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Resolution Scales of Nuclear Physics
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The Nuclear Interaction
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o Typical scale of separation between low- and high-momentum
regime in the nuclear wave function at roughly kf ~ 250MeV
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Correlations & Factorization in Nuclear Syste

What is this vertex? -

electron

N k :low rel. momentum

Tgss
A k' high rel. momentum

Higinbotham, arXiv:1010.4433

e @ How is vertex modified?
Subedi et al., Science 320,1476 (2008) Egiyan et. al, (2006)
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Nucleon Momentum Distributions
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From Pieper, Wiringa, and Pandharipande (1992). Schiavilla et al., PRL 98, 132501 (2007)

@ Scaling behavior of momentum distribution function at large g
na(k) = a2(A, d) - na(k) for k > Krermi
— explained by dominance of NN potential & short-range correlations

@ Dominance of np pairs over pp pairs: explained by tensor forces

® Hard interactions used (high resolution) . . . difficult calculations
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Traditional Interpretation

---- Mean Field
107 - — -Central
“E‘ 1024 —— Central
= + Tensor
o -3
T 10% -
10 e -
10° « VMC ,
107 ; : - ,
0 1 2

3 _14

k [fm™]
Mezzetti, arXiv:1003.3650.

@ Mean field results not sufficient =

Introduce SRCs into interaction and
wave function

@ Factorization of the wave function
in this approach

Va({pita) ~ [0(Prer) @D(Pcm)I®Va—2({P;}a—2)

@ For large p,., small pcy, = factorization

into a 2-particle cluster with high relative
momentum and a remaining (A-2)-particle
cluster

= Dominance of 2-body interactions
@ Advantage: Simple operator, ata
@ Disadvantages:
— Highly correlated interaction and
wave function — Difficult to compute!
— Resolution scale not appropriate for
nucleonic dof’s

Alternative factorization of the wave
function at high-momentum q above a
decoupling scale A

A
V() ~ 7 () /0 p2dp Z(\)WA(p)

— state-independent v(q) and
— state-dependent integral over low
momentum

— Wave function easy to calculate = Short-distance physics described by operators!

—First need to address strong coupling in Hamiltonian . . .
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The Nuclear Interaction

1000 . . ‘ .

1
800 —_ So (np) AV18 |

600 - -

I~ 1-1.5 fm in nuclei

400 - -

V(r) [MeV]

200 - -

. | . | .
-200 1 2 3
1 [fm]

@ High momentum matrix elements lead to computationally
infeasible many-body problem for all but lightest nuclei
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Growth of Configuration interaction matrices
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Introduction to the SRG: Potentials

@ The Similarity Renormalization Group (SRG)

— provides a means to systematically evolve computationally
difficult Hamiltonians toward diagonal or decoupled form

— simplifies calculations with nuclear potentials
) Based on unitary transformations as shown here:
Hy = UsHs—oU] = Tia + Vs
— Differentiating with respect to s gives the flow equation:
dH; dUs

ds [ns, Hs] where ns = . Ul = i
— The flow can be specified in 75 by a flow operator Gs:
ns = [Gs, Hs]
— Typically:
dH,

Gs = Trel -

ds = [[ Trela Hs]; Hs]
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Flow equations in action: NN o

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!

dVy
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Flow equations in action: NN o

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!
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Flow equations in action: NN o

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!

dVy
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Flow equations in action: NN on

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!

dV,
n UK o ek — ) Valk K)o+ D (e en = 260) V(K 0) Va4, K)
‘so A=10.0fm’"

-1

k' (fmh)
@ 1 2 3 4 05
05
1
2 0
€ .
<3
05
4
-05 o

-1
k(fm ") K (fm’1)

Resolution & Probes of the Nuclear Wave Function SRG



Flow equations in action: NN onl

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!
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Flow equations in action: NN only

-1

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~!
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Flow equations in action: NN only

@ In each partial wave with ¢, =

dV,\
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~

dV
> o K K') o —(ek — e ) Valk, K') + 3 (ex + exr — 26q) Va(k, a) Va(a, k')
q
1 el
So A =2.8 fm 180 heo8 fm_1
K (fm) 1
00 1 2 3 4 05
0.5
1
2 0
£ 0
3
-0.5
4
-0.5

Overview Operators Factorization Conclusions



Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~
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Flow equations in action: NN only

o In each partial wave with ¢, = h?k?/M and A = 1/s%/*fm~
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NCSM Calculations for Light Nuclei

@ Harmonic oscillator basis with N,.x shells for excitations

@ Graphs show convergence for soft chiral EFT potential
and evolved SRG potentials (including NNN)
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[E. Jurgenson, P. Navratil, R.J. Furnstahl (PRC, 2011)]

o Better convergence, but rapid growth of basis still a problem
(solution: importance sampling of matrix elements [R. Roth])
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Hierarchy of Many-Body Effects with T,,; SRG Evolution

@ Consider a's and a'’s wrt s.p. basis and reference state:

dd\:s - HZ&’Z&E]’Z?TQT‘?Q] = ""FZBTaTaTaaa—i----
G 2-body  2-body 3-body!

so there will be A-body forces (and operators) generated
@ Compare 2-body only to full 2 + 3-body evolution:
[E. Jurgenson, P. Navratil, R.J. Furnstahl (PRC, 2011)]

1A T T T T T 24 T L B R

Ground-State Energy [MeV
Ground-State Energy [MeV]
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Hierarchy of Many-Body Effects with T,,; SRG Evolution

@ Consider a's and a'’s wrt s.p. basis and reference state:

dd\:S - HZ&’Z&E]’Z?TQT‘?Q] = ""FZBTaTaTaaa—i----
G 2-body  2-body 3-body!

so there will be A-body forces (and operators) generated

@ Compare 2-body only to full 2 + 3-body evolution:

Ground-State Energy [MeV

[E. Jurgenson, P. Navratil, R.J. Furnstahl (PRC, 2011)]
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Hierarchy of Many-Body Effects with T,,; SRG Evolution

@ Consider a's and a'’s wrt s.p. basis and reference state:

dd\:S - HZ&’Z&E]’Z?TQT‘?Q] = ""FZBTaTaTaaa—i----
G 2-body  2-body 3-body!

so there will be A-body forces (and operators) generated
@ Compare 2-body only to full 2 + 3-body evolution:
[E. Jurgenson, P. Navratil, R.J. Furnstahl (PRC, 2011)]
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© Operator Evolution
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Introduction to the SRG: Operator Evolution

@ Same unitary transformation evolves potentials and operators!

Os = Us OS:O UJ e ddoss = [775’ Os] = [[ Trel, Hs], Os]
Can construct transformation directly . . . or, e.g., evolve from DE
Us =Y [Ya(s)) (¢a(0)] %l;,k’) _
le% 2 oo ) R , l
z dqg [(k~ — Vi(k, q)Os(q, k
= Us(ki, k) = > (kiltba(s)) (¥a(0) k) 7"/0 q°dq [(k* = q") Vs(k, q) Os(q, k')
«a + (k'2 _ qz)Os(k, q)Vs(q, k/)]

@ Evolve operators consistent with N3LO 500MeV potential
— Number Operator, RMS radius, Quadrupole moment, (1), etc.
— Observables in deuteron

[era, S.K. Bogner, R.J. Furnstahl, R.J. Perry, (PRC, 2010)]
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Deuteron Momentum Distribution
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Number Operat High Momentum

@ In partial wave momentum basis (for g = 3.02fm'):

K (fm™) K (fm™) K (fm") K (fm™)
2 3 4 0 1 2

Operator:
(k| UnafaqUS K)

Integrand:
(03] UnalaqUS [u0g)

K (fm") K (fm™) K (fm") K (fm")
2 3

Integrand on
log scale

@ Decoupling <> High momentum components suppressed

© Integrated value does not change, but nature of operator does
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Deuteron Momentum Distribution

10° E 3

N\ ]
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Number Operat Momentum

@ In partial wave momentum basis (for g = 0.34fm'):

K (fm™) K (fm) K (") K (fm)
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Operator:
(k| UnabaqUS [K')

k (fm')

0
1
2
3
4

Integrand:
(3] UnabaqU] |v3)

K (") K (fm"y K (fm™) K (")
1.2 3

Integrand on
log scale

@ Strength remains at low momentum

@ Similar for other long distance operators: (r?), (Qq), & (1)
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Demonstration of Decoupling In Expectation Values
@ Evolve Hamiltonian & operators to A in full space — TRUNCATE at A:
10°

10°
2=6.0 A=3.0
Unevolved &
. SRG Evolved 10° SRevoved &
10 S 10?
+ Tl +° S
T~ - « V- = T
10 T 10% ~
SRG Evolved & | SRG Evolved &
. Truncated atA=2.5 \ . Truncated atA=2.5
10 Ve — - 10
-8 -8
10 0 1 2 3 4 5 10 0 1 2 3 4 5
a(fm”) q(fm™)
@ Momentum distribution 107
— Calculated with AV18 potential. ,
—_— 10’ Unevolved &
~A=25fm ! SRG Evolved
A=6.0fm 1,3.0fm™! and 2.0fm™! L \
+ﬁ
@ Decoupling for all q is successful 10 /
SRG Evolved &
Truncated atA=2.5
when A <A o
= Expectation values reproduced in
truncated basis

8
10 0 1 2 3 4 5
a(m™)
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Many-Body evolution of Operators

@ Many-body evolution with operators normal ordered in the vacuum:

do. _ _
dss = [[Trel, Hs], Os] = HZ jal a,,z T,/J/a ajy + = vaqk”sa a a,ak+ } ,os}

— Only one non-vanishing contraction in the vacuum: a,alr = dj

@ A general operator O for an A-body system can be written as

0=0"+0%+0® ...+ 0W

where the O label the i = 1,2,3, ..., A-body components
— SRG operator O will have contributions for all n so that O # o,

@ Expanding commutators and making contractions, one finds:

— Evolution of an operator is fixed in each n-particle subspace

— For interactions with n > 2-body components, 1-body component in
Os will have no induced 1-body components

— How do we deal with this in practice?
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Operator Evolution & Extraction Process

Evolution in n-Particle
space determines
n-Body component of
operator for all A

Overview Operators Factorization Conclusions Many-Body



Operator Evolution & Extraction Process

U, =Y v, (s))w,(0)]

Operator

Evolution in n-Particle
space determines
n-Body component of
operator for all A

Embed in
A-Particle Basis

Properties Many-Body Perturbative Calculation of SRCs

A-Particle Calculations




Operator Evolution & Extraction Proce

Original

| [0y
U, =3 v, ())w.(0)] ) .

P

1-Particle Basis

Uj(z) 2-Particle Basis o
3-Particle Basis Operator

L

Evolution in n-Particle
space determines
n-Body component of
operator for all A

A-Particle Calculations i Farticle Basis

Properties Many-Body Perturbative Calculation of SRCs



Operator Evolution & Extraction

[ Original 3
U, =3 v, ())w, (0)] )
: ok

G Embed in
% S 2-Particle Basis

UPOU? | [ O = 2B

5 Operator

Evolution in n-Particle
space determines
n-Body component of
operator for all A

3-B
Operator

p:_J

Embed in
A-Particle Basis

Properties Many-Body Perturbative Calculation of SRCs

A-Particle Calculations




Operator Evolution & Extract

Original
Operator ~ .

EiSRGevoution | | | fuoout | el 20 -

U= Z|WH(S))(Wa(O)‘ ) .

4+ Embed in
% S 2-Particle Basis

UPOU? | [ O = 2B

5 Operator

Evolution in n-Particle
space determines - 3B

n-Body component of
operator for all A

A-Particle Calculations i Farticle Basis

Properties Many-Body Perturbative Calculation of SRCs

Operator




Operator Evolution & Extractio

Original
- ”0 eraﬂtor A 1-B |
oo |urour] =g e
U, =2 | (s)Hw.(0) O
¢ 4+ Embed in
% S 2-Particle Basis

1-Particle Basis

2-Particle Basis

4
3-Particle Basis Operator

_

Evolution in n-Particle
space determines 3-B )
n-Body component of Operator
operator for all A J

2-B

Embed in
A-Particle Basis

A-Particle Calculations

Properties Many-Body Perturbative Calculation of SRCs
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Single-Particle Momentum Distribution: 1D Model

Momentum Distributions at N_ =40
max

*  A=4, 2-body only r=e
o A=4, Scaled 2-body only A=2.0
A=4,

Scaled 2+3-body only 3=2.0

N(p)

107k

10 ¢

10° nd
20 15

N
o

p
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Electromagnetic Form Factors - 1-body Initial Curren

@ Elastic electron-deuteron 10° S
—— Unevolved
scattering + SRG Evolved
o SRG Evolved wf
@ Calculation of G¢, Gg, Gum 10" it with Bare Operator
operators at LO .
& N
@ 1-body versus 2-body 0 A=15
evolution?
<= bare versus evolved R
Dare gvolved .
10 0 1 2 3 4 5
q(m™)
10° 10°
——Unevolved —— Unevolved
+ - SRG Evolved + SRG Evolved
__ SRG Evolved wf SRG Evolved wf
0 with Bare Operator - *x, | with Bare Operator
o g
Q) (5
1072 10* A=15
-3 -3
10 0 1 2 3 4 5 10 0 1 2 3 4 5

a(fm’) o
@ Wave function is derived from the NNLO 550/600 MeV — Epelbaum et al.
potential and the evolution is run to A = 1.5fm™!.
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Low Momentum Operators in NCSM

@ Evolve Hamiltonian & operators to A at large Npax

—Truncate model space at Ncut

mhw
Ayv ~ / mMNmaxhw;  Ajg ~

Nmax
— Poor convergence of long range operators . . . can this be corrected?
LT T T -
==
161 B
—15F B
v

214 — %=100.00fm"'[|

kS ~= A=5.00fm"
13 = A=3.00fm |

—_— -1

3H ?»—2400fm_l
12 ~ A=150fm ||

. —1

“ A=1.20fm

T e 1.00fm ™"

1.1 v b b b B T T T
0 32

cut
max

@ SRG evolution of r? operator for A=3
— Chiral N3LO Potential with initial NN+NNN interaction

@ Stay tuned for many-body SRG evolution analysis of long- and
short-distance operators!
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Controlled IR and UV renormalization

@ Consider Tyl + ar?, where o is a parameter which can be adjusted to
optimize the renormalization (here, o = 10), so that

Ns = [Trel + ar2, Hs]

LT
3
N'LO
1.6
£
=15 -
4 o
2 — A =100.00fm
el —1
S ~= A =5.00fm
~oia -1 H
. = A =3.00fm
— A=2.00fm "
J © A= 1.50fm”
135 “ A=120fm~ |
— A=1.00fm""
e b b by b T T T T
0 4 8 12 16 20 24 28 32

@ Convergence improves with decreasing A

@ Preliminary evidence: spurious deep bound states appear in “He for
small A when embedding this Hs
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Correlations in Nuclear Systems

What is this vertex?

k :low rel. momentum

A-2 k' high rel. momentum

Higinbotham, arXiv:1010.4433
proton or neutron

Subedi et al., Science 320,1476 (2008)

@ E.g.: Detection of knocked out pairs @ How is vertex modified?

with large relative momenta

K (m”)

00 1 2 3 4 5 1

J 0.8

@ How to understand in o4
context of SRG and o -
low-momentum 3 02
. . -0.4
interactions? 4 o6
-0.8

5 -1

k(™)
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mentum Distributions

10° E
10°6
10°e
, E
_ < 10’
i £ F
£ = sl
= 1 10 E
§ g. 2 §
ot g 10
z FR
a 1
; 10 :'
10° ;_ .....
1 £
10.1 ?_
10° -
o 2 (fm") 3 4 5 0 1 2 3 4 5
From Pieper, Wiringa, and Pandharipande (1992). Schiavilla et al,, PRL 98, 132501 (2007)

@ Scaling behavior of momentum distribution function at large g
nA(k) = az(A, d) . nd(k) for k > keermi
— explained by dominance of NN potential & short-range correlations

@ Dominance of np pairs over pp pairs: explained by tensor forces
@ Hard interactions used (high resolution) . . . difficult calculations

Alternative: Calculation of pair density at low resolution . .

— Start with calculation of nuclear matter in MBPT:
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Evolved Operators in Many-Body Perturbation Theory

Rewrite unitary transformation in 2™ quantization:

-~ 1 _ _ _ _
Uy = 1+§ [U,\ (k12k2’ k32k4) _s (k12k2’ k32k4)] 8 (ki + ko, ks + ka) aLaLanakﬁ- ..

Example:

@ Apply to 1-body operator for momentum distribution 0= a};aq:
o~ o~ /\T _ i i o
U\oU, — alaq—aga;ra,-aq+u>‘ (h2—k2, '—2‘1 )a,tl a/tzak‘;ak;; U;f\ (’_2‘17 ﬁ2_ki)+ ..

@ Apply to 2-body pair density operator 0= aL/2+qaTP/z_qap/g_qap/ngq:

P/2+q P/2-q P/2+K  P/2-K

Uy

—_—

0,00} =

Ux (45, 29) 8], al, ak ks U] (20, 95) + -+

P/2+q P/2-q P/2+k P/2-k

—— Implement perturbative expansion at small A\ = 1.8 — 3.0fm™?

Work done with K. Hebeler
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SRG Evolution of Operators in Nuclear Matter

[ T T T T T 10 T T T T T T
: PRELIMINARY | PRELIMINARY
r with operator B
0.0001 ¥ evolution — = gk with operator _|
N evolution
T
= : I
N g o 1
= le-06( 1 ¢
= o
nIL A no operator
= o 4 evolution —
v £ ?,h — 1
1e-08] 1 A=18fm
2 ol A=20fm B
—A=25fm’
5 o E o A=30fm"
Y . S S N YR I I B
5= 25 3 35 4 95 " 2 2s 3 a8 s
qlm’] q ffm’]

Using AV18 potential
o Pair-densities are approximately resolution independent
o Enhancement of np over nn pairs due to tensor force

@ In progress: Calculation of a; in MBPT and HFB
Work done with K. Hebeler
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SRG Evolution of Operators in Nuclear Matter

I T T T T T 10 1 T T T T
: PRELIMINARY o/ PRELIMINARY ]
r with operator L " 4
0.0001 ¥ evolution T = 8- with tensor |
ARl interaction 7]
T 7- B
- s f ]
A g g o 7
T 1e-06 4 ¢ b 1
N Y 5 ]
A N no tensor ]
= = 4 interaction _
v E = i ]
£ ] |
1e-08- 1 e 3
=1
Vo2
F Y . 1 i
ol e e L.
lelfs— 25 3 35 4 95 2 " a2s 1 35 4
qfm’] q ffm]

Using AV18 potential
o Pair-densities are approximately resolution independent
o Enhancement of np over nn pairs due to tensor force

@ In progress: Calculation of a; in MBPT and HFB
Work done with K. Hebeler
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Reproduction of Short-distance Physics

0.02— . . . .
I k=1.05fm", 2=1.8 fm"
0.018F | f b
| ——k=1.05fm", 2=2.0 fm"
0.016f g
'\ ~ - k=135 fm, A=1.8 fm”
0.0141 T k=135 fm", A=2.0 fm”" ||
1
|

Ratios of perturbative nuclear matter momentum distributions at densities of
ke =1.05 fm~! and kf =1.35 fm~ ! for A\=1.8 fm~! and A =2.0fm™ !, as
specified, over ab-initio calculation of the deuteron.

Plateaus demonstrate the reproduction of high-momentum behavior in
perturbative calculation of nuclear matter momentum distribution.
Preliminary Calculation: proper normalization needed
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© Factorization in the SRG
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Numerical Factorization in SRG

Idea: If k < X\ and g > A\ = factorization: U, (k,q) = K\(k)Q:\(q)

@ A preliminary test of factorization in U @ Singular Value Decomposition (SVD)
can be made by assuming

— tool to quantitatively analyze the
extent to which U factorizes

Ux(ki, q) N K (ki) @x(q)

R — The SVD can be expressed as an
Ux(ko,q)  Ki(ko)Qx(q)

outer product expansion
Ka(ki) -
so for g > \ = K)\(ko),nfk<>\. . r it
@ As shown below, one can infer this = Z iuivi
behavior from the plateaus for !
q 2 2fm~1 when k; < A
10

where r is the rank and the d; are the

singular values (in order of decreasing
value).

_ @ Evidence: Shown below at A = 2fm~1,
< for g > X and k < A
X
=1 Tsy
= ! Potential a7 d, a5
> AV1g 0.763 | 0.033 | 0.007
S N3LO 500 MeV 1423 | 0221 | 0.015
N3LO 550/600 MeV | 3.074 | 0.380 | 0.061
351_351
AV 0.671 | 0.015 | 0.008
04 N3LO 500 MeV 1873 | 0.225 | 0.044
N3LO 550/600 MeV | 4.195 | 0.587 | 0.089
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@ Motivation: Now, construct transformation directly:

The Operator Product Expansion Us (k _ Kl )
(OPE) of the nonrelativistic wave Ak ) Z< va) (bala)

function (Lepage)

ow A
Wire(r) = 7(,)/(1,/ Ve da(r') - [;<klw3>/o p*dp Z(\V3(p)

(e /dr'\lfefrvzﬁa(r’)—l-(?(a“) [= Uik, 9) = Kn(K)Q:(9) ]

(o7

7*(q)

.. . If Kk < X\ and g > )\ — factorization
Similarly, in momentum space

@ Moreover, since ¥ (p) is suppressed for

U (q) ~ A(q)/ p2dp Z(\) W (p) p > A, we can extend the sum to the
full space and apply closure to find that

Un(k,
+n*(q)/0 p*dp p® Z(\) W) (p) (ko a)

A oo
— v*(g) and 1*(q) can be - Z()\)/ dﬁz <k|¢é> <¢2|P>:| Y(q)
constructed by projecting the SRG 0 «
evolved nuclear potential in ~Z(\)y(q)
momentum subspace to recover OPE
via standard effective interaction Thus, the ratio 3*((;:”'7)) — 1 to leading
methods order in the factorization region . . . as

seen in the previous slide!
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Practical Use

@ From Decoupling: write
(Al UAO U] o) =

A [ A torpt ’ A
/0 dk /0 dq /0 da “dk | (K)Un(K',4")O(d' . @)Un (4. K)o ()
@ Using Factorization: set U, (k, g) — K (k)Qx(q), where k < X and g > A

(k)

PNIPON PUIPON
= [ [ vl [ [ 0,000 0)Us (6. ) oo Kk ) Ko ()
Low Momentum Structure
where Iqoq = [{7dq’ [{"dq [Qx(q/)a(Q’,Q)Qx(Q)} < Universal

— Valid when initial operators weakly couple high and low momentum, e.g.,

Gc(g = 3.02fm™1) agaq(q =3.02fm™1)
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Factorization in Few-Body Nuclei

@ Variational Monte Carlo Calculation @ 1D few-body HO space calculation

_ Using AV14 NN potential — System of A bosons interacting via a
g P model potential

10' " 10° . . . . :
y —— 2-body NN-only
—— 3-body NN-only
10k —— 4-body NN-only ||
1
. 107}
o
£ < |
< g0
o =
Z
10*F
1
107 10°F
107 10° . . . . .
o 2 BN 4 s 0 2 4 6 8 10 12
p(fm™) k
From Pieper, Wiringa, and Pandharipande (1992). — A Test Bed for 3D NCSM calculations:

@ Possible explanation of scaling behavior

— Results from dominance of NN
potential and short-range correlations

(Frankfurt, et al.) f())\f())\ 1/’;("/) [laoq K (k") Kx (k)] 1x (k)

@ Alternative explanation of scaling behavior
— Results from factorization
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Factorization in Few-Body Nuclei

@ Variational Monte Carlo Calculation @ 1D few-body HO space calculation

—» Using AV14 NN potential — System of A bosons interacting via a

model potential

10' T 10’ - - : : :
; —— 2-body NN-only
—— 3-body NN-only
10" 4-body NN-only 4
* PHQ 2-body NN-only =2
+ PHQ 3-body NN-only 2A=2|

102} + PHQ 4-body NN-only A=2]
—
£ <
g 210 3
a =
Z
10*F
1
107 10°F
107 10° . L . . .
0 2 1, 3 4 5 0 2 4 6 8 10 12
p(fm™) k
From Pieper, Wiringa, and Pandharipande (1992). —s A Test Bed for 3D NCSM calculations:

© Possible explanation of scaling behavior @ Alternative explanation of scaling behavior

— Results from dominance of NN
potential and short-range correlations

(Frankfurt, et al.) f())\f())\ 1/’;("/) [laoq K (k") Kx (k)] 1x (k)
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Momentum Distributions atN . =40
10 T T T T

A=3, 2-body only A=<
=3, Scaled 2-body only 2=2.0

.
o A

20

@ Exact operator evolution and embedding: A=3 boson 1D model system
momentum distributions

@ Indication of factorization in many-particle space:
PN XA A A
T ’ T 1ot
{7 et Towmaw]ox+ [ 77 [7 0] [kad, k)Rt )] 9 + -} laoo

@ In progress: Exploration of formal basis for n-body factorization
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Momentum Distributions atN . =40

10 ‘ ‘ ‘ . ‘ ‘ .
+ A=4, 2-body only A=
P ©  A=4, Scaled 2-body only A=2.0
0L #7%| - A4, Scaled 2+3-body only 2=2.0
E
FI
10'E Sy RAT k|
s 7
B
107k 4
=
g ; kY

3 ¥ o

10°) & ‘7&@* 4
K '
Vf *

. & 7,

10') R XN i
E Y
& W,
xe o
10° 5f %3 E
&8 XA
; X
P 3%

. P A
10 : ‘ ‘ . ‘ ‘ :

220 a5 10 5 0 5 10 15 20

p

@ Exact operator evolution and embedding: A=4 boson 1D model system
momentum distributions

@ Indication of factorization in many-particle space:
PN XA A A
T ’ T 1ot
{7 et Towmaw]ox+ [ 77 [7 0] [kad, k)Rt )] 9 + -} laoo

@ In progress: Exploration of formal basis for n-body factorization
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High-momentum tails from low-momentum ET's

S.K. Bogner & D. Roscher [arXiv:1208.1734]

Generalization of factorization to arbitrary A-body systems at low-momentum:

n(q) = ZX (@A) D (Waalak ,ak
k,k/ K

A
§+k'3§—k'|wa,A )
— Can be shown for other operators

Example: Unitary Fermi gas

@ Reproduction of contact Tan relation a la Braaten & Platter [2008]:

Z2 g?(A\ C(N
n(q) ~ 2EN S ol ox o i) = S5
q K,k K 2" q*
@ Static structure factor
2 1 A 1 1
PORINY (P B Z2 C(A = ) ¢c(A
su(a) (ng(/\) T8 g ) ) — <8q 27raq2> Cho)

— Analogous relations reproduced for electron gas <—
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Short Range Correlations and the EMC effect

@ Deep inelastic scattering ratio at x
Q> >2GeV’and 035 < x5 <07 O
and inelastic scattering at Q04
]
14
2

b | %2/ ndf 0.7688 /3

a -0.07879+0.006376

Q*>1.4GeV?and 1.5 < xg < 2.0

@ Strong linear correlation between
slope of ratio of DIS cross sections
(nucleus A vs. deuterium) and
nuclear scaling ratio

@ SRG Factorization at leading order:
— Dependence on high-q
is independent of A
— A-dependence from low
momentum matrix element 0 2 4 6
independent of operator az(AI d)
L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

@ Why should A-dependence of nuclear scaling a> and the EMC effect be
the same?
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EFT approach to EMC Effect

Chen & Detmold [Phys. Lett. B 625, 165 (2005)]
The ratio relevant to the EMC effect is given by
Ra(x) = F3'(x)/AFY(x) where the structure functions F3' = Z Q2xqf(x)
i

@ In the EFT treatment: match leading-order nucleon operators to isoscalar
twist-two quark operators

% ﬁ = (x") VIO vFONTN[L + ap NTN] + - -

Implies: Ra(x) = AF,_E’:AEX) =1+ gra(x)G(A) where G(A) = (A|(NTN)2|A) /AN

So, % scales with G(A)

@ Connection to SRG Factorization:
— Both imply factorization of long- and short-distance contributions

looq <= gr2(x)

IS AT TR (K ) Ka ()] w4

oI L TR (K KA (k)] o

*x% K, (k) ~ constant] <= §(r) <= (A|(NTN)?|A) ***

— In Progress: quantitative calculation of A-dependence from SRG

= G(A)
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O Conclusions
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Conclusions

Summary:

&

SRG provides a means to lower the resolution needed in nuclear interactions,
thereby reducing the computational difficulty of the nuclear many-body problem

@ Many-body operators can be consistently evolved and extracted in SRG
@ MBPT calculation of nuclear momentum distribution.
@ Formal and numerical foundation for factorization of unitary transformation.
@ Demonstration of factorization in many-body systems.
@ Factorization greater understanding of separation of scales in nuclear systems
@ A-dependence of nuclear scaling and the EMC effect from long-distance
Outlook:
@ Quantitative calculation of nuclear scaling ay via factorization
— MBPT with LDA
- HFB
@ Calculations in 3D in harmonic oscillator basis
@ Explore other operators (e.g., electroweak) in 3D harmonic oscillator basis
— utilize factorization
@ Continue to explore generalization of factorization in 3-particle space
@ Inclusion of higher-order effects via factorization
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The End
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