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I am having fun with my own faith, while 
making a serious point



Light quark mass dependence of the baryon 
spectrum

Light-quark mass dependence of QCD:

Hadron Electromagnetic Polarizabilities from 
Lattice QCD
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This heralded the paradigm change in the relation between lattice QCD 
and effective field theory at least for simple quantities
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Light quark mass dependence of MB

Chiral perturbation theory (       ) provides a complete 
(but non predictive) description of low-energy QCD

The chiral logarithms (non-analytic dependence upon the 
light quark masses) are the “predictions” of          as they 
encode long-range IR physics not contained in local 
operators 

χPT

For some (small) values of mq,          should provide a 
precise and accurate description of low energy hadronic 
phenomena

χPT

χPT

confidence in our understanding requires evidence of the 
chiral logarithms from lattice QCD
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Heavy Baryon Chiral Perturbation Theory (               )HBχPT
E. Jenkins and A. Manohar  PLB 255 (1991)

+2gAN̄S · AN + 2g∆∆T̄µS · ATµ + g∆N

�
T̄µAµN + N̄AµTµ

�
L = N̄iv · ∂N + 2αM N̄Ntr(M+)− T̄µ [iv · ∂ −∆0]Tµ − 2γ̄M T̄µTµtr(M+)

Expand about the static heavy baryon limit

∆0 = M∆ −MN

���
mq=0

∆ � 290 MeVphenomenologically
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mass, σmB [mq], taking their central values from tables II, III, VI and VII respectively.6 To construct this list of
global χ2 functions, as can be seen with Eq. (22), it is essential to have an equal number of bootstrap samples on the
different quark mass ensembles, precluding the use of the jackknife method, at least with our sets of ensembles.

The advantages of this method then follow naturally. Because the baryon masses on the different quark mass
ensembles are statistically independent, this amounts to adding independent noise, weighted by the statistical error
σmB [mq], to the central value of a given baryon mass on each of the different quark mass ensembles, mimicking a well
known method of handling fits with highly correlated parameters. We note that for our calculations, the bootstrap
samples appear Gaussian distributed about the mean. Furthermore, the correlations among the different baryon
masses on a given quark mass ensemble are automatically taken into account by use of the bootstrap distributions.
Therefore, by minimizing each of the Nbs entries in the global χ2[bs] list, we generate a bootstrap list of the fit
parameters, or the determined LECs, {λi[bs]}.7 Using the bootstrap error analysis, we can then make predictions for
the resulting LECs, as well as the extrapolated baryon masses, which accounts both for the correlations among the
ensembles at a given quark mass as well the correlations among the LECs from the minimization procedure,

λi = λi0 ± σλi , λi0 =
1

Nbs

Nbs∑

bs

λi[bs], σλi =

√√√√ 1
Nbs − 1

Nbs∑

bs

(λi[bs] − λi0)
2, (23)

and

mB = mB0 ± σmB , mB0 = g(mB : fphys
π , mphys

π , mphys
K , . . . , λi0),

σmB =

√√√√ 1
Nbs − 1

Nbs∑

bs

(
mB0 − g(mB : fphys

π , mphys
π , mphys

K , . . . , λi[bs])
)2

. (24)

To perform the minimization, we use both Mathematica and MINUIT.

B. Two flavor chiral extrapolations

In this section, we perform two-flavor chiral extrapolations of our nucleon and delta mass results. From the point
of view of testing predictions from HBχPT, i.e. looking for non-analytic chiral behavior, one would ultimately like to
determine values of gA, g∆∆ and g∆N directly from the nucleon and delta mass extrapolations. These LECs represent
the leading order (LO) axial charges of the nucleon, delta and nucleon-delta transitions. The leading virtual pion
cloud contributions to the nucleon and delta masses are proportional to these couplings, contributing at NLO. For
example, the nucleon mass takes the following form at NLO

MN = M0 − 2αM (µ)m2
π − 3πg2

A

(4πfπ)2
m3

π − 8g2
∆N

3(4πfπ)2
F(mπ, ∆, µ) , (25)

with

F(m, ∆, µ) = (∆2 − m2 + iε)3/2 ln

(
∆ +

√
∆2 − m2 + iε

∆ −
√

∆2 − m2 + iε

)
− 3

2
∆ m2 ln

(
m2

µ2

)
− ∆3 ln

(
4∆2

m2

)
. (26)

However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
inconsistent with our knowledge of these LECs from either phenomenology or from lattice QCD.8 In large part, this
can be understood from the observation that our lattice data of the nucleon mass are well approximated by Eq. (17),
MN = αN

0 + αN
1 mπ (see Table VIII and Figure 9 for more details). Therefore, in order for the SU(2) HBχPT

nucleon mass expression to fit our lattice results, the different orders in the heavy baryon expansion of MN , which
is a polynomial series in mπ beginning at O(m2

π) and supplemented by chiral logarithms, must conspire to form this

6 The inclusion of these fluctuations amounts to an error on the error, which is beyond our consideration here.
7 We could also generate the bootstrap list of the error correlation matrix, but this would also amount to an error on the error, so we

only retain the central values of this matrix.
8 The use of the mixed action expression for the nucleon mass at this order [31], supplemented by the known valence-sea meson mass

splitting [36] does not qualitatively change this conclusion. See Table VIII for details.
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However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
inconsistent with our knowledge of these LECs from either phenomenology or from lattice QCD.8 In large part, this
can be understood from the observation that our lattice data of the nucleon mass are well approximated by Eq. (17),
MN = αN

0 + αN
1 mπ (see Table VIII and Figure 9 for more details). Therefore, in order for the SU(2) HBχPT

nucleon mass expression to fit our lattice results, the different orders in the heavy baryon expansion of MN , which
is a polynomial series in mπ beginning at O(m2

π) and supplemented by chiral logarithms, must conspire to form this

6 The inclusion of these fluctuations amounts to an error on the error, which is beyond our consideration here.
7 We could also generate the bootstrap list of the error correlation matrix, but this would also amount to an error on the error, so we

only retain the central values of this matrix.
8 The use of the mixed action expression for the nucleon mass at this order [31], supplemented by the known valence-sea meson mass

splitting [36] does not qualitatively change this conclusion. See Table VIII for details.

−iΣ = + + + ...
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−iΣ = + + + ...

m3
π ∼ m3/2

q leading non-analytic chiral behavior

renders the chiral expansion less convergent 
(than for mesons)
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I am not advocating this as 
a good model for QCD!
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What does this teach us?

For these pion masses, there is a strong cancelation 
between LO, NLO and NNLO           contributions χPT

perhaps should have been expected given poor 
convergence (but just not a straight line!!!)
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What if we consider the octet and decuplet in the three flavor 
theory?

MN = M0 + απ
Nm2

π + αK
Nm2

K

− 1

16π2f2

�
3π(D + F )2m3

π +
π

3
(D − 3F )2m3

η

+
2π

3
(5D2 − 6DF + 9F 2)m3

K

+
8

3
F(mπ,∆, µ) +

2

3
F(mK ,∆, µ)

�

Possible convergence is significantly challenged (fails) by kaon and 
eta loops

LHP Collaboration arXiv:0806.4549
PACS-CS Collaboration arXiv:0905.0962
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NLO SU(3) chiral fits to spectrum are not consistent with 
phenomenological values of D, F

figures: Jenkins, Manohar, Negele and AWL arXiv:0907.0529

D ∼ 0.75, F ∼ 0.50
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MN = α0 + α1mπ
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MN = α0 + α1mπ

= 938± 9 MeV

Physical point NOT included in fit

α0 = 802± 13 MeV
α1 = 0.99± 0.03



Light quark mass dependence of MB

What is the status now (2012)?

Collaboration uses Overlap Valence fermions on 
Domain-Wall (RBC-UKQCD) sea fermions

χQCD

MN = α0 + α1mπ

= 938± 9 MeV



Light quark mass dependence of MB

What is the status now (2012)?

RBC-UKQCD Collaboration uses Domain-Wall valence 
and sea fermions

MN = α0 + α1mπ

= 938± 9 MeV



Light quark mass dependence of MB

What is the status now (2012)?

etm Collaboration uses twisted-mass valence and sea 
fermions

MN = α0 + α1mπ

= 938± 9 MeV
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Taking this seriously yields 

MN = α0 + α1mπ

= 938± 9 MeV

σπN = 67± 4 MeV

mπ � 174 MeV

mπ � 758 MeV



Light quark mass dependence of MB

What is the status now (2012)?

Taking this seriously yields 

MN = α0 + α1mπ

= 938± 9 MeV

σπN = 67± 4 MeV

mπ � 174 MeV

mπ � 758 MeV

I am not advocating this as 
a good model for QCD!
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particles has an off-diagonal Goldberger-Treiman relation
[22–24], obtained by using similar logic:

2MCA
5 ðtÞ ¼ f!G!N!ðtÞ; (2)

where CA
5 is the Adler form factor [25,26], accessible in

neutrino-nucleon interactions.
The present Letter develops a method that satisfies

momentum conservation, utilizes Eq. (1), and involves
only on-mass-shell nucleons. The key to removing ambi-
guities lies in evaluating the relevant Feynman diagrams by
carrying out the integration over the four-momentum k by
first integrating over k$ (the light-front energy) in such a
way that the intermediate baryon is projected onto its mass
shell. This allows the use of the on-mass-shell form factors
Eqs. (1) and (2) and is manifestly consistent with charge
and momentum conservation.

Consider the contribution to the nucleon self-energy
"!ðNÞ, involving an intermediate nucleon [Fig. 1(a)],
given by Feynman rules as

"!ðNÞ¼$i3g2!N #uðPÞ
Z d4k

ð2!Þ4

% "5ð 6p$ 6kþMÞ"5

ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$(uðPÞF
2ðk2Þ;

(3)

where M and # are the nucleon and pion masses, res-
pectively. The quantity P represents the nucleon momen-
tum and spin, (p, s), evaluated in the proton rest frame.
We use the notation G!NðtÞ ) g!NFðtÞ ¼ M

f!
GAðtÞ,

with GAð0Þ ¼ 1:267* 0:04, M ¼ 0:939 GeV, f! ¼
92:6 MeV, and g!N ) G!Nð0Þ ¼ 13:2 with Fð0Þ ¼ 1.
The term Fðk2Þ represents the pion-nucleon form factor.
Its dependence on a single variable is justified only if
the pionic vertex function appears between two on-mass-
shell nucleons. In that case, one may use a dispersion
relation:

Fðk2Þ ¼ 1

!

Z 1

ð3m!Þ2
dt0 Im½Fðt0Þ(=ðk2 $ t0Þ: (4)

Performing the spin average of Eq. (3) leads to the result

"!ðNÞ¼3g2!N
M

Z d4kF2ðk2Þ
ið2!Þ4

% k +p
ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$( : (5)

We evaluate "!ðNÞ by using light-front coordinates:

k* ) k0 * k3, k2 ¼ kþk$ $ k2?. Thus "!ðNÞ ¼ 3g2!N
M %R

dkþd2k?J, with

J ¼ 1

ið2!Þ4
1

2

Z
dk$F2ðk2Þ

% k + p
kþðp$ kÞþðk$ $ k2?þ#2$i$

kþ Þ½ðp$ kÞ$ $ k2?þM2$i$

pþ$kþ (
:

(6)

The expression Eq. (4) for Fðk2Þ is not written explicitly
here, because the analytic structure is the same as that of
1=ðk2 $#2 þ i$Þ. If 0< kþ < pþ, the first pole in k$ is in
the lower half k$ plane (LHP) [as are the ones arising from
Fðk2Þ], and the intermediate nucleon pole is in the upper
half plane. We integrate over the upper half plane, so that
the only pole we need to consider is the one in which the
intermediate nucleon is on its mass shell and the momen-
tum k is spacelike. For kþ < 0 and kþ > pþ, all of the
poles are on the same side of the real axis, and one obtains
0. We take the residue of the integral for which the nucleon

is on-shell so that k$ ¼ p$ $ M2þk2?
pþ$kþ . Using the residue

theorem and integrating over kþ leads to the result

"!ðNÞ ¼ $3g2!N
!

8Mð2!Þ3
Z 1

0
dt

tF2ð$tÞ
ðtþ#2Þ

%
!
$ t

M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

M4 þ
4t

M2

s #
: (7)

This result is obtained by using the pseudoscalar form of
!N coupling in Eq. (3), but the use of pseudovector
coupling would give the same result, because the inter-
mediate nucleon is on its mass shell.
To proceed, we use a specific form of the form factor F,

the commonly used dipole parametrization

FðQ2Þ ¼ 1=½1þ ðQ2=M2
AÞ(2; (8)

with MA as the so-called axial mass. The values of MA are
given byMA ¼ 1:03* 0:04 GeV as reviewed in Ref. [21].
This range is consistent with the one reported in a later
review [27]. A somewhat lower value (0.85 GeV) is ob-
tained [28] if one restricts the extraction region to very low
values ofQ2, but we need higher values to evaluate Eq. (7).
Using this dipole parameterized form factor F gives

"!ðNÞ ¼ $3Mg2!N
!

4ð2!Þ3
1

6ð4b $ 1Þ5=2ða$ bÞ4
$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4$ bÞb
p %

ða$ bÞ2½aðb$ 10Þ þ 2ðb$ 1Þb( $ 3a2ðb$ 4Þ2b log
!
b

a

#&

þ 6f4a3 þ a2ðb$ 6Þb½ðb$ 4Þbþ 6( $ 2ab2½ðb$ 10Þbþ 18( $ 2ðb$ 2Þb3gtan$1

! ffiffiffiffiffiffiffiffiffiffiffiffi
4

b
$ 1

s #
þ 6abðb$ 4Þ2

%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða$ 4Þaðb$ 4Þb

p
tan$1

! ffiffiffiffiffiffiffiffiffiffiffiffi
4

a
$ 1

s #'
; a ) #2=M2; b ) M2

A=M
2: (9)
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To evaluate integral, used light cone coordinates
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This allows one to pick the contour such that the intermediate 
nucleon (delta) is on shell - simplifying the numerator structure

particles has an off-diagonal Goldberger-Treiman relation
[22–24], obtained by using similar logic:

2MCA
5 ðtÞ ¼ f!G!N!ðtÞ; (2)

where CA
5 is the Adler form factor [25,26], accessible in

neutrino-nucleon interactions.
The present Letter develops a method that satisfies

momentum conservation, utilizes Eq. (1), and involves
only on-mass-shell nucleons. The key to removing ambi-
guities lies in evaluating the relevant Feynman diagrams by
carrying out the integration over the four-momentum k by
first integrating over k$ (the light-front energy) in such a
way that the intermediate baryon is projected onto its mass
shell. This allows the use of the on-mass-shell form factors
Eqs. (1) and (2) and is manifestly consistent with charge
and momentum conservation.

Consider the contribution to the nucleon self-energy
"!ðNÞ, involving an intermediate nucleon [Fig. 1(a)],
given by Feynman rules as

"!ðNÞ¼$i3g2!N #uðPÞ
Z d4k

ð2!Þ4

% "5ð 6p$ 6kþMÞ"5

ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$(uðPÞF
2ðk2Þ;

(3)

where M and # are the nucleon and pion masses, res-
pectively. The quantity P represents the nucleon momen-
tum and spin, (p, s), evaluated in the proton rest frame.
We use the notation G!NðtÞ ) g!NFðtÞ ¼ M

f!
GAðtÞ,

with GAð0Þ ¼ 1:267* 0:04, M ¼ 0:939 GeV, f! ¼
92:6 MeV, and g!N ) G!Nð0Þ ¼ 13:2 with Fð0Þ ¼ 1.
The term Fðk2Þ represents the pion-nucleon form factor.
Its dependence on a single variable is justified only if
the pionic vertex function appears between two on-mass-
shell nucleons. In that case, one may use a dispersion
relation:

Fðk2Þ ¼ 1

!

Z 1

ð3m!Þ2
dt0 Im½Fðt0Þ(=ðk2 $ t0Þ: (4)

Performing the spin average of Eq. (3) leads to the result

"!ðNÞ¼3g2!N
M

Z d4kF2ðk2Þ
ið2!Þ4

% k +p
ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$( : (5)

We evaluate "!ðNÞ by using light-front coordinates:

k* ) k0 * k3, k2 ¼ kþk$ $ k2?. Thus "!ðNÞ ¼ 3g2!N
M %R

dkþd2k?J, with

J ¼ 1

ið2!Þ4
1

2

Z
dk$F2ðk2Þ

% k + p
kþðp$ kÞþðk$ $ k2?þ#2$i$

kþ Þ½ðp$ kÞ$ $ k2?þM2$i$

pþ$kþ (
:

(6)

The expression Eq. (4) for Fðk2Þ is not written explicitly
here, because the analytic structure is the same as that of
1=ðk2 $#2 þ i$Þ. If 0< kþ < pþ, the first pole in k$ is in
the lower half k$ plane (LHP) [as are the ones arising from
Fðk2Þ], and the intermediate nucleon pole is in the upper
half plane. We integrate over the upper half plane, so that
the only pole we need to consider is the one in which the
intermediate nucleon is on its mass shell and the momen-
tum k is spacelike. For kþ < 0 and kþ > pþ, all of the
poles are on the same side of the real axis, and one obtains
0. We take the residue of the integral for which the nucleon

is on-shell so that k$ ¼ p$ $ M2þk2?
pþ$kþ . Using the residue

theorem and integrating over kþ leads to the result

"!ðNÞ ¼ $3g2!N
!

8Mð2!Þ3
Z 1

0
dt

tF2ð$tÞ
ðtþ#2Þ

%
!
$ t

M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

M4 þ
4t

M2

s #
: (7)

This result is obtained by using the pseudoscalar form of
!N coupling in Eq. (3), but the use of pseudovector
coupling would give the same result, because the inter-
mediate nucleon is on its mass shell.
To proceed, we use a specific form of the form factor F,

the commonly used dipole parametrization

FðQ2Þ ¼ 1=½1þ ðQ2=M2
AÞ(2; (8)

with MA as the so-called axial mass. The values of MA are
given byMA ¼ 1:03* 0:04 GeV as reviewed in Ref. [21].
This range is consistent with the one reported in a later
review [27]. A somewhat lower value (0.85 GeV) is ob-
tained [28] if one restricts the extraction region to very low
values ofQ2, but we need higher values to evaluate Eq. (7).
Using this dipole parameterized form factor F gives

"!ðNÞ ¼ $3Mg2!N
!

4ð2!Þ3
1

6ð4b $ 1Þ5=2ða$ bÞ4
$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3g2πN
M
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dk+d2k⊥J
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expanding for small pion mass (   ) one recovers 
the HBChiPT expression

particles has an off-diagonal Goldberger-Treiman relation
[22–24], obtained by using similar logic:

2MCA
5 ðtÞ ¼ f!G!N!ðtÞ; (2)

where CA
5 is the Adler form factor [25,26], accessible in

neutrino-nucleon interactions.
The present Letter develops a method that satisfies

momentum conservation, utilizes Eq. (1), and involves
only on-mass-shell nucleons. The key to removing ambi-
guities lies in evaluating the relevant Feynman diagrams by
carrying out the integration over the four-momentum k by
first integrating over k$ (the light-front energy) in such a
way that the intermediate baryon is projected onto its mass
shell. This allows the use of the on-mass-shell form factors
Eqs. (1) and (2) and is manifestly consistent with charge
and momentum conservation.

Consider the contribution to the nucleon self-energy
"!ðNÞ, involving an intermediate nucleon [Fig. 1(a)],
given by Feynman rules as

"!ðNÞ¼$i3g2!N #uðPÞ
Z d4k

ð2!Þ4

% "5ð 6p$ 6kþMÞ"5

ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$(uðPÞF
2ðk2Þ;

(3)

where M and # are the nucleon and pion masses, res-
pectively. The quantity P represents the nucleon momen-
tum and spin, (p, s), evaluated in the proton rest frame.
We use the notation G!NðtÞ ) g!NFðtÞ ¼ M

f!
GAðtÞ,

with GAð0Þ ¼ 1:267* 0:04, M ¼ 0:939 GeV, f! ¼
92:6 MeV, and g!N ) G!Nð0Þ ¼ 13:2 with Fð0Þ ¼ 1.
The term Fðk2Þ represents the pion-nucleon form factor.
Its dependence on a single variable is justified only if
the pionic vertex function appears between two on-mass-
shell nucleons. In that case, one may use a dispersion
relation:

Fðk2Þ ¼ 1

!

Z 1

ð3m!Þ2
dt0 Im½Fðt0Þ(=ðk2 $ t0Þ: (4)

Performing the spin average of Eq. (3) leads to the result

"!ðNÞ¼3g2!N
M

Z d4kF2ðk2Þ
ið2!Þ4

% k +p
ðk2$#2þ i$Þ½ðp$kÞ2$M2þ i$( : (5)

We evaluate "!ðNÞ by using light-front coordinates:

k* ) k0 * k3, k2 ¼ kþk$ $ k2?. Thus "!ðNÞ ¼ 3g2!N
M %R

dkþd2k?J, with

J ¼ 1

ið2!Þ4
1

2

Z
dk$F2ðk2Þ

% k + p
kþðp$ kÞþðk$ $ k2?þ#2$i$

kþ Þ½ðp$ kÞ$ $ k2?þM2$i$

pþ$kþ (
:

(6)

The expression Eq. (4) for Fðk2Þ is not written explicitly
here, because the analytic structure is the same as that of
1=ðk2 $#2 þ i$Þ. If 0< kþ < pþ, the first pole in k$ is in
the lower half k$ plane (LHP) [as are the ones arising from
Fðk2Þ], and the intermediate nucleon pole is in the upper
half plane. We integrate over the upper half plane, so that
the only pole we need to consider is the one in which the
intermediate nucleon is on its mass shell and the momen-
tum k is spacelike. For kþ < 0 and kþ > pþ, all of the
poles are on the same side of the real axis, and one obtains
0. We take the residue of the integral for which the nucleon

is on-shell so that k$ ¼ p$ $ M2þk2?
pþ$kþ . Using the residue

theorem and integrating over kþ leads to the result

"!ðNÞ ¼ $3g2!N
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This result is obtained by using the pseudoscalar form of
!N coupling in Eq. (3), but the use of pseudovector
coupling would give the same result, because the inter-
mediate nucleon is on its mass shell.
To proceed, we use a specific form of the form factor F,

the commonly used dipole parametrization

FðQ2Þ ¼ 1=½1þ ðQ2=M2
AÞ(2; (8)

with MA as the so-called axial mass. The values of MA are
given byMA ¼ 1:03* 0:04 GeV as reviewed in Ref. [21].
This range is consistent with the one reported in a later
review [27]. A somewhat lower value (0.85 GeV) is ob-
tained [28] if one restricts the extraction region to very low
values ofQ2, but we need higher values to evaluate Eq. (7).
Using this dipole parameterized form factor F gives

"!ðNÞ ¼ $3Mg2!N
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Large Nc and SU(3) Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons

Tiburzi and AWL arXiv:0808.0482

Mai, Bruns, Kubis and Meissner arXiv:0905.2810
Jiang, Tiburzi and AWL arXiv:0911.4721

Jiang and Tiburzi arXiv:0912.2077

Jiang and Tiburzi arXiv:0905.0857

Beane, Bedaque, Parreno and Savage nucl-th/0311027



Large Nc and SU(3) Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons

Tiburzi and AWL arXiv:0808.0482

Mai, Bruns, Kubis and Meissner arXiv:0905.2810
Jiang, Tiburzi and AWL arXiv:0911.4721

Jiang and Tiburzi arXiv:0912.2077

Jiang and Tiburzi arXiv:0905.0857

Beane, Bedaque, Parreno and Savage nucl-th/0311027

Read the literature and apply an old idea to our new 
problem

combine the constraints of large Nc and SU(3) symmetries



Large Nc and SU(3) Chiral Perturbation Theory

Combined large Nc and SU(3) symmetries
‘t Hooft 1974
Witten 1979

Coleman 1979
Dashen, Jenkins, Manohar 1993

...



Large Nc and SU(3) Chiral Perturbation Theory

theory is placed on solid theoretical foundation
lim

Nc→∞
MB = ∞

1/Nccontrolled expansion in         (at least formally) 

M∆ −MN ∝ 1

Nc

inclusion of spin 3/2 dof well defined field theoretically

naturally explains smallness of baryon octet GMO 
relation

Ncm
3/2
s ∝ flavor-1

m3/2
s ∝ flavor-8

m3/2
s /Nc ∝ flavor-27 leading correction to GMO



Large Nc and SU(3) Chiral Perturbation Theory

gives you “smarter” observables to measure/calculate

eg: Spectrum M = M1,0 + M8,0 + M27,0 + M64,0

M1,0 = c1,0
(0)Nc1 + c1,0

(2)

1
Nc

J2

M8,0 = c8,0
(1)T

8 + c8,0
(2)

1
Nc

{J i, Gi8} + c8,0
(3)

1
N2

c

{J2, T 8}

M27,0 = c27,0
(2)

1
Nc

{T 8, T 8} + c27,0
(3)

1
N2

c

{T 8, {J i, Gi8}}

M64,0 = c64,0
(3)

1
N2

c

{T 8, {T 8, T 8}}

J i = q†(J i ⊗ 1)q
T a = q†(1⊗ T a)q

Gia = q†(J i ⊗ T a)q

one-body spin operator
one-body flavor operator
one-body spin-flavor operator



Large Nc and SU(3) Chiral Perturbation Theory
4

TABLE I: Mass combinations M1–M8 from Ref. [15] and MA–MD from Ref. [6]. The coefficients and orders in 1/Nc and
perturbative SU(3) flavor symmetry breaking ε are given for mass combinations M1–M8. Combinations MA–MD are obtained
at order 1/N2

c assuming only isospin flavor-symmetry.

Label Operator Coefficient Mass Combination 1/Nc SU(3)

M1 11 160 Nc c1,0
(0) 25(2N + Λ + 3Σ + 2Ξ) − 4(4∆ + 3Σ∗ + 2Ξ∗ + Ω) Nc 1

M2 J2 −120 1
Nc

c1,0
(2) 5(2N + Λ + 3Σ + 2Ξ) − 4(4∆ + 3Σ∗ + 2Ξ∗ + Ω) 1/Nc 1

M3 T 8 20
√

3 ε c8,0
(1) 5(6N + Λ − 3Σ − 4Ξ) − 2(2∆ − Ξ∗ − Ω) 1 ε

M4 {J i, Gi8} −5
√

3 1
Nc

ε c8,0
(2) N + Λ − 3Σ + Ξ 1/Nc ε

M5 {J2, T 8} 30
√

3 1
N2

c
ε c8,0

(3) (−2N + 3Λ − 9Σ + 8Ξ) + 2(2∆ − Ξ∗ − Ω) 1/N2
c ε

M6 {T 8, T 8} 126 1
Nc

ε2 c27,0
(2) 35(2N − 3Λ − Σ + 2Ξ) − 4(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/Nc ε2

M7 {T 8, J iGi8} −63 1
N2

c
ε2 c27,0

(3) 7(2N − 3Λ − Σ + 2Ξ) − 2(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/N2
c ε2

M8 {T 8, {T 8, T 8}} 9
√

3 1
N2

c
ε3 c64,0

(3) ∆ − 3Σ∗ + 3Ξ∗ − Ω 1/N2
c ε3

MA (Σ∗ − Σ) − (Ξ∗ − Ξ) 1/N2
c −

MB
1
3 (Σ + 2Σ∗) − Λ − 2

3 (∆ − N) 1/N2
c −

MC − 1
4 (2N − 3Λ − Σ + 2Ξ) + 1

4 (∆ − Σ∗ − Ξ∗ + Ω) 1/N2
c −

MD − 1
2 (∆ − 3Σ∗ + 3Ξ∗ − Ω) 1/N2

c −

Dividing by
∑

i |ci| instead of by 1
2

∑
i |ci|Mi avoids mix-

ing different flavor representations via the denominator
factor. The rescaled relations R1–R8 and RA–RD have
dimensions of mass.

In our numerical analysis, we shall use the dimension-
less variable

ε =
M2

K − M2
π

Λ2
χ

(7)

as a measure of SU(3) breaking, where Λχ ∼ 4πf =
1 GeV [26] is the scale of chiral symmetry breaking.

III. LATTICE SIMULATION

In this work, we use the results of the recent LHPC
spectrum calculation [27] to explore the mass combina-
tions of the 1/Nc expansion. The LHP Collaboration
utilized a mixed-action lattice calculation with domain-
wall [28–30] valence propagators computed with the Asq-
tad improved [31, 32] dynamical MILC gauge ensem-
bles [33, 34].4 The calculation was performed at one
lattice spacing with a ∼ 0.125 fm, and a fixed spatial
volume L ∼ 2.5 fm. The pion and kaon masses used
in Ref. [27] are {Mπ, MK} = {293, 586}, {356, 604},
{496, 647}, {597, 686}, {689, 729} and {758, 758} MeV,

4 The strange quark and many of the light-quark propagators were
computed by the NPLQCD Collaboration [35].

respectively, on the m007, m010, m020, m030, m040, and
m050 ensembles, where the labels denote the light-quark
masses in lattice units.5 In the dynamical ensembles and
the computation of the valence propagators, the strange
quark was held fixed near its physical value. (In fact the
strange quark was ∼ 25% too large [36].) For further
details of the calculation, we refer the reader to Ref. [27].

Using the bootstrap resampled lattice data, we deter-
mine the 12 mass combinations of Table I on each en-
semble. The results are collected in Table II. These
results were determined with the absolute scale of
a−1 = 1588 MeV on all coarse ensembles, where the
scale used in Ref. [27] was determined from heavy-
quark spectroscopy. We have additionally determined
the mass combinations using the smoothed values of
r1/a, where r1 is determined on each different ensemble
from the heavy-quark potential with r2

1F (r1) = 1 [37].
The values of a−1 determined in this way range from
{1597, 1590, 1614, 1621, 1628, 1634} MeV from the light-
est to heaviest quark mass. These two scale-setting meth-
ods are in good agreement, as shown in the next section.

5 The mass Mη is defined at this order by the Gell-Mann–Okubo
formula M2

η = 4
3M2

K − 1
3M2

π.

R ≡
�

i ciMi�
i |ci|

Jenkins and Lebed  hep-ph/9502227
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B. Heavy Baryon Chiral Lagrangian in the 1/Nc Expansion

The heavy baryon SU(3) chiral Lagrangian at leading order in the momentum expansion and to first order in the
chiral-symmetry breaking quark mass matrix Mq ≡ diag(mu,md,ms) is given by [24, 25],

L =i Tr B̄v (v · D)Bv − i T̄µ
v (v · D)Tv µ − 1

4
∆0 Tr B̄vBv +

5

4
∆0 T̄µ

v Tv µ

+ 2DTr
�
B̄vS

µ
v {Aµ, Bv}

�
+ 2F Tr

�
B̄vS

µ
v [Aµ, Bv]

�

+ C
�
T̄µ
v AµBv + B̄vAµT

µ
v

�
+ 2H T̄µ

v S
ν
vAνTv µ

+ 2σB Tr
�
B̄vBv

�
TrM+ − 2σT T̄µ

v Tv µTrM+

+ 2bDTr
�
B̄v {M+, Bv}

�
+ 2bFTr

�
B̄v [M+, Bv]

�
+ 2bT T̄µ

v M+Tv µ (7)

where the spin- 12 octet baryon fields Bv and spin- 32 decuplet baryon fields Tµ
v are two-component velocity-dependent

baryon fields which are related to the usual four-component relativistic Dirac spin baryon fields B and Tµ by

Bv(x) = eiM0v/ vµx
µ

B(x),

Tµ
v (x) = eiM0v/ vµx

µ

Tµ(x), (8)

where M0 is the flavor-singlet mass of the baryon octet and decuplet baryons in the SU(3) chiral limit mq → 0.
Specifically,

M0 =
5

4
�M8� −

1

4
�M10�, (9)

where �M8� and �M10� are the average flavor-singlet masses of the spin- 12 flavor-octet baryons and the spin- 32 flavor-
decuplet baryons, respectively, in the chiral limit2. M0 also is O(Nc) for baryons with Nc quarks. The leading heavy
baryon chiral Lagrangian also contains the flavor-singlet hyperfine mass splitting

∆0 = �M10� − �M8�, (10)

which is proportional to the total spin-squared J2
v of each baryon multiplet. The mass parameter ∆0 is O(1/Nc) in

the 1/Nc expansion, which is a suppression of 1/N2
c relative to the leading O(Nc) mass M0.

The SU(3) flavor representations of the QCD baryons are the flavor-octet

B =





1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0, − 2√
6
Λ



 , (11)

and the completely symmetric rank-3 flavor-decuplet Tabc, normalized such that Tuuu = ∆++. The heavy baryon
chiral Lagrangian also contains four independent baryon-pion couplings D, F , C and H. The couplings D and F
describe the usual baryon-octet pion couplings; C describes pion couplings between octet and decuplet baryons; and
H describes the pion coupling of the decuplet baryons. The pion octet fields

Π ≡ πaT a =





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η



 (12)

appear in the heavy baryon chiral Lagrangian in the nonlinear representation ξ2 = Σ = e2iΠ/f , where f ∼ 130 MeV
is the pion decay constant. The vector and axial vector pion combinations

Aµ =
i

2

�
ξ∂µξ

† − ξ†∂µξ
�
,

Vµ =
1

2

�
ξ∂µξ

† + ξ†∂µξ
�
, (13)

2 In the original literature [24–28], �M8� and �M10� are called mB and mT , respectively.
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QCD with Nc = 3 are related to the 1/Nc coefficients by [36, 37]3

D =
1

2
a1,8(1) , F =

1

3
a1,8(1) +

1

6
b1,8(2) ,

C = −a1,8(1) , H = −3

2
a1,8(1) −

3

2
b1,8(2) . (19)

Thus, to first subleading order in the 1/Nc expansion, the pion-baryon couplings satisfy two relations,

C = −2D,

H = 3D − F. (20)

We adopt the following simplified notation for the leading coefficients of the 1/Nc expansion for the rest of this
paper. The coefficients of the spin-1 flavor-octet 1/Nc expansion of the baryon axial vector currents are replaced by

a1,8(1) → a,

b1,8(2) → b, (21)

whereas the coefficients of the spin-0 flavor-octet 1/Nc baryon expansion of the quark mass matrix are replaced by

b0,8(1) → b(1),

b0,8(2) → b(2). (22)

1. Mass Relations R1 – R4

In Ref. [39], it was argued a better approach to exploring the baryon spectrum was to utilize our knowledge of
both large Nc as well as SU(3) symmetry which is known to work well for the experimental spectrum [40]; instead
of considering the individual baryon masses directly, one should explore the light quark mass dependence of various
linear combinations of the baryon masses, chosen to have definite scaling in terms of 1/Nc and SU(3) chiral symmetry
breaking quark mass difference (ms −ml). The various linear combinations were determined in Ref. [40]. In Ref. [39],
it was demonstrated that the predicted scaling with both 1/Nc and (ms −ml) was clearly visible in the lattice data.
The first few mass combinations had statistically meaningful values over the range of quark masses, but there were
not enough statistics to resolve all of them. In this work, we focus our attention on three of these mass relations,
R1, R3 and R4. These mass relations are given by

Ri =

�
j cijMj�
j |cij |

(23)

where

M1 =
�

j

c1jMj = 25(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M2 =
�

j

c2jMj = 5(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M3 =
�

j

c3jMj = 5(6MN +MΛ − 3MΣ − 4MΞ)− 2(2M∆ −MΞ∗ −MΩ) ,

M4 =
�

j

c4jMj = MN +MΛ − 3MΣ +MΞ . (24)

3 The 1/Nc operator analysis has recently been extended to the two-body axial current operators [38], such as Tr
�
B̄A · AB

�
.
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appear in the baryon-pion couplings and through the baryon covariant derivative Dµ = ∂µ+ iVµ. In the heavy baryon

chiral Lagrangian, S
µ
v is the spin operator which acts on the spinor portion of the baryon field. Heavy baryon velocity

which follows from the identity B̄vγµγ5Bv = 2B̄vS
µ
vBv.

Additional dependence on the pion field enters through the quark mass matrix spurion

M+ =
1

2

�
ξMq

†ξ + ξ†Mqξ
†
�
. (14)

In this work, the lattice computations are performed with degenerate u and d quark masses mu = md = ml, so the

quark mass matrix reduces to

Mq =
1

3
(2ml +ms) 11 +

2√
3
(ml −ms)T

8
. (15)

There are two flavor-singlet contributions to the baryon masses with one insertion of the quark mass matrix coming

from the terms proportional to σB and σT . These terms yield contributions of 2σBm̄ or 2σT m̄, where m̄ = (2ml+ms)/3

is the average quark mass. There are also three flavor-octet contributions to the baryon masses with a single insertion

of the quark mass matrix. In the exact isospin limit in which we are working, these terms yield SU(3) flavor-breaking

mass splittings of the baryons proportional to bD, bF and bT (called bC previously [? ]) times the quark mass difference
(ms −ml).

The 1/Nc expansion [? ] for baryons [? ] leads to the emergence of a spin-flavor symmetry [? ? ? ? ? ]

for large-Nc baryons. In Ref. [? ], the heavy baryon Lagrangian was formulated in the 1/Nc expansion. Relations

amongst the coefficients in the heavy baryon chiral Lagrangian occur at leading and subleading orders in the 1/Nc

expansion, which reduces the number of independent chiral coefficients in the heavy baryon chiral Lagrangian at

leading and subleading orders in 1/Nc. In addition, there exists a planar flavor symmetry [? ] at leading order in

1/Nc, which relates flavor-singlet to flavor-octet parameters at this order, further reducing the number of independent

chiral coefficients in the heavy baryon chiral Lagrangian at leading order in the 1/Nc expansion. In particular, planar

QCD flavor symmetry relate the flavor-singlet quark mass parameters σB and σT to the flavor-octet quark mass

parameters bD, bF and bT at leading orders in 1/Nc. The flavor-octet and flavor-singlet quark mass parameters are

given in terms of the coefficients b
0,8
(n) of the spin-0 flavor-octet 1/Nc expansion, where the subscript n refers to the

fact that the corresponding operator O(n) is an n-body quark operator which is accompanied by an explicit factor

of N
1−n
c . The matrix elements �O(n)� also have nontrivial dependence on Nc. To first subleading order in the 1/Nc

expansion, the mass matrix parameters of the heavy baryon chiral Lagrangian for QCD with Nc = 3 are given by

bD =
1

4
b(2) , bF =

1

2
b(1) +

1

6
b(2) , bT = −3

2
b(1) −

5

4
b(2) ,

σB =
1

2
b(1) +

1

12
b(2) , σT =

1

2
b(1) +

5

12
b(2) . (16)

To first subleading order in 1/Nc, the five quark mass parameters of the heavy baryon chiral Lagrangian are given in

terms of two 1/Nc coefficients, and satisfy the three relations

bD + bF = −1

3
bT = σT ,

σB = −1

3
bD + bF , (17)

or

5

4
σB − 1

4
σT = bF − 2

3
bD =

1

2
b
0,8
(1),

σT − σB =
4

3
bD =

1

3
b
0,8
(2). (18)

The axial couplings D, F , C and H also have an expansion in terms of spin-1 flavor-octet coefficients c
1,8
(n) of the 1/Nc

expansion. To first subleading order in 1/Nc, the pion-baryon couplings of the heavy baryon chiral Lagrangian for

6

QCD with Nc = 3 are related to the 1/Nc coefficients by [? ? ]3

D =
1

2
a(1) , F =

1

3
a(1) +

1

6
a(2) ,

C = −a(1) , H = −3

2
a(1) −

3

2
a(2) . (19)

Thus, to first subleading order in the 1/Nc expansion, the pion-baryon couplings satisfy two relations,

C = −2D,

H = 3D − F. (20)

We adopt the following simplified notation for the leading coefficients of the 1/Nc expansion for the rest of this
paper. The coefficients of the spin-1 flavor-octet 1/Nc expansion of the baryon axial vector currents are replaced by

a1,8(1) → a(1),

b1,8(2) → a(2), (21)

whereas the coefficients of the spin-0 flavor-octet 1/Nc baryon expansion of the quark mass matrix are replaced by

b0,8(1) → b(1),

b0,8(2) → b(2). (22)

1. Mass Relations R1 – R4

In Ref. [? ], it was argued a better approach to exploring the baryon spectrum was to utilize our knowledge of
both large Nc as well as SU(3) symmetry which is known to work well for the experimental spectrum [? ]; instead
of considering the individual baryon masses directly, one should explore the light quark mass dependence of various
linear combinations of the baryon masses, chosen to have definite scaling in terms of 1/Nc and SU(3) chiral symmetry
breaking quark mass difference (ms −ml). The various linear combinations were determined in Ref. [? ]. In Ref. [? ],
it was demonstrated that the predicted scaling with both 1/Nc and (ms −ml) was clearly visible in the lattice data.
The first few mass combinations had statistically meaningful values over the range of quark masses, but there were
not enough statistics to resolve all of them. In this work, we focus our attention on three of these mass relations,
R1, R3 and R4. These mass relations are given by

Ri =

�
j cijMj�
j |cij |

(23)

where

M1 =
�

j

c1jMj = 25(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M2 =
�

j

c2jMj = 5(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M3 =
�

j

c3jMj = 5(6MN +MΛ − 3MΣ − 4MΞ)− 2(2M∆ −MΞ∗ −MΩ) ,

M4 =
�

j

c4jMj = MN +MΛ − 3MΣ +MΞ . (24)

3 The 1/Nc operator analysis has recently been extended to the two-body axial current operators [? ], such as Tr
�
B̄A · AB

�
.
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Thus,

R1 =
1

240
M1 =

2

3

�
5

4
�M8� −

1

4
�M10�

�
,

R2 =
1

80
M2 = −1

2
(�M8� − �M10�) ,

R3 =
1

78
M3,

R4 =
1

6
M4, (25)

where the average octet and decuplet masses are given by

�M8� =
1

8
(2MN +MΛ + 3MΣ + 2MΞ) = M0 +

1

4
∆0,

�M10� =
1

10
(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) = M0 +

5

4
∆0 (26)

in the chiral limit mq → 0. These relations are designed to isolate various operators in the combined 1/Nc and
SU(3)-breaking expansions. For example, to O(mq), the light quark mass dependencies of these combinations are
given by

R1 (ml,ms) =
2

3

�
M0 −

�
3

4
b(1) +

5

24
b(2)

�
(2ml +ms)

�
,

R2 (ml,ms) = −1

2

�
∆0 −

�
b(1) +

7

6
b(2)

�
(2ml +ms)

�
,

R3 (ml,ms) =
20

39
b(1) (ms −ml) ,

R4 (ml,ms) = − 5

18
b(2) (ms −ml) , (27)

The relations R5–R8 vanish to this order in the chiral expansion. For this reason, they are particularly interesting

to use with light quark mass extrapolations, as the leading contribution begins with the chiral loops at O(m3/2
q ).

However, even more precise results of the baryon spectrum are needed than in Ref. [? ] for these relations.
Using the large Nc expansions through second non-trivial order, and working through NLO in the chiral expansion,

the relations R1 and R2 are given by

3

2
R1(ml,ms) = M0 −

�
3

4
b(1) +

5

24
b(2)

�
(2ml +ms)

− 1

12

�
35a2(1) − 5a2(2)

��
3F(mπ, 0, µ) + 4F(mK , 0, µ) + F(mη, 0, µ)

8(4πf)2

�

− 1

12
a2(1)

�
50

�
3F(mπ,∆, µ) + 4F(mK ,∆, µ) + F(mη,∆, µ)

8(4πf)2

�

− 4

�
3F(mπ,−∆, µ) + 4F(mK ,−∆, µ) + F(mη,−∆, µ)

8(4πf)2

��
(28)

−2 R2(ml,ms) = ∆0 −
�
b(1) +

7

6
b(2)

�
(2ml +ms)

− 1

3

�
a2(1) + 16a(1)a(2) + 9a2(2)

��
3F(mπ, 0, µ) + 4F(mK , 0, µ) + F(mη, 0, µ)

8(4πf)2

�

− 1

3
a2(1)

�
− 10

�
3F(mπ,∆, µ) + 4F(mK ,∆, µ) + F(mη,∆, µ)

8(4πf)2

�

+ 4

�
3F(mπ,−∆, µ) + 4F(mK ,−∆, µ) + F(mη,−∆, µ)

8(4πf)2

��
(29)

a(1) = 0.2(5) D = 0.10(25)
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which has the limits and properties

F(0,∆, µ) = 0

F(m, 0, µ) = πm3

F(m,−∆, µ) =

�
−F(m,∆, µ) + 2iπ(∆2 −m2)3/2, m < |∆|
−F(m,∆, µ) + 2π(m2 −∆2)3/2, m > |∆| . (16)

For the baryon spectrum, the leading non-analytic light quark mass dependence is encoded
in this function. As such, it is of particular interest to find evidence of this behavior in the
spectrum.

The mass relations R3 and R4 vanish in both the SU(3) chiral and vector limits, making
them more sensitive to the NLO non-analytic light quark mass dependence. At NLO in the
chiral expansion, and to the first two non-trivial orders in the large Nc expansion, these
relations are given by

R3(ml,ms) =
20

39
b1 (ms −ml)−

20a2
1
− 5a2

2

117

3F0

π − 2F0

K − F0

η

(4πf)2

− a2
1

117

�
35

3F∆
π − 2F∆

K − F∆
η

(4πf)2
−

3F−∆
π − 2F−∆

K − F−∆
η

(4πf)2

�
, (17)

R4(ml,ms) =− 5

18
b2 (ms −ml)

+
a2
1
+ 4a1a2 + a2

2

36

3F0

π − 2F0

K − F0

η

(4πf)2
− 2a2

1

9

3F∆
π − 2F∆

K − F∆
η

(4πf)2
. (18)

In addition to these three mass relations, the Gell-Mann–Okubo relation is also important
to examine

∆GMO =
3

4
MΛ +

1

4
MΣ − 1

2
MN − 1

2
MΞ . (19)

Since the quark mass operator contains pieces which transform as both an 8 as well as a 1
under SU(3) transformations, Eq. (9), there are non-vanishing contributions to the GMO
relation. However, mass operators which transform as an 8 make vanishing contributions
to Eq. (19). The leading mass operator which makes a non-zero contribution to the GMO
relation transforms as a flavor-27. These corrections can arise either from chiral loops
or from a mass operator containing two or more quark mass insertions. This makes the
GMO relation particularly interesting to explore with lattice QCD calculations; the leading
contribution to this mass relation comes from chiral loop effects which are non-analytic in
the light quark masses. Experimentally, the GMO relation is found to be

∆phy
GMO

= 6.45 MeV . (20)

Each baryon mass in the relation receives non-analytic mass corrections which scale as
δMB ∝ Ncm

3/2
s . These large corrections may lead to the expectation that the GMO rela-

tion receives large contributions from the loop corrections. However, one can show these
Ncm

3/2
s terms are proportional to 1 under SU(3) transformations. Additionally, the m3/2

s

contributions transform as an 8 while the m3/2
s /Nc corrections transform as a flavor-27. This

8

R3 ∝ ms −ml R4 ∝ (ms −ml)/Nc
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FIG. 2: Representative fits to R1 from LO (left) and NLO (right) HBχPT analysis. The blue star
is the physical value, not used in the analysis. The upper error band results from a fit to the lightest
four numerical data and the lower bad is the result extrapolated to the physical value of the strange
quark mass mlatt

s → mlatt
s,phy, Eq. (27).

However, this is not surprising given the small value of a1 determined in the NLO analysis.
This small value is consistent with no contributions from the NLO terms and inconsistent
with the known phenomenological determination of the axial coupling. This is not surprising
given the convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16].
One is left to conclude that the SU(3) heavy baryon χPT does not provide a controlled,
convergent expansion for the mass combination R1 for the range of quark masses used in
this work and a value of a1 consistent with phenomenology or direct lattice calculations of
the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass op-
erators, vanishing in both the SU(3) vector as well as SU(3) chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to the non-analytic light quark mass
dependence occurring at NLO in the chiral expansion. As with the analysis of R1, three
choices of the parameter f are taken to estimate higher order effects, Eq. (28). The LO
expressions for R3 and R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical
results well; it is clear higher order contributions are necessary for extrapolations of this
data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance matrix is
constructed as described in Ref. [37]. The numerical results of Ref. [12] are insufficient to
constrain both the leading and subleading axial coefficients, and so the analysis is restricted
to the set of LECs

λ = (b1, b2, a1) , (33)

with a2 = 0. From the NLO analysis, the LECs are determined to be

b1[NLO] = −6.6(5) , b2[NLO] = 4.3(4) , a1[NLO] = 1.4(1) . (34)
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FIG. 3: The LO and NLO contributions to R3 (left) and R4 (right). A (blue) star is used to denote

the physical values, not included in the analysis. The particular fit displayed is a combined analysis

of R3 and R4 to the data at the lightest three values of mlatt
l .

Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence
for the presence of the non-analytic light quark mass dependence in these mass relations.
Further, this is the first time an analysis of the baryon spectrum has returned values of the
axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO
and NLO separately, one observes a delicate cancellation between the different contributions,
see Fig. 3. Further studies are needed with more numerical data sufficient to also constrain
the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which
in HBχPT come from the leading non-analytic light quark mass dependence, Eq. (21).
For this reason, it is a particularly interesting mass relation to study, as has been done if
Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated that
the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit.
Second, an NNLO analysis is performed for the first time and it is demonstrated at this

7
Finding values of the axial couplings consistent with phenomenology has not just been a challenge for

lattice QCD, but also observed in large Nc χPT analysis of the experimentally measured baryon magnetic

moments [97, 98]. It is also interesting to note that while the SU(3) chiral expansion for the baryon

spectrum is not convergent, it was found that the volume dependence of the octet baryon masses is

consistent with SU(3) HBχPT. Analysis of the volume dependence yielded a large value of gπN∆ (C)

with gA fixed to its physical value [99].
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First time axial couplings left as free parameters and:
values consistent with phenomenological determinations
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FIG. 2: Representative fits to R1 from LO (left) and NLO (right) HBχPT analysis. The blue star
is the physical value, not used in the analysis. The upper error band results from a fit to the lightest
four numerical data and the lower bad is the result extrapolated to the physical value of the strange
quark mass mlatt

s → mlatt
s,phy, Eq. (27).

However, this is not surprising given the small value of a1 determined in the NLO analysis.
This small value is consistent with no contributions from the NLO terms and inconsistent
with the known phenomenological determination of the axial coupling. This is not surprising
given the convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16].
One is left to conclude that the SU(3) heavy baryon χPT does not provide a controlled,
convergent expansion for the mass combination R1 for the range of quark masses used in
this work and a value of a1 consistent with phenomenology or direct lattice calculations of
the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass op-
erators, vanishing in both the SU(3) vector as well as SU(3) chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to the non-analytic light quark mass
dependence occurring at NLO in the chiral expansion. As with the analysis of R1, three
choices of the parameter f are taken to estimate higher order effects, Eq. (28). The LO
expressions for R3 and R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical
results well; it is clear higher order contributions are necessary for extrapolations of this
data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance matrix is
constructed as described in Ref. [37]. The numerical results of Ref. [12] are insufficient to
constrain both the leading and subleading axial coefficients, and so the analysis is restricted
to the set of LECs

λ = (b1, b2, a1) , (33)

with a2 = 0. From the NLO analysis, the LECs are determined to be

b1[NLO] = −6.6(5) , b2[NLO] = 4.3(4) , a1[NLO] = 1.4(1) . (34)
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of R3 and R4 to the data at the lightest three values of mlatt
l .

Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence
for the presence of the non-analytic light quark mass dependence in these mass relations.
Further, this is the first time an analysis of the baryon spectrum has returned values of the
axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO
and NLO separately, one observes a delicate cancellation between the different contributions,
see Fig. 3. Further studies are needed with more numerical data sufficient to also constrain
the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which
in HBχPT come from the leading non-analytic light quark mass dependence, Eq. (21).
For this reason, it is a particularly interesting mass relation to study, as has been done if
Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated that
the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit.
Second, an NNLO analysis is performed for the first time and it is demonstrated at this

7
Finding values of the axial couplings consistent with phenomenology has not just been a challenge for

lattice QCD, but also observed in large Nc χPT analysis of the experimentally measured baryon magnetic

moments [97, 98]. It is also interesting to note that while the SU(3) chiral expansion for the baryon

spectrum is not convergent, it was found that the volume dependence of the octet baryon masses is

consistent with SU(3) HBχPT. Analysis of the volume dependence yielded a large value of gπN∆ (C)

with gA fixed to its physical value [99].
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but still observe large cancellations between LO and NLO
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Work of Mathias Lutz and Alexandre Semke who fit the masses (not 
mass splittings) of 4 different lattice QCD groups, and obtained 
similar axial couplings

Fit i:
each fit is to set of 
BMW, LHPC, PACS-CS
none of the fits include 
QCDSF-UKQCD, who 
computed masses in SU(3) 
limit as well as SU(3)-broken
(with similar agreement)

I do not understand - but 
this agreement is remarkable
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Only NNLO SU(3) naturally supports strong light quark mass dependence
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Combined with R3 and R4 - provides first compelling evidence of non-analytic 
light quark mass dependence in the baryon spectrum



Light quark mass dependence of MB

the more I study baryons, the more confused I get

there now seems to be un-ignorable evidence for entirely 
unexpected light quark mass dependence in the nucleon 
(baryon) spectrum, basically down to the physical pion mass

MN = α0 + α1mπ

combining large Nc with SU(2) and SU(3) flavor symmetry is 
showing promise - at least qualitatively

what is clearly (still) needed is high statistics study of baryons 
with (with the aim of understanding chiral perturbation theory)

120 ≤ mπ ≤ 400 MeV



Hadron Electromagnetic Polarizabilities from Lattice QCD

electric polarizabilites and magnetic moments of the 
nucleon from lattice QCD

electromagnetic collaboration:
Will Detmold, Brian Tiburzi, AWL



Hadron Electromagnetic Polarizabilities from Lattice QCD
Low Energy Electromagnetic Structure Motivation

Compass at CERN will measure pion and kaon polarizabilites

through Primakoff process

Compton MAX-lab (Lund) will extract neutron EM polarizabilities

from Compton scattering on deuterium

HIγS TUNL will make high precision measurements of proton and

neutron electromagnetic and spin polarizabilites



Hadron Electromagnetic Polarizabilities from Lattice QCD
Low Energy Electromagnetic Structure Motivation

comparison of experiment and phenomenological prediction

Motivation: exp./phenom.

απ
E = 2.4± 0.5

two-loop ChPT prediction

U.Burgi; NPB 479(1996), PLB 377(1996)
J. Gasser et.al.; NPB 745 (2006)

experimental determination

Y.M. Antipov et.al.;  PLB 121(1983), Z.Phys. C 26 (1985)

απ
E = −βπ

M = 6.8± 1.4± 1.2

(απ
E = −βπ

M )assumed

pion

nucleon

1

I. STATIC AND QUASI-STATIC ELECTROMAGNETIC PROPERTIES OF HADRONS

Study of the electromagnetic structure of hadrons has a long history beginning with the form-
factor experiments of R. Hofstadter in the 1950s, which showed conclusive evidence for the compos-
ite structure of the nucleon. At low momentum transfer, the form factors are sensitive only to the
longest range electromagnetic structure parametrized in terms of hadronic multi-pole moments.
Lattice studies of hadronic form factors are making significant progress towards first principles
confrontation with experimental form factor data, but a notable exception exists. The extraction
of static multi-pole moments requires a significant momentum extrapolation down from the lowest
available lattice momentum transfer.

Beyond static multi-pole moments, hadrons possess quasi-static properties that characterize
their behavior in applied electromagnetic fields. The hadron deforms in response to the applied
field as the internal constituents struggle against the strong force to align or anti-align themselves
with the external field. These quasi-static properties can be categorized in terms of multi-pole
polarizabilities. The electric polarizability of the proton, for example, characterizes the strength
of the induced electric dipole moment of the proton in an electric field.

Experimentally polarizabilities can be accessed through Compton scattering and have been the
subject of two decades of significant effort. For unpolarized scattering, the first structure dependent
contributions in the energy expansion of the Compton amplitude are the electric polarizability, α,
and the magnetic polarizability, β. If target and/or photon beam polarizations are controlled,
low-energy Compton scattering on spin-half targets is sensitive to additional so-called spin polar-
izabilities [1], conventionally labeled γ1–γ4 which encode the spin-dependent interaction strengths
of the induced multi-pole moments with the external fields.

The experimental knowledge of the various polarizabilities is summarized in Table I below. A
number of areas of low energy electromagnetic structure where we do not have a precise under-
standing particularly stand out:

1) Spin polarizabilities: theoretical disagreements and very little experimental knowledge.

2) Magnetic polarizabilities of the nucleon: errors are essentially 100%.

3) Pion polarizabilities: experiments disagree with two independent two-loop χPT analyses [2].

When hadrons of non-zero strangeness are also considered, information becomes considerably more
scarce.

Polarizability Proton Neutron π+

α [10−4 fm3] 11.9 ± 1.4 12.5 ± 1.7 5.8 ± 1.5

β [10−4 fm3] 1.2 ± 0.9 2.7 ± 1.8 −5.8 ± 1.5

γ1 [10−4 fm4] 1.1±0.25 3.7±0.4 —

γ2 [10−4 fm4] -1.5±0.36 -0.1±0.5 —

γ3 [10−4 fm4] 0.2±0.24 0.4±0.5 —

γ4 [10−4 fm4] 3.3±0.11 2.3±0.35 —

γπ [10−4 fm4] −38.7± 1.8 58.6 ± 4.0 —

TABLE I: Measured (roman) and expected (italic) values of electromagnetic and spin polarizabilities. Mea-
sured values for the nucleons are from a recent review [5]. Expected spin polarizabilities are from [3], and
assume central values from NNLO chiral perturbation theory analyses. Here the backward spin polarizabil-
ity is γπ = γ1 + γ2 + 2γ4. Pion electromagnetic polarizabilities are taken from the recent experiment done
at Mainz [6], assuming (α + β)π+ = 0 and citing only the systematic error.

measured

expected

(theoretical 
disagreements)

βπ
E = −2.1± 0.5
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Prediction from Chiral Perturbation Theory (χPT):
Non-analytic dependence on the light quark masses

m2
π = 2Bmq

�
1 +

2Bmq

(4πf )2 ln
�

2Bmq

µ2

�
+ 42Bmq

f 2 l r
3(µ)

�
+ . . .

Polarizabilites:

απ±
E =

8αf .s.

f 2
π

L9 + L10

mπ
LO χPT

αN
E =

5αf .s. g2
A

192πf 2
π

1
mπ

+ ∆-contributions NLO χPT (leading loop)

βN
B =

αf .s. g2
A

384πf 2
π

1
mπ

+ ∆-contributions NLO χPT (leading loop)

γN
E1E1 = −5αf .s. g2

A

192π2f 2
π

1
m2

π
+ ∆-contributions NLO χPT (leading loop)

Evidence for this non-analytic light quark mass dependence is smoking gun for being
in the chiral regime.
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Low Energy Electromagnetic Structure Background Electric Field

For sufficiently low energy (ω << mπ), a spin 1/2 baryon has the

effective Hamiltonian

Heff =
(�p − Q�A)2

2M
+ Qφ− 1

2
4π

�
α�E2 + β �B2

γE1E1
�σ · �E × �̇E + γM1M1

�σ · �B × �̇B + γM1E2
σiEijBj + γE1M2

σiBijEj

�

where

Eij =
1

2
(∇iEj +∇jEi) Bij =

1

2
(∇iBj +∇jBi)

γE1E1
= −γ1 − γ3 γM1M1

= γ4

γE1M2
= γ3 γM1E2

= γ2 + γ4

For specific choices of Aµ, one can isolate the various (spin)

polarizabilites W. Detmold, B.C. Tiburzi, AWL PRD 73 (2006).
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For our calculation, we want Euclidean action which respects periodic
boundary conditions (hyper-torus)

e−i
�

d4xM
1
4 FµνFµν

= ei
�

d4xM
1
2(E

2
M−B2

M)

−→ e−
�

d4xE
1
4 FµνFµν = e−

�
d4xE

1
2(E

2
E+B2

E)

In this way, the U(1) gauge links are given by a phase

Uµ(x) = eiaqAµ(x)

Consequences:

M(EM) = M0 − 2παE2
M + . . . −→ M(EE) = M0 + 2παE2

E + . . .
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Low Energy Electromagnetic Structure Background Electric Field

On a compact torus, not all values of the field strength are allowed:
G. ‘t Hooft NPB 153 (1979)

A2

T

Lz
A1

0 = Φ = Φ1 + Φ2 A1 = TLz − A2

−→ exp {iqEA1} = exp {iqE (TLz − A2)} −→ 1 = exp {iqETLz}

qE =
2π
TLz

n for n = 1, 2, . . .
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Non-Quantized
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Low Energy Electromagnetic Structure Hadron Correlation Functions

In a background field, what do we expect the correlation functions to

look like?

J = 0,Q = 0; C(t , E) =
�

n
Zn(E)e−En(E)t

J = 1/2,Q = 0; C(t , E) =
�

n
Zn(E , µn)e−En(E,µn)t

J = 0,Q = 1; C(t , E) =
�

n
Zn(E)G(En, E , t)

J = 1/2,Q = 1; C(t , E) =
�

n
Zn(E , µn)G(En, E , µn, t)
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Consider spin-less, relativistic particle of unit charge coupled to an electric

field

L = Dµπ
†Dµπ + m2

effπ
†π, Dµ = ∂µ + iAµ, Aµ = (0, 0,−E t , 0)

integrating by parts and changing variables

D−1 = p2

τ + E
2τ2 + E2

k⊥ ≡ 2

�
H+

1

2
E2

k⊥

�
,

τ = t − kz

E
, E2

k⊥ = E2

k − k2

z

solution B.C. Tiburzi Nucl.Phys. A 814 (2008)

D(τ �, τ) =
1

2

� ∞

0

ds�τ �, s|τ, 0�e−sE2

k⊥
/2

�τ �, s|τ, 0� =
�

E

2π sinh Es
exp

�
− E

2 sinh Es
�
(τ �2 + τ2) cosh Es − 2τ �τ

��
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Take τ = 0, �k = 0:

C(τ, E) =
�

n

Zn(E)G(τ, E)

G(τ, E) =
1

2

� ∞

0

ds
�

E

2π sinh Es
exp

�
−1

2

�
Eτ 2

coth Es + s m2

eff

��

in the weak field limit

C(τ, E) = Z (E) exp

�
−M(E)τ − E

2

M(E)4

�
1

6
(M(E)τ)3 +

1

4
(M(E)τ)2 +

1

4
(M(E)τ)

��

M(E) = M0 + 2παE2 +O(E4)

computing hadron deformations in background EM fields amounts to spectroscopy
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neutron in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

S =

�
d4x ψ(x)

�
∂/+ E(E)− µ(E)

4M
σµνFµν

�
ψ(x) ,

Fµν = ∂µAν − ∂νAµ,

σµνFµν = 2�K · E , for background E-field and �K = i�γγ4

µ(E) = µ+ µ��E2 + . . . anomalous magnetic coupling

motion of the quarks in the E-field gives rise to the magnetic coupling

with �E = E ẑ, construct

G±(t , E) ≡ tr[P±G(t , E)] = Z (E)
�

1 ± Eµ(E)
2M2

�
exp [−t Eeff (E)] ,

P± =
1

2
[1 ± K3] Eeff = E(E)− µ(E)2E2

8M3

= M +
1

2
E2

�
4παE − µ2

4M3

�
+ . . .



Hadron Electromagnetic Polarizabilities from Lattice QCD
Low Energy Electromagnetic Structure Hadron Correlation Functions

proton in background electric field: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

S =

�
d4x ψ(x)

�
D/+ E(E)− µ̃(E)

4M
σµνFµν

�
ψ(x) ,

Dµ = ∂µ + iQAµ µ = Q + µ̃(0)

boost projected correlation functions

G±(t , E) = Z (E)
�

1 ± µ̃E
2M2

�
D
�

t ,Eeff (E)2 ∓ QE , E
�

D(t ,E2, E) =
� ∞

0

ds

�
QE

2π sinh(QEs)
exp

�
−QE t2

2
coth(QEs)− E2s

2
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Results I am going to present are from
mesons: W. Detmold, B.C. Tiburzi, AWL PRD 79 (2009)

proton and neutron: W. Detmold, B.C. Tiburzi, AWL PRD 81 (2010)

To date, we have set qsea = 0 (Quenched EM)

mπ ∼ 390 MeV L = 2.5 fm

3

TABLE I: Propagators generated to date with our 2008-09 and 2009-10 USQCD allocations.

V as as/at atm0
u atm0

s mπ mK Field Nsrc ×Ncfg total # of

[fm] [MeV] [MeV] Strength props(u, d, s)

203 × 128 0.123 3.5 −0.0840 −0.0743 390 546 0 15× 200 6, 000

±1 15× 200 9, 000

±2 10× 200 6, 000

±3 10× 200 6, 000

±4 10× 200 6, 000

243 × 128 0.123 3.5 −0.0840 −0.0743 390 546 0 10× 195 3, 900

±1 10× 195 5, 850

±2 10× 195 5, 850

±3 10× 195 5, 850

±4 10× 195 5, 850

323 × 256 0.123 3.5 −0.0860 −0.0743 225 467 0 7× 106 2, 226

cation furthering our project goals. Our current proposal reflects our commitment to maintaining

our growing level of usage.

In Table I, we detail the use of our 2008-2009 and 2009-2010 USQCD allocations. We have

computed a large number of clover-improved Wilson propagators on an ensemble of anisotropic

gauge configurations with three flavors of dynamical clover fermions [21, 22]. Multiple inversions

were made efficient using the EigCG inverter [23], and empirically we see a factor of three speed up

(this is less than optimal because we have utilized the inverter for only 10 right-hand sides at a time).

These propagators were computed with both zero and non-zero values of the electric field in Eq. (1).

Our choice of action is motivated by several restrictions. The method for extracting physical results

from dynamical lattice actions in which the sea-quark charges are turned off depends crucially on

partially quenched chiral perturbation theory, and therefore we need relatively light pion masses.

Second, to satisfy the quantization conditions, e.g. Eq. (2), while maintaining sufficiently small

background fields, we need large lattices. Thirdly, the use of clover improved fermions will reduce

lattice spacing errors (additionally the electromagnetic currents from the background fields are

automatically O(a) improved) and also allow for a large number of propagator inversions, reducing

the statistical noise, which is currently our largest source of uncertainty for baryons. Fourthly,

and crucially, the anisotropy allows for finer resolution of the time direction leading to better

determination of particle spectra, and better fits to non-standard time dependence of charged

particle correlation functions (see results below).

B. Selected Results

The calculations detailed in Table III have led so far to two numerical publications:

• “Extracting Electric Polarizabilities from Lattice QCD,” William Detmold, Brian Tiburzi

and André Walker-Loud, Phys. Rev. D79:094505 (2009), [arXiv:0904.1586].

• “Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in

Background Electric Fields,” William Detmold, Brian Tiburzi and André Walker-Loud, to

be published in Phys. Rev. D, [arXiv:1001.1131].
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π+ Effective Mass

C(τ, E) =
�

n

Zn(E)G(τ, E)

G(τ, E) = 1
2

� ∞

0
ds

�
E

2π sinh Es
exp

�
−1

2

�
Eτ 2 coth Es + s m2

eff

��
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FIG. 2: Plots of correlated fits to the electric field dependence of neutral meson energies. For each
field strength, the bootstrap averaged energies are plotted with error bars reflecting the uncertainty

from statistics and fitting. Fits I and II to the E-dependence are also shown with the plotted bands
reflecting the uncertainty in the parameters appearing in Eq. (7).

From the extracted polarizabilities, we can investigate the electric field dependence of
meson energies. This is done in Fig. 2 for the neutral pion and neutral kaon. For the con-
nected part of the neutral pion, we see downward curvature of the energy with respect to
increasing E , while for the neutral kaon the energy is comparatively quite flat. In physical
units, the polarizabilities απ0

E , and αK0

E , are not consistent with näıve expectations. To at-
tempt a qualitative explanation for the size of the ground state polarizabilities, we compare
our results with predictions from chiral perturbation theory. The neutral pion electric polar-
izability at one-loop is negative [34, 35]. While this is surprising, the one-loop polarizability
arises solely from the disconnected contraction between quark basis ηu and ηd mesons [11].
Hence the negative sign owes to group theory weight of ηu versus ηd in the pion interpolating
field, π0 ∼ 1√

2
(ηu − ηd). As we have only calculated the connected part of the correlator,

chiral perturbation theory suggests that απ0

E is an order of magnitude smaller than the näıve
expectation. While our result is of this magnitude, it is of the wrong sign (the average of
ηu and ηd polarizabilities should be positive). This negative value could arise from volume
effects, which are known to be non-vanishing at next-to-leading order in chiral perturbation
theory [23]. For the neutral kaon polarizability, the one-loop chiral computation vanishes,
even with electrically neutral sea quarks [12]. Our extracted neutral kaon polarizability,
however, is smaller than typical two-loop contributions. Because the dominant volume cor-
rections arise from pion loops, we expect the neutral pion and kaon volume effects to be
of the same size. If the negative result for the connected π0 is due to volume corrections,
then the near vanishing result for the K0 could be due to a near cancelation between the

10
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FIG. 5: Plots of the electric field dependence of the extracted rest energies for charged mesons.

is produced by considering the correlation function at successive times. The relativistic
propagator for a charged particle in Eq. (9) depends on the time, the electric field, and rest
energy, D = D

�
t, E(E), E

�
, albeit through a complicated one-dimensional integral. Given

numerical data for the correlation function, g(t, E), we can successively solve6 for the effective
energy in time by considering the ratio

D(t+ 1, Eeff, E)
D(t, Eeff, E)

=
g(t+ 1, E)
g(t, E)

, (14)

with the value of the electric field, E , as input. This produces the effective energy as a
function of time, Eeff(t). Effective energy plots for the charged pion and kaon are shown in
Fig. 4. The effective energy should plateau over long times to the rest energy of the charged
particle. From the figure, however, we see that contributions from the first excited state
linger, and plateaus are not quite reached before the noise grows substantially. Nonetheless,
we clearly see behavior reminiscent of the neutral particle effective mass plots in Fig. 1. This
confirms that Eq. (9) properly describes the correlation function of a charged particle in an
electric field.

Finally in Fig. 5, we plot the electric field dependence of the extracted rest energies of
the charged pion and kaon. There is striking non-monotonic behavior which indicates the
presence of quartic and perhaps higher-order terms in the field strength. We can make a

6 Because the effective energy is deduced from the non-linear relation in Eq. (14), there is no guarantee

a solution exists. Ensembles for which no solution can be found at a given time are dropped from the

bootstrap. This only affected error bars the n = 4 effective energy plot for the π+, and only for t ≥ 24,

where on average 5 bootstraps were dropped.

14

m(E) = m0 + αlatt
E E2 + ᾱlatt

EEEE4

π0 π+ K 0 K+

αlatt
E -2.6(5)(9) 18(4)(6) 1.5(4)(7) 8(3)(1)

ᾱlatt
E 1.8(5) 24(10) 0.6(5) 17(5)
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N αlatt
E µ̃latt µlatt

neutron 40(9)(2) -52(2)(1) -52(2)(1)
proton 32(13)(1) 52(3)(1) 83.9(3)(1)

µV (mπ � 390 MeV) = 4.3(2)(1)(1)[µN ]µV (mπ = 390 MeV) = 4.3(.2)(.1)(.1)[µN ]αV
E(mπ = 390 MeV) = −0.9(2.5)(.3)(.4)× 10−4 fm3



Hadron Electromagnetic Polarizabilities from Lattice QCD

over the last few years, we have established a program to compute 
polarizabilities of hadrons as well as magnetic moments, utilizing 
background electromagnetic fields

we now have to address several systematics (which need more 
computing time)

sea quark electric charges need to be “turned on”

light quark mass extrapolation - do we see            behavior?1/mπ

nucleon spin polarizabilities (need field gradients - more difficult 
quantization condition if any)

explicit magnetic background fields



Light-quark mass dependence of QCD:
the era of physical quark mass lattice QCD calculations is just around 
the corner - exciting time

care must be taken to understand the light quark mass dependence of 
observables - unique predictions from effective field theory - are 
these predictions verified in the numerical simulations?

effective field theory provides us with a deeper understanding of the 
underlying physics

(I realize here I am preaching to the choir)
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