sum_{n,\nu} |\langle f_n | \hat{H}_I | i_\nu \rangle|^2 \delta(E_f - E_0 - \hbar \omega)$ is to be calculated.

- Higher Efimov states scales as $κ_n^{−5}$ but contribute at lower energy.
- Only $v_{0,1} \approx 4.465$ and $v_{2,1} \approx 5.508$ (dashed) contribute.

4 **D F**

 Ω

Trimer Photoasociation: Results

red - *r* ² monopole, blue - quadrupole, and black - their sum

 \leftarrow \Box

 290

Comparison to Experiment

 \leftarrow \Box

 $2Q$

Outline

- **[Photo Reactions](#page-3-0)**
- [Efimov Physics and Ultracold Atoms](#page-10-0)
- ² [Multipole Expansion](#page-20-0)
-
-

Quadrupole Response

The quadrupole response of the trimer photo-disintegration -

$$
R(\omega) = C \sum_{f,\lambda} \left| \langle \Phi_f | \hat{Q} | \Phi_0 \rangle \right|^2 \delta(E_f - E_0 - \hbar \omega)
$$

Using the hyper-spherical harmonics (HH) expansion up to $K_{max} = 70$, we calculate the Lorentz integral transform (LIT)

$$
L(\sigma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} = \langle \tilde{\Psi}(\sigma) | \tilde{\Psi}(\sigma) \rangle
$$

where

$$
(\hat{H} - E_0 - \sigma - i\Gamma)|\tilde{\Psi}(\sigma)\rangle = \hat{Q}|\Psi_0\rangle
$$

and invert the transform to get the response $R(\omega)$

EXR

 $2Q$

K ロ ト K 伊 ト K

Quadrupole Response

Gaussian potential with $g = 2.3$ Lorentzian width is $\Gamma = 0.1 \hbar^2/mr_0^2$.

 290

Kロト K伊下

E \mathcal{A} ×

Photodisintegration Sum Rules

$$
S_n \equiv \int_{\omega_{th}}^{\infty} d\omega \, \omega^n \, R(\omega)
$$

-
- Can be expressed as GS observable utilizing the closure of the eigenstates of *H*.

$$
S_1 = \langle 0 | [O, [H, O]] | 0 \rangle = \langle 0 | O (H - E_0) O | 0 \rangle
$$

\n
$$
S_0 = \langle 0 | O O | 0 \rangle
$$

\n
$$
S_{-1} = \langle 0 | O \frac{1}{H - E_0} O | 0 \rangle
$$

すロチ す母 トす 差 トす

 290

Photodisintegration Sum Rules

$$
S_n \equiv \int_{\omega_{th}}^{\infty} d\omega \, \omega^n \, R(\omega)
$$

The sum rule *Sⁿ*

- Exists if $R(\omega) \longrightarrow 0$ faster than ω^{-n-1} .
- Can be expressed as GS observable utilizing the closure of the eigenstates of *H*.

$$
S_1 = \langle 0 | [\mathbf{O}, [H, \mathbf{O}]] | 0 \rangle = \langle 0 | \mathbf{O} (H - E_0) \mathbf{O} | 0 \rangle
$$

\n
$$
S_0 = \langle 0 | \mathbf{O} \mathbf{O} | 0 \rangle
$$

\n
$$
S_{-1} = \langle 0 | \mathbf{O} \frac{1}{H - E_0} \mathbf{O} | 0 \rangle
$$

 $2Q$

K ロ ト K 伊 ト K ミ ト

Photodisintegration Sum Rules

$$
S_n \equiv \int_{\omega_{th}}^{\infty} d\omega \, \omega^n \, R(\omega)
$$

The sum rule *Sⁿ*

- Exists if $R(\omega) \longrightarrow 0$ faster than ω^{-n-1} .
- Can be expressed as GS observable utilizing the closure of the eigenstates of *H*.

$$
S_1 = \langle 0 | [\mathbf{O}, [H, \mathbf{O}]] | 0 \rangle = \langle 0 | \mathbf{O} (H - E_0) \mathbf{O} | 0 \rangle
$$

\n
$$
S_0 = \langle 0 | \mathbf{O} \mathbf{O} | 0 \rangle
$$

\n
$$
S_{-1} = \langle 0 | \mathbf{O} \frac{1}{H - E_0} \mathbf{O} | 0 \rangle
$$

 $2Q$

K ロ ト K 伊 ト K ミ ト

Naive Scaling

- \bullet We use $a_s < 0$, therefore the only energy scale is the trimer energy
- Using simple dimensional arguments we expect that

$$
r\sim 1/\sqrt{E}
$$

The Quadrupole operator behaves as *r* 2 so

$$
R(\omega) \sim r^4/E \sim 1/E^3
$$

• It follows that the sum rules should have the relations

 S_n ∼ 1/*E*^{2−*n*}

or

$$
S_0 \sim 1/E^2
$$

$$
S_{-1} \sim 1/E^3
$$

$$
S_0/S_{-1} \sim E
$$

G.

 $2Q$

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ ⊁

Calculated Sum Rules

- Gauss potential (squares, solid)
- Yukawa potential (triangles, dashed)

Fitted lines

 $S_{-1} = A_{-1}E^{-2.13}$ $S_0 = A_0 E^{-1.34}$ $S_1 = A_1 E^{-0.55}$

 290

(ロ) (d)

 \bar{A} ă \mathbf{p}

Naive Scaling Does Not Work !!!

- For *S*₁ we got a power of 0.55 instead of 1.
- For S_0 we got a power of 1.33 instead of 2.
- For *S*−¹ we got a power of 2.13 instead of 3.
- The ration $S_n/S_{n-1} \sim E^{0.8}$ instead of $S_n/S_{n-1} \sim E$.
- The results seems to be independent of the short range specifications of the potential.

 $2Q$

K ロ ト K 伊 ト K

Outline

- **[Photo Reactions](#page-3-0)**
- [Efimov Physics and Ultracold Atoms](#page-10-0)
- ² [Multipole Expansion](#page-20-0)
-
-
- ⁵ [Quadrupole Response](#page-76-0) [Sum Rules](#page-79-0)

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
-
- ³ For frozen-spin reactions the monopole *R* ² and the Quadrupole are the leading terms, and
-
-
-
-
-

イロト イ母 トイヨ トイヨ

 $2Q$

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- ³ For frozen-spin reactions the monopole *R* ² and the Quadrupole are the leading terms, and
-
-
-
-
-

イロト イ押ト イヨト イヨト

 290

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
-
-
-
-
-

 $2Q$

イロト イ押ト イヨト イヨト

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
-
-
-
-

 $2Q$

イロト イ押 トイヨ トイヨト

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
-
-
-

 $2Q$

イロト イ御 トイヨ トイヨト

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
- The trimer photo-disintegration quadrupole response was calculated
-
-

 $2Q$

イロト イ御 トイヨ トイヨト

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
- The trimer photo-disintegration quadrupole response was calculated
- ⁷ Sum rules were calculated and found to be independent of the particular potential model used, with unexpected exponents.
-

 $2Q$

イロト イ御 トイヨ トイヨト

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
- The trimer photo-disintegration quadrupole response was calculated
- ⁷ Sum rules were calculated and found to be independent of the particular potential model used, with unexpected exponents.
- ⁸ Lev's experiment is still wait to be fully understood...

 $2Q$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
- The trimer photo-disintegration quadrupole response was calculated
- ⁷ Sum rules were calculated and found to be independent of the particular potential model used, with unexpected exponents.
- ⁸ Lev's experiment is still wait to be fully understood...

 $2Q$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

- ¹ The new RF experiments in ultracold-atoms systems carry much in common with photo-reactions and charged current reactions in nuclei.
- ² For spin-flip reaction, the Franck-Condon factor is the leading contribution to the cross-section, and $R(\omega) \propto \omega$.
- **3** For frozen-spin reactions the monopole R^2 and the Quadrupole are the leading terms, and $R(\omega) \propto \omega^5$.
- ⁴ We have studied the dimer formation and found that the reaction mechanism changes from monopole to quadrupole with increasing gas temperature.
- ⁵ The trimer formation was studied, with similar dependence on temperature.
- The trimer photo-disintegration quadrupole response was calculated
- ⁷ Sum rules were calculated and found to be independent of the particular potential model used, with unexpected exponents.
- ⁸ Lev's experiment is still wait to be fully understood...

 $2Q$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶