Anatomy of Hadronic Parity Violation on the Lattice

Methi

Brian Tiburzi 22 August 2012

The Anatomy of Hadronic Parity Violation

- Parity Violation, Nuclear Parity Violation, Hadronic Parity Violation Weak interactions between quarks
- New Experiments, New Motivation Fundamental neutron physics beamline
- From Quarks to Nuclei Impossibility in non-perturbative QCD Opportunity

... especially for those interested in multi-hadrons

Disclaimer: P odd and CP even processes

Historical Introduction

• Parity Violation in the Weak Interaction ca. 1956

Maximal violation 100%

• Parity Violation in Nuclear Interactions

Parity in Nuclear Reactions*

NEIL TANNER Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California (Received June 26, 1957)

THE failure of parity conservation recently observed in β decay has raised the question of how accurately parity is conserved in nuclear reactions. A quite sensitive test is to be found in certain (p,α) reactions which are rigorously forbidden by angular momentum and parity conservation. The particular

55 Years Later: Standard Model

• Parity Violation in the Weak Interaction

$$\begin{split} G_F &= \frac{\sqrt{2}g^2}{8M_W^2} = 10^{-5}/\text{GeV}^2 & \text{product} \\ \mathcal{H} &= \frac{G_F}{\sqrt{2}} \left(\overline{u}_L \gamma_\mu d_L \right) \left(\overline{\nu}_L \gamma^\mu e_L \right) \\ & \langle p|V|n \rangle \sim g_V & \langle p|A|n \rangle \sim g_A \end{split}$$

'n

Long-Range Nuclear Force from Strong Interactions

Violate strong interaction symmetries to expose weak nuclear force

• (Many) Parity Violating Nuclear reactions have been seen starting in 1967

• 1989 From one in ten million to one in ten... ${}^{139}La |P_+\rangle \longrightarrow |P_+\rangle + \epsilon |P_-\rangle$

$$\epsilon = \langle P_+ | \frac{1}{E_+ - E_-} \mathcal{H}_{PV} | P_- \rangle \qquad \Delta E / E \sim 10^{-6} \quad \text{for} \quad \Delta E \sim 0.7 \,\text{keV}$$

 Same ideas are being applied in Atomic Parity Violation expts. atoms, molecules, solids

• Forthcoming: $n+{}^{4}\mathrm{He}$ $\ \vec{n}p
ightarrow d\gamma$

Parity Violating Nuclear Force

Panoply of Parity Violation

- PV nuclear transitions, PV photo-nuclear transitions (anapole moment), PV nucleon-nucleon interaction, PV nucleon-meson couplings, ..., ...
- Organize with Effective Theory mindset

Panoply of Parity Violation

- PV nuclear transitions, PV photo-nuclear transitions (anapole moment), PV nucleon-nucleon interaction, PV nucleon-meson couplings, ..., ...
- Organize with Effective Theory mindset

Parallel to Parity Violation

Lattice QCD: Connect Quarks to Hadrons, Few Body Quantum Many Body: Connect Few Body to Nuclei

Organize with Effective Theory mindset

Parallels to Parity Violation

Organize with Effective Theory mindset

Parallels to Parity Violation

Perturbative QCD: Connect Standard Model to QCD scale Lattice QCD: Connect Four Quark Ops. to Observables

Organize with Effective Theory mindset

Hadronic Parity Violation in QCD

Perturbative QCD: Connect Standard Model to QCD scale Lattice QCD: Connect Four Quark Ops. to Observables

- QCD renormalization of PV
- (First) Lattice QCD calculation of PV

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\langle p | \mathcal{L}_{\mathrm{PV}}^{I=1} | \pi n \rangle = h_{\pi}^{1}$

B Tiburzi, PRD 85 054020 (2012)

J Wasem, PRC 85 022501(R) (2012)

• In tandem: program to remove model dependence in NN, NNN, ...

Zhu Maekawa Holstein Ramsey-Musolf van Kolck, Phillips Schindler Springer Grießhammer, Shin Ando Hyun, Vanasse, . . .

Isovector Parity Violation in QCD

Why Isovector?

- QCD renormalization of PV
- (First) Lattice QCD calculation of PV

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

$$\langle p | \mathcal{L}_{\mathrm{PV}}^{I=1} | \pi n \rangle = h_{\pi}^{1}$$

Alleged: Longest range piece of PV NN interaction

Isovector Parity Violation in QCD

Why Isovector?

- QCD renormalization of PV
- (First) Lattice QCD calculation of PV

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

$$W^{\pm}: \Delta I = 0, 2 \propto |V_{ud}|^2$$
$$\Delta I = 1 \quad \propto |V_{us}|^2$$
$$Z^0: \Delta I = 0, 1, 2$$

$$\langle p | \mathcal{L}_{\mathrm{PV}}^{I=1} | \pi n \rangle = h_{\pi}^{1}$$

$$J^{W^-}_{\mu} = \overline{U}_L \gamma_{\mu} V D_L$$

$$J_{\mu}^{Z^{0}} = \frac{1}{c_{W}} \left[\overline{\Psi}_{L} \gamma_{\mu} T_{3} \Psi_{L} - s_{W}^{2} \overline{\Psi} \gamma_{\mu} \mathcal{Q} \Psi \right]$$

Alleged: 95% probe of hadronic neutral current

Alleged: 95% probe of hadronic neutral current

70's Donoghue, McKellar, ..., 90's Dia Savage Liu Springer

Sum NLL

... renormalization scheme dependence (Good!)

Renormalization scheme: dimensional regularization

Four dimensions affords simplification $\gamma_{\nu}\gamma_{\rho}\gamma_{\mu} = g_{\nu\rho}\gamma_{\mu} - g_{\nu\mu}\gamma_{\rho} + g_{\rho\mu}\gamma_{\nu} - i\varepsilon_{\nu\rho\mu\sigma}\gamma^{\sigma}\gamma_{5}$

Enlarge operator basis to include mixing with evanescent operators

 $\Delta F \neq 0$ Experts: Buras Jamin Lautenbacher Weisz, Ciuchini Franco Lubicz Martinelli Reina Scimemi Silvestrini

(PV in Lattice QCD requires different scheme than dim. reg. ... one-loop matching = bookkeeping)

Renormalization scheme: dimensional regularization

E.g.

 $\Delta S = 1$ $Q_1 = (\overline{s}d)_{V-A}(\overline{u}u)_{V-A}$ Mass independent scheme & QCD flavor blind!

W-exchange

U-spin $(\overline{s}s - dd)_{V-A}(\overline{u}u)_{V-A}$ V-spin $(\overline{u}u - \overline{d}d)_{V-A}(\overline{s}s)_{V-A}$

Parity invariance

$$\Delta I = 1 \qquad \mathcal{O} = (\overline{u}\gamma_{\mu}u - \overline{d}\gamma_{\mu}d)_{L}(\overline{s}\gamma^{\mu}s)_{L} - (\overline{u}\gamma_{\mu}u - \overline{d}\gamma_{\mu}d)_{R}(\overline{s}\gamma^{\mu}s)_{R}$$

Z-exchange

 $\Delta I = 1$ follows from $\Delta S = 1$ including QED penguins, and BSM operators

... just different initial conditions in evolution

Results ('t ⊦	looft-Veltma	ın sch	neme)	$\mathcal{L}_{\rm PV}^{I=1} = \sum C_i(\mu) \mathcal{O}_i(\mu)$		
$O_1 = (\bar{u}u - \bar{d}d)_A (\bar{u}u + \bar{d}d)_V,$ $O_2 = (\bar{u}u - \bar{d}d]_A [\bar{u}u + \bar{d}d)_V,$ $O_3 = (\bar{u}u - \bar{d}d)_V (\bar{u}u + \bar{d}d)_A,$ $O_4 = (\bar{u}u - \bar{d}d]_V [\bar{u}u + \bar{d}d)_A,$		Non-Strange vs. Stra $O_5 = (\bar{u}u - \bar{d}d)_A(\bar{s}s)_V,$ $O_7 = (\bar{u}u - \bar{d}d)_V(\bar{s}s)_A,$		ange $O_6 = (\bar{u}u - \bar{d}d]_A[\bar{s}s)_V,$ $O_8 = (\bar{u}u - \bar{d}d]_V[\bar{s}s)_A.$		Fierz constraint - 2 ops in chiral basis $L\otimes L-R\otimes R$
Alleged: 95% probe of hadronic neutral current		$C_i(\mu=1{ m GeV})$ $L\otimes R-R\otimes L$				
		i	LO [18]	LO	NLO (Z)	NLO $(Z + W)$
$\sin^2 heta_W$	Non-Strange	1 2 3	0.403 0.765 -0.463	0.264 0.981 -0.592	-0.054 0.803 -0.629	-0.055 0.810 -0.627
	VS.	4 5 6	0 5.61 -1.90	0 5.97 -2.30	0 4.85 -2.14	0 5.09 -2.55
1 80 - 100%	Strange	7 8	4.74 -2.67	5.12 -3.29	4.27 -2.94	4.51 -3.36
Dynamical Question!		[18] Kaplan Savage, NuPhA 556 (1993)			B Tiburzi, F	PRD 85 054020 (2012)

First Lattice Computation (J Wasem) PRC 85 022501(R) (2012)

 $p \sim \mathcal{O}_p(x) \qquad (\pi n)_{\text{s-wave}} \sim \gamma_5 \mathcal{O}_p(x)$

$$\langle p | \mathcal{L}_{\mathrm{PV}}^{I=1} | \pi n \rangle = h_{\pi}^{1}$$

$$h_{\pi NN}^{1,con} = (1.099 \pm 0.505^{+0.058}_{-0.064}) \times 10^{-7}$$

Easy to pick on a first calculation (much harder to have done it, or improve it!)

- Multi-hadron overlap?
- No Lellouch-Lüscher factor
- Ignores regularization scheme
- Inexact kinematics ∂_{τ}^2 vs. m_{π}^2
- Noisy operator self-contractions

Wilson coefficients of strange operators are enhanced Strangeness not-so suppressed

 $5 \times$

Auxiliary Fields for Isovector Parity Violation

• Perhaps only a Gedankenexperiment until exascale computers materialize

E.g.
$$\mathcal{O} = (\overline{q}\gamma_{\mu}\gamma_{5}\tau^{3}q)(\overline{q}\gamma_{\mu}q) \longrightarrow -[\overline{q}\gamma_{\mu}(\gamma_{5}\tau^{3}-1)q]^{2} \qquad \begin{array}{c} P \otimes \tau^{1} \\ \tau^{3} - \text{chiral symmetry} \end{array}$$

Introduces PC and PV four-quark operators

Integrate in auxiliary field
$$\Delta \mathcal{L} = \sigma^2 + i\sigma \left[\overline{q} \gamma_\mu \left(\gamma_5 \tau^3 - 1 \right) q \right]$$

No sign problem $\gamma_5 \otimes \tau^1$ -Hermiticity

• Can implement all isovector PV operators in sign-problem-free ways Continuum limit (!?!?)

$$\langle p | \mathcal{L}_{\mathrm{PV}}^{I=1} | \pi n \rangle = h_{\pi}^{1} \quad \rightarrow \langle p | \pi^{+}(x) | n \rangle_{\sigma}$$

Nucleon anapole moment: just calculate anapole form factor PV NN interactions from PV two-point functions

Bodies buried in gauge field generation

Isotensor Parity Violation $\mathcal{O} = (\overline{q}\tau^3 q)_A (\overline{q}\tau^3 q)_V - \frac{1}{3} (\overline{q}\vec{\tau} q)_A \cdot (\overline{q}\vec{\tau} q)_V$

• Only one operator & without self-contractions

$$\mathcal{L}_{PV}^{\Delta I=2} = \frac{G_F}{\sqrt{2}} C(\mu) \mathcal{O}(\mu)$$

Renormalization by bookkeeping

B Tiburzi, arXiv:1207.4996

LO	$C(1{ m GeV})/C^{(0)}$
LO [15]	0.79
LO	0.70
NLO	$C(1{ m GeV})/C^{(0)}$
't Hooft-Veltman	0.58
Naïve Dim. Reg.	0.74
RI/MOM	0.77
$\operatorname{RI}/\operatorname{SMOM}(\gamma_{\mu}, q)$	0.67
$RI/SMOM(\gamma_{\mu}, \gamma_{\mu})$	0.75
RI/SMOM(q, q)	0.73
$RI/SMOM(q, \gamma_{\mu})$	0.81

[15] Kaplan Savage, NuPhA 556 (1993)

Better proving ground for Lattice QCD?

$$\mathcal{L}_{NN} = [\vec{\nabla} p^{\dagger} \cdot \vec{\sigma} \, \sigma_2 \, p^*] \cdot [n^T \sigma_2 \, n] + \dots$$

s- to p-wave NN interaction

Operator matrix element between two hadrons (... bound states currently!)

πN interactions

 $\mathcal{L}_{\pi\pi N} + \mathcal{L}_{\pi\gamma N}$

External fields could ``substitute" for hadrons

πΡ۷

Isotensor three-pion vertex exists (πPV very suppressed in other channels)

Anatomy of Parity Violation

- New neutron experiments will constrain PV in few-body systems
- Connecting few-body PV to many-body PV stringent test of methods NMB/NNEFT
- Connecting PV four quark operators to PV couplings between hadrons: test of non-pQCD
- Connection of nuclear PV to Standard Model

