Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

Electro-Magnetic Reactions in Few-Body Systems
From Nuclei to Cold-Atoms

Nir Barnea

The Racah institute for Physics
The Hebrew University, Jerusalem, Israel

INT Program
Light Nuclei From First Principles
5 October 2012

075Ww17a DAY YDA @

The Hebrew University of Jerusalem *



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

Collaboration

Jerusalem, Israel
B. Bazak*, D. Gazit, E. Liverts, N. Nevo™*

Trento, Italy
W. Leidemann, G. Orlandini

Moscow, Russia
V. Efros

TRIUMF, Canada
S. Bacca



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?




Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?

1. Understanding of the systems at hand.




Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.




Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.

3. Reaction rates as input for experiments or
applications (e.g. astrophysics).




Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.

3. Reaction rates as input for experiments or
applications (e.g. astrophysics).

4. Underlying degrees of freedom.




Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

What can we learn from photo reactions?

1. Understanding of the systems at hand.

2. A test of the Hamiltonian at regimes not
accessible by elastic reactions.

3. Reaction rates as input for experiments or
applications (e.g. astrophysics).
4. Underlying degrees of freedom.

5. The transition from single particle to
collective behavior.
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Photo Reactions

The Interaction Hamiltonian between the photon field
A(x) and the atomic/nuclear system

(¢, P )

Hy = —z /da:A(a:) - J(x)

The current is a sum of convection and spin currents

’J(:B):Jc(:l:)—‘,—VXIJ,(;B) (EO’PO)

ty =2 [ dz (@) J(@) + B(@) - n(e)}
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Photo reactions - Theoretical considerations

JF consistent with V'

The Wave Functions

e We solve the A-body non-realtivistic Schroedinger equation.

S SR
ijk

e The Hamiltonian

High precision two-nucleon potentials, well constraint by NN phaseshifts
Less established 3NF

e EFT provides a solid theoretical framework for construction of the potentials.

e Phenomenological potential models are not that bad either.
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Photo reactions - Theoretical considerations (II)

JH consistent with V'

meson exchange currents

The Electro-Magnetic Current

e The EM current is a sum of convection and spin currents

[J(@) = Jo(@) + Ts(@) = Jo(@) + V x p()

e Classicaly, the convection current J. = 3, Z;v; is the flow of the charged
particles.

e In nuclei J.(x) is mainly due to proton movement.

e Meson exchange between nucleons leads to 2,3, .. .-body currents
J=J1+Ja+ ...

e Cold atoms are neutral J.(x) = 0 and the current p(x) is dominated by the
electronic spins.
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Nuclear Physics - A tale of two potentials

The nuclear Hamiltonian
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The Potential is composed of EM and NUCLEAR, terms.
The NUCLEAR force cannot be derived from QCD and must be modeled.

The AV18 NN-Force

e A formal expansion of the potential

The 2-body potential V;; = vfj + Ufjﬂ + vfj

ij

v:. is expanded into a series of operators dictated by the symmetries.

)
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Conclusion

NNN force must be supplemented to reproduce 3,4-body binding-energies.
The JISP16 Potential

Vi = > 1s)in )V (1)

lsjnn’



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion

Nuclear Physics - A tale of two potentials

The nuclear Hamiltonian

H:—Z2L2V?+ZVU+ Z Vije +.-.
3

N 1<J i<j<k

e The Potential is composed of EM and NUCLEAR terms.

Conclusion

e The NUCLEAR force cannot be derived from QCD and must be modeled.

The AV18 NN-Force
e The 2-body potential V;; = vfj + Ufjﬂ + vfj
° v;"j - A Yukawa type interaction e =" /r, vfj” o e I,

° vfj is expanded into a series of operators dictated by the symmetries.

e NNN force must be supplemented to reproduce 3,4-body binding-energies.

The JISP16 Potential

e A formal expansion of the potential

Vi = > 1s)in )V (1)

lsjnn’

e The HO basis is used, Véif,)j fitted to reproduce NN scattering data.
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A tale of two potentials

e AV18+UBIX Argonne V18 NN force
+ Urbana IX NNN force

e JISP16 J-matrix Inverse Scattering
Potential, Shirokov et al.

Binding Energies

[AV18+UBIX JISP16 ~ Nature

D 2.24 2.24 2.24
3H 8.48 8.35 8.48
3He 7.74 7.65 7.72
4He 28.5 28.3 28.3

Conclusion



Theoretical Conside tions Nuclear Physics Ultra Cold Atom Multipole Expansion Conclusior
A tale of two potentials

Photodisintegration cross-section for A=2,3,4

e AV18+UBIX Argonne V18 NN force 3 ‘ J'SPVSAY18+UB'X ‘
+ Urbana IX NNN force L ! ! ! ZD‘ |
e JISP16 J-matrix Inverse Scattering g 2 b
Potential, Shirokov et al. E 1
R S -
9 g o do ' go j 4;0
Binding Energies = 2 3
oL |
[ AV18+UBIX JISP16 Nature E 1 =
B
D 2.24 2.24 2.24 SIS B
SH 8.48 8.35 8.48
3He 7.74 7.65 7.72
4He 28.5 28.3 28.3 T
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The Experimental Verdict !

25 T T

“He(rp)°H

[Quaod)

enpop|

6 (mb)
x <

e R L .

3 E (MeV)

30
E, (MeV) Y

T
= Shima er al. (2005)
o Nilsson e al, (2005) E
+ Nakayama er al. (2007) E
B Tomow et al. (2012)

D. Gazit, S. Bacca, N. Barnea, W. 3
Leidemann, and G. Orlandini, PRL 96,
112301 (2006) =
S. Quaglioni, and P. Navratil PLB 652, E 2
370 (2007) ©
R. Raut et al., PRL 108, 042502 (2012)
W. Tornow et al., PRC85, 061001

— AV18+UIX (2008)
(2012)

NN(N’LO}+3N(N?LO) (2007)

20 25 30 35



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

The Experimental Verdict 7

25 T T

“He(rp)°H

[Quaod)

enpop|

6 (mb)
x <

e R L .

3 E (MeV)

30
E, (MeV) Y

T
= Shima er al. (2005)
o Nilsson e al, (2005) E
+ Nakayama er al. (2007) E
B Tomow et al. (2012)

D. Gazit, S. Bacca, N. Barnea, W. 3
Leidemann, and G. Orlandini, PRL 96,
112301 (2006) =
S. Quaglioni, and P. Navratil PLB 652, E 2
370 (2007) ©
R. Raut et al., PRL 108, 042502 (2012)
W. Tornow et al., PRC85, 061001

— AV18+UIX (2008)
(2012)

NN(N’LO}+3N(N?LO) (2007)

20 25 30 35



Theoretical Considerations Nuclear Physics Ultra Cold Atoms Multipole Expansion Conclusions

Effective Field Theory potentials
Effective Field Theory

L] Expansion in small Two-nucleon force Thi leon force F leon force
momentum Q. o >< H _ _

e Contains all terms
compatible with QCD up to @ >< H H ]I H — —

a given order.

e NNN and NNNN forces +| +1?I fH H( >K - ___

come in naturally at orders

N2LO and N3LO. X b4 -
M B X HA FR -
BB M | e
X2/datum for the reproduction of the
2nucleon force > 3 nucleonforce > 4 nueleon force ...
1999 np database
2
v - g4\~ (01-q)(o2-q)
Bin (MeV) # of dataN*LO JNNLO [NLOJ AV18 = —\57 ) 2 T1:T2
2f7|- q +m7r
0-100 1058 | 1.06 | 171 [5.20f 0.95 + Cg+Croy-o2
100-190 501 | 108 | 12,9 [49.3] 110 + VNro+VNaro+ .-

190-290 843 1.15 § 19.2 [ 68.3] 1.11

0-290 2402 1.10 § 10.1 [£36.21 1.04
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Effective Field Theory potentials
Effective Field Theory

e Expansion in small
momentum Q.

e Contains all terms

compatible with QCD up to

a given order.
e NNN and NNNN forces

come in naturally at orders

N2LO and N3LO.

Two-nucleon force

XH
XHE M

Thi leon force

Conclusions

F leon force

HBX

1999 np database

X2/datum for the reproduction of the

Bin (MeV) # of data|N°LO

0-100 1058 1.06 § 1.71 5.20
100-190 501 1.08 § 12.9 |49.3
190-290 843 1.15 § 19.2 | 68.3

0-290 2402 1.10 § 10.1 [36.2

NLO [NLO[AV18
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111
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[ b -

work in progress.

L -

2nucleon force > 3Inucleonforce > 4 nucleon force ...

> HIH
X
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_ (LA
B 2fx

)2 (o1-q)(o2-4q)

a* +m3

+ Cg+Croy-02
+ VNro+Vnero+...

D. R. Entem and R. Machleidt,
Phys. Rev. C 68, 041001(R)
(2003).
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Theoretical Considerations Nuclear Physics
A tale of two potentials IT
AV18+4UIX < EFT
Electron scattering on *He, the 03
resonance
Binding Energies G. Koebschall et al./ Quasi bound state in ‘He - Nucl. Phys. A405, 648 (1983)
[AVISTUBIX EFT _ Nature ;“ | V mljjr
D 2.24 224 224 foo I ”,iIH L
SH 8 48 8.47 8.48 ¥ 2 St
3He 7.74 773 772 : 1 e
“He 28.5 285  28.30 Zos 4
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A tale of two potentials IT

AV18+4UIX < EFT

The transition form factor 0] — 05
6

— AVI8+UIX
N3LO+N2LO
5

inel

E._ 0% 107




Theoretical Considerations Nuclear Physics Ultra Cold Atom Multipole Expansion Conclusion

A tale of two potentials IT

AV18+4UIX < EFT

The transition form factor 0] — 05
6

T
O Koebschall et al. ['83]
x  Walcher ['70]
A

5 Frosch et al. ['68]
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Ultra Cold atoms

Bose systems, short range force, energy scale 10" %V

e A 3-body bound state E3 < 0 exists
even if the 2-body systems is . ..
unbound E; > 0. Universal insights

from few-body land
Chris H. Greene
1o tune atomic inferactions has inspired theorists and

feature  EETLTITETN s _
qrtlcle experimentalists to investigate those properties of few-particle systems that
hold universally, regardless of the specific nature of the interparticle force.
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Universal insights
from few-body land

Chris H. Greene
The ability to tune atomic interactions has inspired theorists and
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article hold universally, regardless of the specific nature of the interparicle force.

an infinite number of bound states.

The 3-body spectrum is

Ep, = Ege™27"/50 with

spo = 1.00623.

In atomic traps as can be
manipulated through the Fesbach
resonance.

Particle losses in traps are closely
related to Efimov’s physics through
the 3-body recombination process
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Few-Body Universality in a Bosonic "Li system
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Photoassociation of Atomic Molecules
The quest for the Efimov Effect

RF-induce atom loss resonaces for different values of bias magnetic fields.

a) o D et

2leq

Number of Atoms
z

12 13 14 15 16 17 86 87 88 89 9 01

Sor [MHz]

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich
PRL 108, 210406 (2012)
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The Static Response - Inelastic Reactions
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The Static Response - Inelastic Reactions

e The response of an A-particle system is closely related to the static moments
of the charge density

A
p(x) = Zid(x — i)
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e The Fourier Transform
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e The response of an A-particle system is closely related to the static moments
of the charge density 4
p(x) = Z Zi6(x —7;)
i
e The Fourier Transform

A
o(@) = [ dap@)cir® =3zt

e In the long wavelength limit ¢ — 0
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e For a system of identical particles
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e Conclusion A: In general the Dipole is the leading term.

e Conclusion B: For identical particles the leading terms are R? and Q.
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e For Spin-flip reactions we get the ”Fermi” operator
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T

e For Frozen-Spin reactions we get a sum of the
monopole operator M = R? = > r? and the
Quadrupole operator Q = S r2Ya(F;)
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e The response is given by
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R(w) = k° ﬁ (@ /10|0)|> 5(E; — Eo — w)
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Photoassociation of The Atomic Dimer

e For the dimer case the response function can be written as

R(w) = Cw® M|l4o)[? + [{p2(a)[1Ql1%0)[?

(wo(q)

1 1
62 5152

e Where the G.S. wave function is given by

Yo = YovV2ke " /r ; k~1/as

The continuum state is given by ¢¢(q) = Ye(#)xe(r)/7
Xe(r) = 2qrcos 645¢(qr) — sin dgne(qr)]

e The £ = 0 matrix element

2
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e The £ = 2 matrix element, assuming d2 = 0
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Photoassociation rates
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Comparison to the Khaykovich group data

Normalized 2-body rate [n.d.|
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The fitted values of as and T' are in reasonable agreement with the estimates
of the experimental group.

Effect of RF field on dimers not included.

Finite time effect

Disagreement are due to 3-body (4-body?) association.
Effects of d2 # 0 are negligible.
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