

Joseph Wasem, Michael Buchoff, Tom Luu Lawrence Livermore National Laboratory

Omega Baryon Interactions with Lattice QCD

LLNL-PRES-533073

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Omega Physics

- Experiments beginning to probe hyperon physics
- Omega physics least understood
- Model calcs disagree:

 $\Delta E_{\Omega\Omega} = 43 \pm 18 \text{ MeV}$ (Quark Disloc./Color Screening Model) F. Wang, J.-I. Ping, G.-h. Wu, L.-j. Teng, and J. T. Goldman, Phys. Rev. C51, 3411 (1995), nucl-th/9512014.

 $\Delta E_{\Omega\Omega} = -116 \,\text{MeV}$ (SU(3) Chiral Quark Model)

Z. Y. Zhang, Y. W. Yu, C. R. Ching, T. H. Ho, and Z.-D. Lu, Phys. Rev. C61, 065204 (2000).

 Lattice QCD can provide model-independent resolution to this question!

Steps to a Lattice Omega

- **1**. Gauge Configurations
- 2. Propagator Generation
- 3. Quark Contractions

Strange Quarks in Lattice QCD

- Omega are strange.....
- Purely strange particles easier to deal with...
 - Heavier mass => Faster inversions
 - More measurements
 ...leading to cleaner
 signals (at a given level
 of computing power).
 - Cost is scalable to physical point

Lattice Details

Gauge Configurations

- Anisotropic, Jlab parameters
- 20³×256 [(2.5 fm)³×9.2 fm]
- 32³×256 [(3.9 fm)³×9.2 fm]
- m_π~390 MeV
- Propagator Generation/Contractions
 - GPUs, Thanks to BU Group & Balint Joo
 - 55k on 20³
 - 12k on 32³

Omega Interpolators

1. Single Omega

- Choice of Spin Indices
- Lattice Symmetries...

2. Two Omega

- Allowed combinations of single omegas
- S=0 & S=2
- Excited States
- Combine carefully...

Lattice Symmetry

 Discretization breaks O(3) symmetry to octahedral subgroup

$\Gamma \ (L \neq \infty)$	$J \ (L = \infty)$
A_1^+	0
T_1^-	1
E^+	2
T_2^+	2
G_1^+	$\frac{1}{2}$
H^+	$\frac{3}{2}$

Lattice Symmetry

 Discretization breaks O(3) symmetry to octahedral subgroup

- Different linear combinations of Ω_{αβγ} are in different irreps/embeddings/rows
 - S. Basak et al., Phys. Rev. D72, 074501.

Lattice Symmetry

$\overline{\Psi}^{\Lambda,k}_{S,S_z}$	$\overline{\Delta}_{\mu_1\mu_2\mu_3}$
$\overline{\Psi}^{G_{1g},1}_{\frac{1}{2},\frac{1}{2}}$	$\overline{\Delta}_{134} - \overline{\Delta}_{233}$
$\overline{\Psi}^{G_{1\tilde{g}},1}_{\frac{1}{2},-\frac{1}{2}}$	$\overline{\Delta}_{144} - \overline{\Delta}_{234}$
$\overline{\Psi}^{\bar{H}_g,1}_{\frac{3}{2},\frac{3}{2}}$	$\overline{\Delta}_{111}$
$\overline{\Psi}_{\frac{3}{2},\frac{1}{2}}^{\tilde{H}_{g},1}$	$\sqrt{3} \ \overline{\Delta}_{112}$
$\overline{\Psi}_{\frac{3}{2},-\frac{1}{2}}^{\tilde{H}_{g},1}$	$\sqrt{3} \overline{\Delta}_{122}$
$\overline{\Psi}_{\frac{3}{2},-\frac{3}{2}}^{\hat{H}_{g},1^{2}}$	$\overline{\Delta}_{222}$
$\overline{\Psi}^{H_g,2}_{\frac{3}{2},\frac{3}{2}}$	$\sqrt{3} \overline{\Delta}_{133}$
$\overline{\Psi}_{\frac{3}{2},\frac{1}{2}}^{\tilde{H}_{g},2}$	$2\overline{\Delta}_{134} + \overline{\Delta}_{233}$
$\overline{\Psi}_{\frac{3}{2},-\frac{1}{2}}^{\hat{H}_{g},2}$	$\overline{\Delta}_{144} + 2\overline{\Delta}_{234}$
$\overline{\Psi}_{\frac{3}{2},-\frac{3}{2}}^{\hat{H}_{g},2^{2}}$	$\sqrt{3} \ \overline{\Delta}_{244}$

- Different linear combinations of Ω_{αβγ} are in different irreps/embeddings/rows
 - S. Basak et al., Phys. Rev. D72, 074501.

Correlation Functions

After spatial sum, and irrep choice:

$$C_{\Omega}(t) = \sum_{x} \left\langle \Omega_{\alpha\beta\gamma}(x,t) \left| \Omega_{\alpha\beta\gamma}(0,0) \right\rangle = \sum_{n} \left| \left\langle n \left| \Omega_{\alpha\beta\gamma} \right| 0 \right\rangle \right|^{2} e^{-E_{\Omega}t}$$

$$\xrightarrow{t \to \infty} \left| \left\langle \Omega \left| \Omega_{\alpha\beta\gamma} \right| 0 \right\rangle \right|^{2} e^{-E_{\Omega}t}$$

$$C_{\Omega\Omega}(t) = \sum_{x} \left\langle \Omega_{\alpha\beta\gamma}(x,t) \Omega_{\delta\eta\lambda}(x,t) \left| \Omega_{\alpha\beta\gamma}(0,0) \Omega_{\delta\eta\lambda}(0,0) \right\rangle = \sum_{n} \left| \left\langle n \left| \Omega_{\alpha\beta\gamma} \Omega_{\delta\eta\lambda} \right| 0 \right\rangle \right|^{2} e^{-E_{\Omega\Omega}t}$$

$$\xrightarrow{t \to \infty} \left| \left\langle \Omega\Omega \left| \Omega_{\alpha\beta\gamma} \Omega_{\delta\eta\lambda} \right| 0 \right\rangle \right|^{2} e^{-E_{\Omega\Omega}t}$$

• Energy levels extracted using $E = \log \left[\frac{C(t)}{C(t+1)} \right]_{t \to \infty}$

H⁺ Embeddings (Single Ω)

- Choice of embedding combo
 - E1-e1, e1-e2, e2-e1, e2-e2
- E2-e2 is very different
 - Pure Shell-Shell shows significant difference
 - Matrix-Prony on SS/SP also
- Can significantly affect plateau extraction

H⁺ Lattice Data (Single Ω)

- Sub-1% extraction
- Sub-1% Volume effects
- Long plateaus
- χ² of 1.003 & 0.85,
 respectively

H⁺ Lattice Data (Single Ω)

NPLOCD, Phys.Rev. D84 (2011) 014507

$E^+ \& T_2^+$ Lattice Data (Two Ω)

A_1^+ Lattice Data (Two Ω)

A_1^+ Lattice Data (Two Ω)

Lattice Data

Irrep	Lattice Size	$a_t E$	$\sigma_{E,stat.}$	$\sigma_{E,sys.}$	$\chi^2/{ m dof}$	Q	$a_t \Delta E$	$\sigma_{\Delta E,stat.}$
H^+	$20^3 \times 256$	0.291501	0.000457	$+0.000099 \\ -0.000268$	1.003	0.460		
	$32^3 \times 256$	0.290001	0.000804	$+0.000418 \\ -0.000001$	0.850	0.708		
A_1^+	$20^3 \times 256$	0.586235	0.000843	$+0.000091 \\ -0.000348$	1.105	0.327	0.00323	0.00124
	$32^3 \times 256$	0.583224	0.002002	$+0.000577 \\ -0.000680$	1.086	0.350	0.00322	0.00257
T_2^+	$20^3 \times 256$	0.642961	0.007136	$^{+0.002502}_{-0.005120}$	0.925	0.514	0.05996	0.00719
E^+	$20^3 \times 256$	0.67256	0.00293	$^{+0.00013}_{-0.00329}$	0.500	0.916	0.08956	0.00307

- Ω mass ~1640 MeV
- $\Omega \Omega$ energy > 2x Ω mass
 - Scattering state, not bound

Scattering on the Lattice

- In Euclidean space, LSZ holds only at kinematic thresholds
- Solution lies at finite volume....

Scattering on the Lattice

- In Euclidean space, LSZ holds only at kinematic thresholds
- Solution lies at finite volume....
-where continuum scattering states become discrete energy levels.

F

Two Particle

Discrete Scattering States

Scattering at Finite Volume

A₁⁺ Scattering

A₁⁺ Scattering

- k² is only quantity that is Gaussian
- Pick 10k random pairs from k² distributions
- Determine kcotδ
- Fit to effective range expansion

A₁⁺ Scattering

$$k \cdot \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

- r distribution absorbs higher orders
 - α distribution is Lorentzian

 $a_{S=0}^{\Omega\Omega} = 0.16 \pm 0.22 \,\mathrm{fm}$

Toward the Physical Point

- Light quark dependence expected to be small
- Currently taking measurements at m_π~230 MeV
- Sequoia is generating 64³×128 isotropic physical point lattices

Conclusions

- Results indicate a weakly repulsive system.
- $a_{S=0}^{\Omega\Omega} = 0.16 \pm 0.22 \, \text{fm} \text{ at } m_{\pi} \sim 390 \, \text{MeV}$
- Light quark dependence (small)
 - Running now with m_{π} ~230 MeV
 - Physical point lattices running now on Sequoia
- Contrast with other lattice hyperon results that are bound states.
 - May just reflect smaller influence of light quark dynamics
- Phys.Rev. D85 (2012) 094511
- arXiv:1201.3596 [hep-lat]