

Three-nucleon Force Effects in Electron Scattering Observables

Sonia Bacca | Theory Group | TRIUMF

In collaboration with: Nir Barnea, Winfried Leidemann, Giuseppina Orlandini

Outline:

- Motivation
- Theoretical tools
- Results on ⁴He

Workshop on "Electroweak properties of light nuclei" INT Seattle, Nov. 5-9 2012

Thursday, 8 November, 12

Electron Scattering Reaction

Motivation

The coupling constant << 1</p>

"With the electro-magnetic probe, we can immediately relate the cross section to the transition matrix element of the current operator, thus to the structure of the target itself" $\sigma \propto |\langle \Psi_f | J^{\mu} | \Psi_0 \rangle|^2$ [De Forest-Walecka, Ann. Phys. 1966]

In few-body physics one can perform exact calculations both for bound and scattering states > test the nuclear theory on light nuclei

- Provide useful numbers for astrophysics:
- radiative capture reactions
- interaction of photons with nucleonic matter ...

RIVMF Electromagnetic Reactions: Ingredients

★ Learn about the role of many-nucleon forces and currents by switching them on/off

Final State Interaction

Exact evaluation of the final state in the continuum is limited in energy and A

Solution: The Lorentz Integral Transform Method

Efros, Leidemann, Orlandini, PLB **338** (1994) 130 Efros, Leidemann, Orlandini, Barnea, JPG.: Nucl.Part.Phys. **34** (2007) R459

$$R(\omega, \mathbf{q}) = \sum_{f} |\langle \psi_{f} | J^{\mu}(\mathbf{q}) | \psi_{0} \rangle|^{2} \,\delta(E_{f} - E_{0} - \omega)$$
$$L(\sigma, \Gamma) = \int d\omega \frac{R(\omega, \mathbf{q})}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle$$

where
$$\left| \widetilde{\psi} \right
angle$$
 is obtained solving

$$H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma}) |\tilde{\psi}\rangle = J^{\mu}(\mathbf{q}) |\psi_0\rangle$$

- Due to imaginary part Γ the solution $|\psi\rangle$ is unique
- If the r.h.s. is finite $| ilde{\psi}
 angle$ has bound state asymptotic behaviour

 $L(\sigma,\Gamma) \xleftarrow{\text{inversion}} R(\omega,\mathbf{q}) \quad \text{The exact final state interaction is included}$

Hyper-spherical Harmonics Expansion

• Few-body method - uses relative coordinates

 $\vec{\eta_0} = \sqrt{A}\vec{R}_{CM} \ \vec{\eta_1}, ..., \vec{\eta_{A-1}}$

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

$$\begin{split} H_{0}(\rho,\Omega) &= T_{\rho} + \frac{K^{2}(\Omega)}{\rho^{2}} \\ \Psi &= \sum_{[K],\nu}^{K_{max},\nu_{max}} c_{\nu}^{[K]} e^{-\rho/2b} \rho^{n/2} L_{\nu}^{n} (\frac{\rho}{b}) [\mathcal{Y}_{[K]}^{\mu}(\Omega) \chi_{ST}^{\bar{\mu}}]_{JT}^{a} \\ \downarrow \\ \end{split}$$
Asymptotic

Model space truncation $K \le K_{max}$, Matrix Diagonalization $\langle \psi | H_{(2)} | \psi \rangle = \frac{A(A-1)}{2} \langle \psi | H_{(A,A-1)} | \psi \rangle$ Antisymmetrization algorithm Barnea and Novoselsky, Ann. Phys. 256 (1997) 192

Introduce an effective interaction a la Lee-Suzuki Barnea, L

Barnea, Leidemann, Orlandini PRC **61** (2000) 054001

Sonia Bacca

TRIUMF

®TRIUMF Photo-disintegration Reaction

$$\sigma_{\gamma} = \frac{4\pi^2 \alpha}{3} \omega R^{E1}(\omega) \qquad R^{E1}(\omega) = \oint_{f} |\langle \Psi_f | E1 | \Psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

Unretarded dipole approximation: d — 87% of MEC considered up to 100 MeV!

Nov 6th 2012

Theory

 $\gamma + {}^{4}\mathrm{He} \longrightarrow X$

 $\omega \qquad (E_{f}, P_{f}) \\ (E_{0}, P_{0}) \\ |\psi_{0}\rangle$

Past

Conventional Hamiltonian D.Gazit, S.B. *et al.* PRL **96** 112301 (2006)

EFT Hamiltonian S.Quaglioni and P.Navratil PLB **652** (2007)

NN(N³LO) Entem-Machleidt PRC68, 041001(R) (2003) 3N(N³LO) local version from Navratil with C_D =1 C_E =-0.029

Nov 6th 2012

Theory

 $\gamma + {}^{4}\text{He} \longrightarrow X$

 ω (E_{0}, P_{0}) $|\psi_{0} >$

> Moderate sensitivity to the Hamiltonian used; theory variation about 10% in peak

Nov 6th 2012

Sonia Bacca

Thursday, 8 November, 12

TRIUMF $\gamma + {}^{4}\text{He} \longrightarrow X$ **Theory/Experiment** • Shima *et al.* (2005) New □ Nilsson *et al*. (2005) • Nakayama *et al.* (2007)

Past

Conventional Hamiltonian D.Gazit, S.B. et al. PRL 96 112301 (2006)

EFT Hamiltonian S.Quaglioni and P.Navratil PLB 652 (2007)

NN(N³LO) Entem-Machleidt PRC68, 041001(R) (2003) 3N(N³LO) local version from Navratil with $C_D = 1 C_E = -0.029$

New

Phenomenological Hamiltonian W.Horiuchi et al. PRC 85 054002 (2012)

Moderate sensitivity to the Hamiltonian used; theory variation about 10% in peak More recent experimental activity seems to confirm higher data with peak around 27 MeV

Nov 6th 2012

Sonia Bacca

 $|\psi_{f}\rangle$

 (E_f, P_f)

 (E_0, P_0)

 $|\psi_0>$

ω

Virtual Photon

 (ω, \mathbf{q})

can vary independently

Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

with $Q^2 = -q_{\mu}^2 = \mathbf{q}^2 - \omega^2$ and θ scattering angle

and σ_M Mott cross section

Nov 6th 2012

Virtual Photon

 (ω, \mathbf{q})

can vary independently

Inclusive cross section A(e,e')X

$$\frac{d^2\sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{\mathbf{q}^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

$$\frac{R_L(\omega, \mathbf{q})}{R_T(\omega, \mathbf{q})} = \sum_f |\langle \Psi_f | \rho(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right) \quad \text{charge operator}$$

$$R_T(\omega, \mathbf{q}) = \sum_f |\langle \Psi_f | J_T(\mathbf{q}) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M} \right) \quad \text{current operator}$$

Nov 6th 2012

$$\begin{aligned} \boldsymbol{R}_{\boldsymbol{L}}(\boldsymbol{\omega}, \mathbf{q}) &= \int_{f}^{A} \left| \langle \Psi_{f} \right| \boldsymbol{\rho}(\mathbf{q}) \left| \Psi_{0} \right\rangle \right|^{2} \delta \left(E_{f} - E_{0} - \boldsymbol{\omega} + \frac{\mathbf{q}^{2}}{2M} \right) \\ \boldsymbol{\rho}(\mathbf{q}) &= \sum_{k}^{A} e^{i\mathbf{q}\cdot\mathbf{r}_{k}'} \frac{1 + \tau_{k}^{3}}{2} = \sum_{J}^{\infty} C_{J}^{S}(\mathbf{q}) + C_{J}^{V}(\mathbf{q}) \end{aligned}$$

Distribution of the total inelastic strength among multipoles: first sum rule

TRIUMF Electron Scattering Reaction

Comparison with experiment improves with 3NF and at low q the reduction of the peak is up to 50%

Note:

Structure of the response close to threshold is not considered here. This is the response 1-2 MeV above threshold.

Nov 6th 2012

Sonia Bacca

 $P_{f}^{\boldsymbol{\mu}}$

 P_0^{μ}

k'^μ

RIVENE Elastic Electron Scattering

Elastic Form Factor ⁴He(e,e')⁴He

 P_0^{μ}

 P_0^{μ}

k'"

 k^{μ}

 $q^{\mu} = k^{\mu} - k^{*}$

Thursday, 8 November, 12

Monopole Resonance ⁴He(e,e')0⁺

Thursday, 8 November, 12

TRIUMF Monopole Resonance ⁴He(e,e')0⁺

 P_f^{μ}

 P_0^{μ}

k'"

 k^{μ}

 $q^{\mu} = k^{\mu} - k^{*}$

 $q^{\mu} = (\omega, q)$

Resonant Transition Form Factor
$$|F_{\mathcal{M}}(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\mathcal{M}}^{\text{res}}(q,\omega)$$

First ab-initio calculation with realistic three-nucleon forces and with the Lorentz Integral Transform method S.B. *et al.*, <u>arXiv:1210.7255</u>

RTRIUMF

The LIT for the resonant transition

In proximity of the resonance both in theory and experiment

$$R_{\mathcal{M}}(q,\omega) = R_{\mathcal{M}}^{\mathrm{res}}(q,\omega) + R_{\mathcal{M}}^{\mathrm{bg}}(q,\omega) \tag{A}$$

We use a square integrable basis (HH) to calculate the LIT, not the response rigorous because of finite $\ \Gamma$

$$\mathcal{L}_{\mathcal{M}}(q,\sigma,\Gamma) = \frac{\Gamma}{\pi} \sum_{\nu=1}^{N} \frac{|\langle \Psi_{\nu} | \mathcal{M}(q) | \Psi_{0} \rangle|^{2}}{(\sigma - e_{\nu} + E_{0})^{2} + \Gamma^{2}}$$

where $\Psi_{
u}, e_{
u}$ are eigenstate and eigenvalues of H on our basis

We see one very pronounced strength $|\langle \Psi_{\nu_R} | \mathcal{M}(q) | \Psi_0 \rangle|^2$ located at the energy $e_{\nu} - E_0 = E_R^*$

Exploit the power of the LIT method (calculate the far continuum) to subtract the background

RIUMF

The LIT for the resonant transition

In proximity of the resonance both in theory and experiment

$$R_{\mathcal{M}}(q,\omega) = R_{\mathcal{M}}^{\mathrm{res}}(q,\omega) + R_{\mathcal{M}}^{\mathrm{bg}}(q,\omega) \quad (\bigstar)$$

Inversion of the LIT

ansatz

$$\mathcal{R}_{\mathcal{M}}(q,\omega) = \sum_{i} c_{i} \chi_{i}(\omega,\alpha)$$
$$\mathcal{L}_{\mathcal{M}}(\sigma,\Gamma) = \sum_{i} c_{i} \mathcal{L}[\chi_{i}(\omega,\alpha)]$$

lea

ast square fit of
$$c_i$$

 0
 $f_R(q) \frac{\Gamma}{\pi} \frac{1}{(\sigma - E_R + E_0)^2 + \Gamma^2}$
 $LIT of a delta by numerically choosing $\gamma \ll \Gamma$$

Fit $f_R(q)$ to obtain a smooth background $\rightarrow f_R(q)$ is related to the resonant form factor

UBC P&A Colloquium

Sonia Bacca

Thursday, 8 November, 12

Sensitivity to Nuclear Hamiltonians

S.B. et al., arXiv:1210.7255

Realistic three-nucleon forces do not reproduce the data for $|F_{\mathcal{M}}|^2$ Particularly large difference are found with chiral EFT potentials. This is unexpected! What can be the source of this behaviour?

• Numerics? Our calculations are well converged (few % level) in the HH basis

K_{\max}	12	14	16	18
$10^4 F_{10} ^2$	1 50	1 75	1 85	1 87

Many-body charge operators?

Conventional Nuclear Physics

Impulse approximation valid for elastic form factor below 2 fm⁻¹ Viviani *et al.*, PRL **99** (2007) 112002

EFT approach

work done by Park *et al.*, Epelbaum, Koelling *et al.*, Pastore *et al.*, many-body operators appear at high oder in EFT

• Higher order 3NF (N³LO)? Unlikely...

UBC P&A Colloquium

RIUMF

Analysis of this result

• Location of the resonance?

The "realistic Hamiltonians" fail to reproduce the correct position of the 0⁺₂ resonance

More theoretical work needed to understand this.

• Can this be measured again?

Outlook

- The LIT is a very powerful method to an exact study of electron scattering observables
 - ★ Showed results obtained in conjunction with the HH for A=4
- The investigation of electromagnetic observables allows to
 - Shed more light on role of 3NF Electromagnetic reactions are sensitive to 3NF
 and to different nuclear Hamiltonians
 - Study the effect of exchange currents

Future

- ★ Use forces and currents from EFT
- ★ Extend these studies to heavier nuclei