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Resolution Scales of Nuclear Physics
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The Nuclear Interaction

Typical scale of separation between low- and high-momentum
regime in the nuclear wave function at roughly kf ≈ 250MeV
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Correlations & Factorization in Nuclear Systems

Subedi et al., Science 320,1476 (2008)

E.g.: Detection of knocked out pairs
with large relative momenta

How is vertex modified?

Egiyan et. al, (2006)

Standard Nuclear
physics approach

1.4≤ Q2 ≤ 2.6GeV2
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Nucleon Momentum Distributions

From Pieper, Wiringa, and Pandharipande (1992).

Scaling behavior of momentum distribution function at large q

nA(k) = a2(A, d) · nd(k) for k > kFermi

– explained by dominance of NN potential & short-range correlations

Dominance of np pairs over pp pairs: explained by tensor forces

Hard interactions used (high resolution) . . . difficult calculations
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Traditional Interpretation

Mezzetti, arXiv:1003.3650.

Mean field results not sufficient ⇒
Introduce SRCs into interaction and
wave function

Factorization of the wave function
in this approach

ΨA({pi}A) ∼ [φ(prel )⊗φ(pCM )]⊗ΨA−2({pi}A−2)

For large prel , small pCM ⇒ factorization
into a 2-particle cluster with high relative
momentum and a remaining (A-2)-particle
cluster

⇒ Dominance of 2-body interactions
Advantage: Simple operator, a†a
Disadvantages:
– Highly correlated interaction and
wave function → Difficult to compute!
– Resolution scale not appropriate for
nucleonic dof’s

Alternative factorization of the wave
function at high-momentum q above a
decoupling scale λ

Ψ∞α (q) ≈ γλ(q)
∫ λ
0
p2dp Z(λ)Ψλα(p)

– state-independent γ(q) and
– state-dependent integral over low
momentum

−→ Wave function easy to calculate ⇒ Short-distance physics described by operators!
−→First need to address strong coupling in Hamiltonian . . .
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The Nuclear Interaction

High momentum matrix elements lead to computationally
infeasible many-body problem for all but lightest nuclei
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Growth of Configuration interaction matrices
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Introduction to the SRG: Potentials

The Similarity Renormalization Group (SRG)

→ provides a means to systematically evolve computationally
difficult Hamiltonians toward diagonal or decoupled form

→ simplifies calculations with nuclear potentials
Based on unitary transformations as shown here:

Hs = UsHs=0U
†
s ≡ Trel + Vs

→ Differentiating with respect to s gives the flow equation:
dHs
ds
= [ηs ,Hs ] where ηs =

dUs
ds
U†s = −η†s

– The flow can be specified in ηs by a flow operator Gs :

ηs = [Gs ,Hs ]

– Typically:

Gs = Trel =⇒ dHs
ds
= [[Trel,Hs ],Hs ]
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Flow equations in action: NN only

In each partial wave with εk = �
2k2/M and λ = 1/s1/4 fm−1

dVλ
dλ
(k, k ′) ∝ −(εk − εk′)2Vλ(k, k ′) +

∑
q

(εk + εk′ − 2εq)Vλ(k, q)Vλ(q, k ′)
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NCSM Calculations for Light Nuclei

Harmonic oscillator basis with Nmax shells for excitations

Graphs show convergence for soft chiral EFT potential
and evolved SRG potentials (including NNN)
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[E. Jurgenson, P. Navrátil, R.J. Furnstahl (PRC, 2011)]

Better convergence, but rapid growth of basis still a problem
(solution: importance sampling of matrix elements [R. Roth])
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Hierarchy of Many-Body Effects with Trel SRG Evolution
Consider a’s and a†’s wrt s.p. basis and reference state:

dVs
ds
=
[[∑

a†a︸︷︷︸
Gs

,
∑
a†a†aa︸ ︷︷ ︸
2-body

]
,
∑
a†a†aa︸ ︷︷ ︸
2-body

]
= · · ·+

∑
a†a†a†aaa︸ ︷︷ ︸
3-body!

+ · · ·

so there will be A-body forces (and operators) generated

Compare 2-body only to full 2 + 3-body evolution:

[E. Jurgenson, P. Navrátil, R.J. Furnstahl (PRC, 2011)]
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Introduction to the SRG: Operator Evolution

Same unitary transformation evolves potentials and operators!

Os = UsOs=0U
†
s ⇐⇒ dOs

ds
= [ηs ,Os ] = [[Trel ,Hs ],Os ]

Can construct transformation directly . . .

Us =
∑
α

|ψα(s)〉 〈ψα(0)|

⇒ Us(ki , kj) =
∑
α

〈ki |ψα(s)〉 〈ψα(0)|kj〉

or, e.g., evolve from DE

dOs(k, k
′)

ds
=

2

π

∫ ∞
0

q2dq [(k2 − q2)Vs(k, q)Os(q, k ′)

+ (k ′2 − q2)Os(k, q)Vs(q, k ′)]

Evolve operators consistent with N3LO 500MeV potential

→ Number Operator, RMS radius, Quadrupole moment, 〈 1r
〉
, etc.

→ Observables in deuteron
[era, S.K. Bogner, R.J. Furnstahl, R.J. Perry, (PRC, 2010)]
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Deuteron Momentum Distribution
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Number Operator - High Momentum

In partial wave momentum basis (for q = 3.02 fm−1):

Operator:

〈k|Uλa†qaqU†λ |k ′〉

Integrand:〈
ψλd
∣∣Uλa†qaqU†λ

∣∣ψλd
〉

Integrand on
log scale

Decoupling ↔ High momentum components suppressed
Integrated value does not change, but nature of operator does
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Number Operator - Low Momentum

In partial wave momentum basis (for q = 0.34 fm−1):

Operator:

〈k|Uλa†qaqU†λ |k ′〉

Integrand:〈
ψλd
∣∣Uλa†qaqU†λ

∣∣ψλd
〉

Integrand on
log scale

Strength remains at low momentum

Similar for other long distance operators:
〈
r2
〉
, 〈Qd〉, &

〈
1
r

〉

Overview Operators Factorization Conclusions Properties Many-Body Perturbative Calculation of SRCs



Demonstration of Decoupling In Expectation Values

Evolve Hamiltonian & operators to λ in full space → TRUNCATE at Λ:
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⇒ Expectation values reproduced in
truncated basis 0 1 2 3 4 5

10-8

10-6

10-4

10-2

100

102

q (fm-1 )

a+ a

 

 

SRG Evolved &
  Truncated at Λ=2.5 

Unevolved &
SRG Evolved

λ=2.0

Overview Operators Factorization Conclusions Properties Many-Body Perturbative Calculation of SRCs



Many-Body evolution of Operators

Many-body evolution with operators normal ordered in the vacuum:

dÔs

ds
= [[Trel,Hs ], Ôs ] =⇒

⎡
⎣
⎡
⎣∑
ij

Tij a
†
i aj ,

∑
i′ j′
Ti′ j′ a

†
i′ aj′ +

1

2

∑
pqkl

Vpqkl|s a
†
p a
†
q al ak + · · ·

⎤
⎦ , Ôs

⎤
⎦

→ Only one non-vanishing contraction in the vacuum: aia†j = δij

A general operator Ô for an A-body system can be written as

Ô = Ô(1) + Ô(2) + Ô(3) + · · ·+ Ô(A)

where the Ô(i) label the i = 1, 2, 3, ...,A-body components

– SRG operator Ôs will have contributions for all n so that Ô
(n) �= Ô(n)s .

Expanding commutators and making contractions, one finds:

→ Evolution of an operator is fixed in each n-particle subspace

→ For interactions with n ≥ 2-body components, 1-body component in
Ôs will have no induced 1-body components

→ How do we deal with this in practice?
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Operator Evolution & Extraction Process
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Relative Momentum Distribution: 1D Model
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Single-Particle Momentum Distribution: 1D Model
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Electromagnetic Form Factors - 1-body Initial Current

Elastic electron-deuteron
scattering

Calculation of GC , GQ , GM
operators at LO

1-body versus 2-body
evolution?

⇐⇒ bare versus evolved
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Wave function is derived from the NNLO 550/600 MeV – Epelbaum et al.
potential and the evolution is run to λ = 1.5 fm−1.
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Low Momentum Operators in NCSM
Evolve Hamiltonian & operators to λ at large Nmax

→Truncate model space at Ncut
ΛUV ∼

√
mNmax�ω; ΛIR ∼

√
m�ω

Nmax
→ Poor convergence of long range operators . . . can this be corrected?
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SRG evolution of r2 operator for A=3
– Chiral N3LO Potential with initial NN+NNN interaction
Stay tuned for many-body SRG evolution analysis of long- and
short-distance operators!
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Controlled IR and UV renormalization

Consider Trel + αr
2, where α is a parameter which can be adjusted to

optimize the renormalization (here, α = 10), so that

ηs = [Trel + αr
2,Hs ]

0 4 8 12 16 20 24 28 32
Nmax cut

1.3

1.4

1.5

1.6

1.7

R
ad

iu
s [

fm
]

λ = 100.00fm−1

λ = 5.00fm−1

λ = 3.00fm−1

λ = 2.00fm−1

λ = 1.50fm−1

λ = 1.20fm−1

λ = 1.00fm−1

h- ω  = 28

3H

N3LO

Convergence improves with decreasing λ

Preliminary evidence: spurious deep bound states appear in 4He for
small λ when embedding this Hs
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Correlations in Nuclear Systems

Subedi et al., Science 320,1476 (2008)

E.g.: Detection of knocked out pairs
with large relative momenta

How is vertex modified?

How to understand in
context of SRG and
low-momentum
interactions?

=⇒

Overview Operators Factorization Conclusions Properties Many-Body Perturbative Calculation of SRCs



Nucleon Momentum Distributions

From Pieper, Wiringa, and Pandharipande (1992).

Scaling behavior of momentum distribution function at large q

nA(k) = a2(A, d) · nd(k) for k > kFermi

– explained by dominance of NN potential & short-range correlations

Dominance of np pairs over pp pairs: explained by tensor forces

Hard interactions used (high resolution) . . . difficult calculations

Alternative: Calculation of pair density at low resolution . . .

→ Start with calculation of nuclear matter in MBPT:
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Evolved Operators in Many-Body Perturbation Theory

Rewrite unitary transformation in 2nd quantization:

Ûλ = 1+
1

2

[
Uλ
(
k1−k2
2
, k3−k4

2

)− δ ( k1−k2
2
, k3−k4

2

)]
δ (k1 + k2, k3 + k4) a

†
k1
a†k2ak4ak3+· · ·

Example:

Apply to 1-body operator for momentum distribution Ô = a†qaq:

ÛλÔÛ
†
λ → a†qaq−a†qa†i aiaq+Uλ

(
k1−k2
2
, i−q
2
)a†k1a

†
k2
ak4ak3U

†
λ

(
i−q
2
, k3−k4

2

)
+· · ·

Apply to 2-body pair density operator Ô = a†P/2+qa
†
P/2−qaP/2−qaP/2+q:

ÛλÔ Û
†
λ =

Uλ
(
k1−k2
2
, 2q
)
a†k1a

†
k2
ak4ak3U

†
λ

(
2q, k3−k4

2

)
+ · · ·

−→ Implement perturbative expansion at small λ = 1.8− 3.0 fm−1

Work done with K. Hebeler
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SRG Evolution of Operators in Nuclear Matter

Using AV18 potential

Pair-densities are approximately resolution independent

Enhancement of np over nn pairs due to tensor force

In progress: Calculation of a2 in MBPT and HFB

Work done with K. Hebeler
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Reproduction of Short-distance Physics

1.5 2 2.5 3 3.5 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

q

ρ np
(q

)/ρ
d(q

)

 

 
k

f
=1.05 fm-1 , λ=1.8 fm-1

k
f
=1.05 fm-1 , λ=2.0 fm-1

k
f
=1.35 fm-1 , λ=1.8 fm-1

k
f
=1.35 fm-1 , λ=2.0 fm-1

Ratios of perturbative nuclear matter momentum distributions at densities of
kf = 1.05 fm

−1 and kf = 1.35 fm−1 for λ = 1.8 fm−1 and λ = 2.0 fm−1, as
specified, over ab-initio calculation of the deuteron.

Plateaus demonstrate the reproduction of high-momentum behavior in
perturbative calculation of nuclear matter momentum distribution.

Preliminary Calculation: proper normalization needed
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Numerical Factorization in SRG

Idea: If k < λ and q � λ =⇒ factorization: Uλ(k, q)→ Kλ(k)Qλ(q)
A preliminary test of factorization in U
can be made by assuming

Uλ(ki , q)

Uλ(k0, q)
→ Kλ(ki )Qλ(q)

Kλ(k0)Qλ(q)
,

so for q � λ⇒ Kλ(ki )
Kλ(k0)

, if k < λ.

As shown below, one can infer this
behavior from the plateaus for
q � 2fm−1 when ki < λ

0 1 2 3 4 5
q [fm−1]

0.1

1

10

|U
(k

i,q
) /

 U
(k

0,q
)|

k1 = 0.5 fm−1

k2 = 1.0 fm−1

k3 = 1.5 fm−1

k4 = 3.0 fm−1

λ  = 2.0 fm−1

1S0
k0 = 0.1 fm−1

Singular Value Decomposition (SVD)

→ tool to quantitatively analyze the
extent to which U factorizes

→ The SVD can be expressed as an
outer product expansion

G =
r∑
i

di�ui�v
t
i

where r is the rank and the di are the
singular values (in order of decreasing
value).

Evidence: Shown below at λ = 2 fm−1,
for q > λ and k < λ

1S0
Potential d1 d2 d3
AV18 0.763 0.033 0.007

N3LO 500 MeV 1.423 0.221 0.015
N3LO 550/600 MeV 3.074 0.380 0.061

3S1–
3S1

AV18 0.671 0.015 0.008
N3LO 500 MeV 1.873 0.225 0.044

N3LO 550/600 MeV 4.195 0.587 0.089
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Factorization

Motivation:

The Operator Product Expansion
(OPE) of the nonrelativistic wave
function (Lepage)

Ψtrue(r) = γ(r)

∫
dr′Ψeff δa(r′)

+n(r)a2
∫
dr′Ψeff∇2δa(r′)+O(a4)

Similarly, in momentum space

Ψ∞α (q) ≈ γλ(q)
∫ λ
0
p2dp Z(λ)Ψλα(p)

+ηλ(q)

∫ λ
0
p2dp p2 Z(λ)Ψλα(p)

→ γλ(q) and ηλ(q) can be
constructed by projecting the SRG
evolved nuclear potential in
momentum subspace to recover OPE
via standard effective interaction
methods

Now, construct transformation directly:

Uλ(k, q) =
∑
α

〈k|ψλα〉 〈ψ∞α |q〉

→
[
αlow∑
α

〈k|ψλα〉
∫ λ
0
p2dp Z(λ)Ψλα(p)

]
γλ(q)

⇒ Uλ(k, q) ≈ Kλ(k)Qλ(q)

If k < λ and q � λ =⇒ factorization
Moreover, since ψλα(p) is suppressed for
p > λ, we can extend the α sum to the
full space and apply closure to find that
Uλ(k, q)

→
[
Z(λ)

∫ λ
0
dp̃

∞∑
α

〈
k|ψλα

〉〈
ψλα|p

〉]
γλ(q)

≈ Z(λ)γλ(q)

Thus, the ratio Uλ(ki ,q)
Uλ(k0,q)

→ 1 to leading
order in the factorization region . . . as
seen in the previous slide!
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Practical Use

From Decoupling: write

〈ψλ|UλÔ U†λ |ψλ〉 ∼=∫ λ
0
dk ′
∫ ∞
0
dq′
∫ ∞
0
dq

∫ λ
0
dk ψ†λ(k

′)Uλ(k ′, q′)Ô(q′, q)Uλ(q, k)ψλ(k)

Using Factorization: set Uλ(k, q)→ Kλ(k)Qλ(q), where k < λ and q � λ.

=⇒
∫ λ
0

∫ λ
0
ψ
†
λ(k

′)

[∫ λ
0

∫ λ
0
Uλ(k

′, q′)Ô(q′, q)Uλ(q, k)︸ ︷︷ ︸+IQOQ Kλ(k ′)Kλ(k)︸ ︷︷ ︸
]
ψλ(k)

Low Momentum Structure

where IQOQ =
∫∞
λ
dq′
∫∞
λ
dq
[
Qλ(q

′)Ô(q′, q)Qλ(q)
]
← Universal

– Valid when initial operators weakly couple high and low momentum, e.g.,

r2 1
r

GC (q = 3.02 fm
−1) a†qaq(q = 3.02 fm−1)
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Factorization in Few-Body Nuclei

Variational Monte Carlo Calculation

→ Using AV14 NN potential

From Pieper, Wiringa, and Pandharipande (1992).

Possible explanation of scaling behavior

→ Results from dominance of NN
potential and short-range correlations
(Frankfurt, et al.)

1D few-body HO space calculation

→ System of A bosons interacting via a
model potential

0 2 4 6 8 10 12
10-6

10-5

10-4

10-3

10-2

10-1

100

k

N
(k

) /
 A

Nmax=36

 

 
2-body NN-only
3-body NN-only
4-body NN-only

→ A Test Bed for 3D NCSM calculations:
Alternative explanation of scaling behavior

→ Results from factorization∫ λ
0

∫ λ
0 ψ

†
λ(k

′) [IQOQKλ(k′)Kλ(k)]ψλ(k)
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→ A Test Bed for 3D NCSM calculations:
Alternative explanation of scaling behavior

→ Results from factorization∫ λ
0

∫ λ
0 ψ

†
λ(k

′) [IQOQKλ(k′)Kλ(k)]ψλ(k)
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Long-distance 3-body contribution, etc.

Exact operator evolution and embedding: A=3 boson 1D model system
momentum distributions

Indication of factorization in many-particle space:{∫
λ

0

∫
λ

0
ψ
†
λ

[
Kλ(k

′)Kλ(k)
]
ψλ +

∫
λ

0

∫
λ

0

∫
λ

0

∫
λ

0
ψ
†
λ

[
Kλ(k

′
1, k

′
2)Kλ(k1, k2)

]
ψλ + · · ·

}
IQOQ

In progress: Exploration of formal basis for n-body factorization
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Long-distance 3-body contribution, etc.

Exact operator evolution and embedding: A=4 boson 1D model system
momentum distributions

Indication of factorization in many-particle space:{∫
λ

0

∫
λ

0
ψ
†
λ

[
Kλ(k

′)Kλ(k)
]
ψλ +

∫
λ

0

∫
λ

0

∫
λ

0

∫
λ

0
ψ
†
λ

[
Kλ(k

′
1, k

′
2)Kλ(k1, k2)

]
ψλ + · · ·

}
IQOQ

In progress: Exploration of formal basis for n-body factorization
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High-momentum tails from low-momentum ET’s

S.K. Bogner & D. Roscher [arXiv:1208.1734]

Generalization of factorization to arbitrary A-body systems at low-momentum:

n(q) ≈ Z 2Λ γ2(q; Λ)
∑
k,k′,K

〈ψΛα,A|a†K
2
+k
a†K
2
−ka K2 +k′a K2 −k′ |ψ

Λ
α,A 〉

– Can be shown for other operators

Example: Unitary Fermi gas

Reproduction of contact Tan relation à la Braaten & Platter [2008]:

n(q) ≈ Z
2
Λ g
2(Λ)

q4

∑
k,k′,K

〈ψΛα,A|a†K
2
+k
a†K
2
−ka K2 +k′a K2 −k′ |ψ

Λ
α,A 〉 = C(Λ0)q4

Static structure factor

S↑↓(q) ≈ −
(

2

q2 g (Λ)
+
1

8q
+
Λ

π2q2

)
Z 2Λ C(Λ) −→

(
1

8q
− 1

2πa q2

)
C(Λ0)

−→ Analogous relations reproduced for electron gas ←−
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Short Range Correlations and the EMC effect

Deep inelastic scattering ratio at
Q2 ≥ 2GeV2 and 0.35 ≤ xB ≤ 0.7
and inelastic scattering at
Q2 ≥ 1.4GeV2 and 1.5 ≤ xB ≤ 2.0
Strong linear correlation between
slope of ratio of DIS cross sections
(nucleus A vs. deuterium) and
nuclear scaling ratio

SRG Factorization at leading order:
→ Dependence on high-q
is independent of A

→ A-dependence from low
momentum matrix element
independent of operator

L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

Why should A-dependence of nuclear scaling a2 and the EMC effect be
the same?
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EFT approach to EMC Effect

Chen & Detmold [Phys. Lett. B 625, 165 (2005)]

The ratio relevant to the EMC effect is given by

RA(x) = F
A
2 (x)/AF

N
2 (x) where the structure functions FA2 =

∑
i

Q2i xq
A
i (x)

In the EFT treatment: match leading-order nucleon operators to isoscalar
twist-two quark operators

= 〈xn〉q vμ0 · · · vμ0N†N[1 + αnN†N] + · · ·

Implies: RA(x) =
FA2 (x)

AFN2 (x)
= 1 + gF 2(x)G(A) where G(A) = 〈A|(N†N)2|A〉/AΛ0

So, dRA
dx
scales with G(A)

Connection to SRG Factorization:
– Both imply factorization of long- and short-distance contributions

IQOQ ⇐⇒ gF 2(x)∫ λ
0

∫ λ
0 ψ

A
λ
† [Kλ(k ′)Kλ(k)]ψAλ∫ λ

0

∫ λ
0 ψ

†
λ [Kλ(k

′)Kλ(k)]ψλ
⇐⇒ G(A)

*** [Kλ(k) ≈ constant]⇐⇒ δ(r)⇐⇒ 〈A|(N†N)2|A〉 ***
– In Progress: quantitative calculation of A-dependence from SRG
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Conclusions

Summary:

SRG provides a means to lower the resolution needed in nuclear interactions,
thereby reducing the computational difficulty of the nuclear many-body problem

Many-body operators can be consistently evolved and extracted in SRG

MBPT calculation of nuclear momentum distribution.

Formal and numerical foundation for factorization of unitary transformation.

Demonstration of factorization in many-body systems.

Factorization greater understanding of separation of scales in nuclear systems

A-dependence of nuclear scaling and the EMC effect from long-distance

Outlook:

Quantitative calculation of nuclear scaling a2 via factorization
– MBPT with LDA
– HFB

Calculations in 3D in harmonic oscillator basis

Explore other operators (e.g., electroweak) in 3D harmonic oscillator basis
– utilize factorization

Continue to explore generalization of factorization in 3-particle space

Inclusion of higher-order effects via factorization

Overview Operators Factorization Conclusions



The End
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