Multiple-channel generalization of Lellouch-Luscher formula

Stephen R. Sharpe (UW)

Based on M.T. Hansen and S.R. Sharpe, Phys.Rev. D86 (2012) 016007 [arXiv:1204.0826 [hep-lat]]

Outline

- Motivation
- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

Motivation

• Lattice QCD has made significant progress in the calculation of $K \rightarrow \pi\pi$ weak decay amplitudes

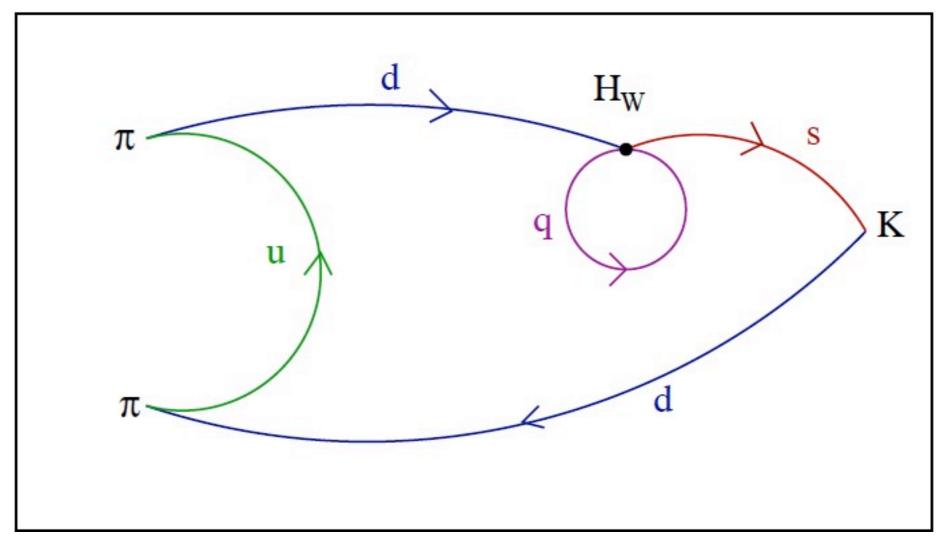
\star Complete calculation for isospin 2 final state [RBC 2012]

Pilot calculation with unphysical masses for I=0 [RBC 2012]

★ We will know soon (few years?) whether QCD explains the $\Delta I=I/2$ rule in K decays, and whether CP-violation in K decays (ε'/ε) is consistent with the standard model (SM)

- LHCb recently presented evidence for CP-violation in $D \rightarrow \pi \pi$, KK decays
 - * Larger rate than (naively) expected in SM, but large hadronic uncertainties in estimates
 - * Is a LQCD calculation possible?

Ingredients for $K \rightarrow \pi \pi$



 $\Rightarrow {}_L\langle \pi\pi | \mathcal{H}_W | K \rangle_L$

• Lattice details (discretization errors, chiral extrapolation, methods for multiple Wick contractions, ...) very important in practice but not discussed here

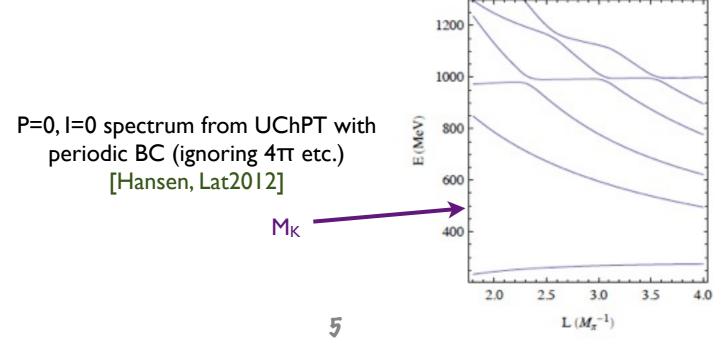
Ingredients for $K \rightarrow \pi \pi$

• Key theoretical issues arise from use of finite volume

- * Single-particle states (K) have exponentially suppressed FV effects--- these fall as exp(- $m_{\pi}L$) and often can be ignored
- ***** Two-particle states ($\pi\pi$) have enhanced (power-law) FV effects--distorted significantly compared to "out-states" of QFT

$$_L\langle \pi\pi| = c_0\langle \pi\pi(\ell=0), \text{out}| + c_4\langle \pi\pi(\ell=4), \text{out}| + \dots$$

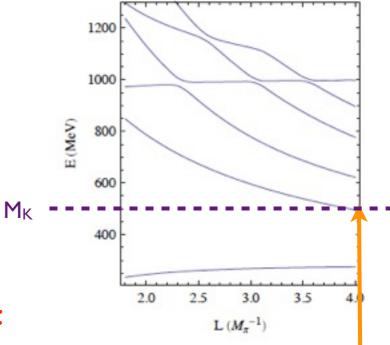
* Spectrum of two-particle states is discrete---energy does not match E_K for a general box size L



Ingredients for $K \rightarrow \pi \pi$

• Resolutions:

- * Spectrum of two-particle states encodes information about scattering phase shifts---can extract $\delta(M_K)$ if assume only low partial waves are important (and L > range of interaction) [Luscher]
- + Adjust L (and total 3-momentum) so $E_{\pi\pi} = E_K$



- Requires $\delta \& d\delta/dE$ at E=E_K, which can be determined from the slope of the spectral energy w.r.t. L

Infinite volume amplitude given by (up to exponentially small FV effects) $\langle \pi \pi(\ell=0), \text{out} | \mathcal{H}_W | K \rangle = \frac{e^{i\delta(M_K)}}{c_0} {}_L \langle \pi \pi | \mathcal{H}_W | K \rangle_L$

Generalize to $D \rightarrow \pi\pi$, KK?

- Luscher's quantization and Lellouch-Luscher formula predicated on lying below inelastic thresholds
 - ***** Works for $K \rightarrow \pi\pi$ because $M_K < 4M_{\pi}$
 - Fails spectacularly for D meson (M_D=1865 MeV), which can decay to 2π , KK, 4π , $\eta\eta$, 6π , ...
 - * D also decays to many other channels (e.g. $K\pi$) but on lattice can treat each strongly interacting sector separately, and focus here on I=S=0
- Describe here first step on way to full calculation

***** Keep only two-particle channels ($\pi\pi$, KK, $\eta\eta$), ignoring 4π , 6π , etc.

* Not expected to be realistic for D [f₀(1500) has 50% BR to 4π], though might give semi-quantitative guide

Outline

Motivation

- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

Problem to be solved

- "D" decays weakly to " $\pi\pi$ " & " $K\overline{K}$ "
 - * $2M_{\pi} < 2M_{K} < M_{D} < 4M_{\pi}$ so only two decay channels (though can add any number of two-particle channels and formalism generalizes)
 - \star Particles in each channel can be identical or not, degenerate or not

***** Total 3-momentum
$$\vec{P} = \frac{2\pi \vec{n}_P}{L}$$
 is arbitrary

 \star Kinematics is relativistic (derivation is in QFT)

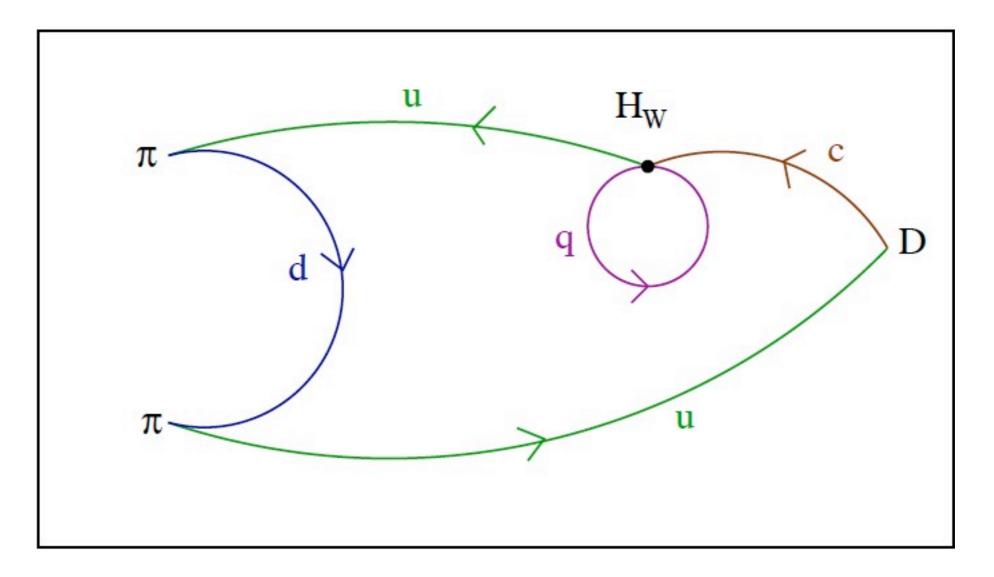
 \star Assume particles are scalars (should be straightforward to generalize)

• Given finite-volume matrix elements (from LQCD) want to determine infinite-volume matrix elements

 $M_{D \to n} = {}_L \langle n | \mathcal{H}_W | D \rangle_L \qquad \Longrightarrow$

 $\mathcal{A}_{D \to \pi\pi} = \langle \pi\pi | \mathcal{H}_W | D \rangle \quad \text{and} \quad \mathcal{A}_{D \to KK} = \langle K\bar{K} | \mathcal{H}_W | D \rangle$

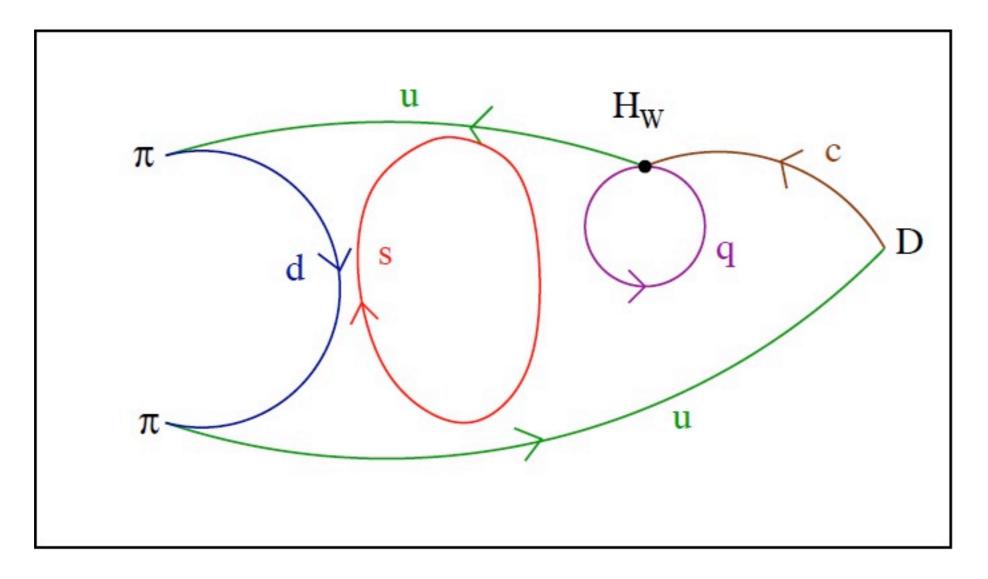
Ingredients for toy problem



 $\Rightarrow _L \langle n | \mathcal{H}_W | D \rangle_L$

• Choose \vec{P} and L so that FV state has energy $E_n = E_D = \sqrt{M_D^2 + \vec{P}^2}$

Ingredients for toy problem



 $\Rightarrow _L \langle n | \mathcal{H}_W | D \rangle_L$

• Key point: even if create two-particle state with 2 pion operator, strong interactions will mix it with K-antiK, so FV states are mixtures!

Ingredients for toy problem

- Need generalization of Luscher's quantization condition for multiple 2-particle channels
 - Obtained for "rest frame" and assuming S-wave scattering by [Bernard, Lage, Meissner & Rusetsky] with related work by several groups [Liu et al., Lage et al., Doring et al., Aoki et al.]
 - ★ We give the result for a "moving frame" and arbitrary scattering waves, generalizing methodology of [Kim, Sachrajda & SRS]
 - **H** Identical result obtained independently by [Briceno & Davoudi]
- Need generalization of Lellouch-Luscher formula to account for mixing between channels

* We give the result assuming S-wave dominance, any number of 2particle channels, and arbitrary total 3-momentum

Outline

- Motivation
- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

Quantization condition

 $\det\left(F^{-1} + i\mathcal{M}\right) = 0$

(neglecting exponentially suppressed FV effects)

Identical in form to single-channel moving-frame result of [Kim, Sachrajda & SRS]

Quantization condition

 $\det\left(F^{-1} + i\mathcal{M}\right) = 0$

Known kinematic FV factor (generalized Luscher zeta function) Depends on E and 3-momentum P Diagonal in channel space; non-trivial in angular momentum

Scattering amplitude (infinite volume quantity) Depends on CM energy E^{*} Non-trivial matrix in channel space; diagonal in angular momentum

$$\mathcal{M}_{ij;\ell_1,m_1;\ell_2,m_2} = \mathcal{M}_{ij}^{\ell_1,m_1} \delta_{\ell_1\ell_2} \delta_{m_1m_2}$$

channel indices

 $1 = \pi\pi, \ 2 = K\overline{K}$

For given (L, \vec{P}) find solutions only for discrete energies E_n

Quantization condition

$$\det\left(F^{-1} + i\mathcal{M}\right) = 0$$

$$\begin{aligned} F_{ij;\ell_1,m_1;\ell_2,m_2} &\equiv \delta_{ij}\eta_i \bigg[\frac{\mathrm{Re}q_i^*}{8\pi E^*} \delta_{\ell_1\ell_2} \delta_{m_1m_2} + \\ &\frac{i}{2\pi E L} \sum_{\ell,m} x_i^{-\ell} \, \mathcal{Z}_{\ell m}^P [1;x_i^2] \, \int \! d\Omega Y_{\ell_1,m_1}^* Y_{\ell,m}^* Y_{\ell_2,m_2} \bigg] \end{aligned}$$

 $E^* = \sqrt{E^2 - \vec{P}^2}$ is CM energy $q_j^* = \sqrt{E^{*2}/4 - m_j^2}$ is relative momentum in CM for j'th channel $x_i \equiv q_i^* L/(2\pi)$ and $\mathcal{Z}_{\ell m}^P$ is a generalization of the zeta-function

 $\eta=1/2$ for identical particles and 1 for non-identical

Practical quantization condition

$$\det\left(F^{-1} + i\mathcal{M}\right) = 0$$

• If can ignore scattering above I_{max} , i.e. $\mathcal{M}_{ij}^{\ell > \ell_{max}, m} = 0$

 \star then condition collapses to determinant of a finite matrix

• E.g. if only s-wave scattering is significant then

$$\Delta^{\mathcal{M}}(L, E^*, \vec{P}) \equiv \det \begin{bmatrix} \begin{pmatrix} (F_1^s)^{-1} & 0\\ 0 & (F_2^s)^{-1} \end{pmatrix} + i \begin{pmatrix} \mathcal{M}_{1 \to 1}^s & \mathcal{M}_{2 \to 1}^s\\ \mathcal{M}_{1 \to 2}^s & \mathcal{M}_{2 \to 2}^s \end{pmatrix} \end{bmatrix} = 0$$

$$(F_j^s)^{-1} = \frac{4\pi E^*}{\eta_j q_j^*} \left(1 - e^{2i\phi^P(q_j^*)}\right)$$

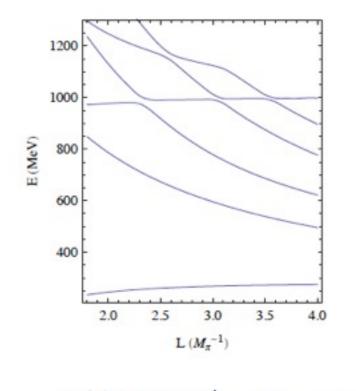
 $\phi^P(q_j^*)$ is Lüscher's kinematic phase

• Consider "s-wave only" case for rest of talk

Practical quantization condition

$$\Delta^{\mathcal{M}}(L, E^*, \vec{P}) \equiv \det \begin{bmatrix} \begin{pmatrix} (F_1^s)^{-1} & 0\\ 0 & (F_2^s)^{-1} \end{pmatrix} + i \begin{pmatrix} \mathcal{M}_{1 \to 1}^s & \mathcal{M}_{2 \to 1}^s\\ \mathcal{M}_{1 \to 2}^s & \mathcal{M}_{2 \to 2}^s \end{pmatrix} \end{bmatrix} = 0$$

Solving this equation with model for \mathcal{M}^s leads to:



 $\Delta^{\mathcal{M}}(L, E^*, \vec{P} = 0) = 0$

Extracting scatt. amp. from En

$$\Delta^{\mathcal{M}}(L, E^*, \vec{P}) \equiv \det \begin{bmatrix} \begin{pmatrix} (F_1^s)^{-1} & 0\\ 0 & (F_2^s)^{-1} \end{pmatrix} + i \begin{pmatrix} \mathcal{M}_{1 \to 1}^s & \mathcal{M}_{2 \to 1}^s\\ \mathcal{M}_{1 \to 2}^s & \mathcal{M}_{2 \to 2}^s \end{pmatrix} \end{bmatrix} = 0$$

• Write scattering amplitude in terms of S-matrix

$$i\left(\mathcal{M}\right) = \left(Q\right) \left[\left(S\right) - 1 \right] \left(Q\right)$$
$$\left(Q\right) = \sqrt{4\pi E^*} \begin{bmatrix} (q_1^* \eta_1)^{-1/2} & 0\\ 0 & (q_2^* \eta_2)^{-1/2} \end{bmatrix} \text{ is phase-space factor}$$

• S is unitary, and can be taken to be symmetric (T inv.)

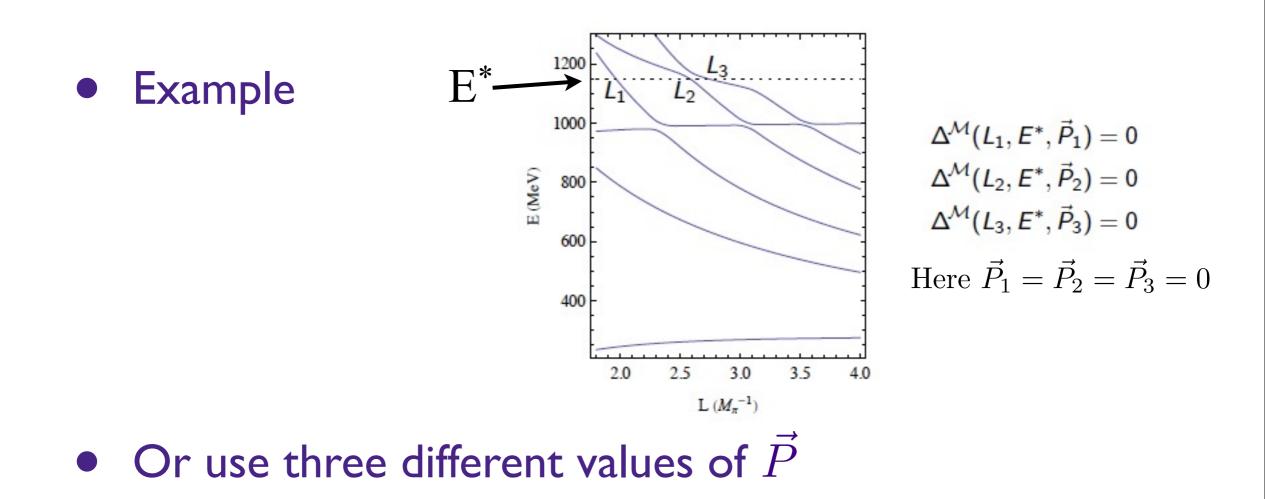
 \star Determined by 3 real physical parameters, e.g.

$$S^{s} = \begin{pmatrix} \mathbf{c}_{\epsilon} & -\mathbf{s}_{\epsilon} \\ \mathbf{s}_{\epsilon} & \mathbf{c}_{\epsilon} \end{pmatrix} \begin{pmatrix} e^{2i\delta_{\alpha}} & 0 \\ 0 & e^{2i\delta_{\beta}} \end{pmatrix} \begin{pmatrix} \mathbf{c}_{\epsilon} & \mathbf{s}_{\epsilon} \\ -\mathbf{s}_{\epsilon} & \mathbf{c}_{\epsilon} \end{pmatrix}$$

Extracting scatt. amp. from En

$$\Delta^{\mathcal{M}}(L, E^*, \vec{P}) \equiv \det \left[\begin{pmatrix} (F_1^s)^{-1} & 0\\ 0 & (F_2^s)^{-1} \end{pmatrix} + i \begin{pmatrix} \mathcal{M}_{1 \to 1}^s & \mathcal{M}_{2 \to 1}^s\\ \mathcal{M}_{1 \to 2}^s & \mathcal{M}_{2 \to 2}^s \end{pmatrix} \right] = 0$$

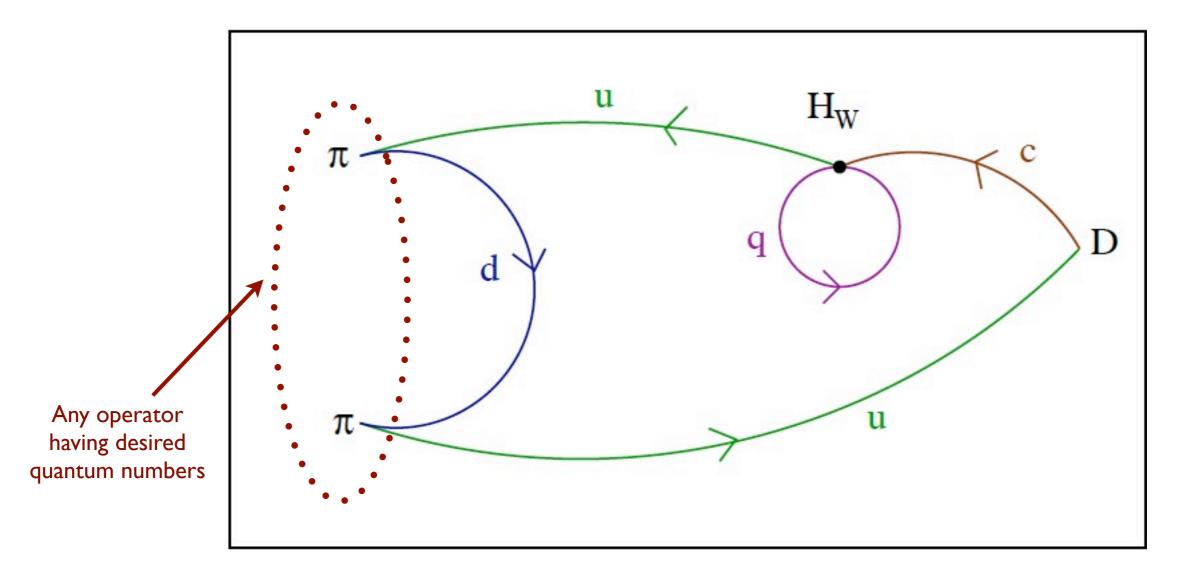
• Need three FV states at given E^* to determine \mathcal{M}^s



Outline

- Motivation
- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

Recall need for LL formula



 $\Rightarrow M_{D \to n} = {}_{L} \langle n | \mathcal{H}_{W} | D \rangle_{L} \text{ for several choices of } \vec{P} \text{ and } L \text{ s.t. } E_{n} = \sqrt{M_{D}^{2} + \vec{P}^{2}}$

From these want to obtain $\mathcal{A}_{D\to\pi\pi} = \langle \pi\pi | \mathcal{H}_W | D \rangle$ & $\mathcal{A}_{D\to KK} = \langle K\bar{K} | \mathcal{H}_W | D \rangle$

Result

• Need to determine coefficients in decomposition:

$$L\langle n| = C_{\pi}\langle \pi\pi, \text{out}| + C_{K}\langle K\overline{K}, \text{out}| + \cdots$$

• We find that each choice of (L, \vec{P}) determines

$$\begin{split} M_{\infty} &= e^{i\phi_1} \sqrt{q_1^* \eta_1} A_{D \to \pi\pi} + z e^{i\phi_2} \sqrt{q_2^* \eta_2} A_{D \to KK} \\ z &= \tan(\epsilon) \frac{\sin(\delta_\beta + \phi_1)}{\sin(\delta_\beta + \phi_2)} \\ S^s &= \begin{pmatrix} c_{\epsilon} & -s_{\epsilon} \\ s_{\epsilon} & c_{\epsilon} \end{pmatrix} \begin{pmatrix} e^{2i\delta_{\alpha}} & 0 \\ 0 & e^{2i\delta_{\beta}} \end{pmatrix} \begin{pmatrix} c_{\epsilon} & s_{\epsilon} \\ -s_{\epsilon} & c_{\epsilon} \end{pmatrix} \\ \phi_j &\equiv \phi^P(q_j^*) \text{ are Lüscher's kinematic phases} \end{split}$$

- Can show using generalized quantization condition and Watson's theorem that M_∞ is real
- Need to use generalized quantization condition to determine δ_β & ϵ in order to extract amplitudes from M_∞

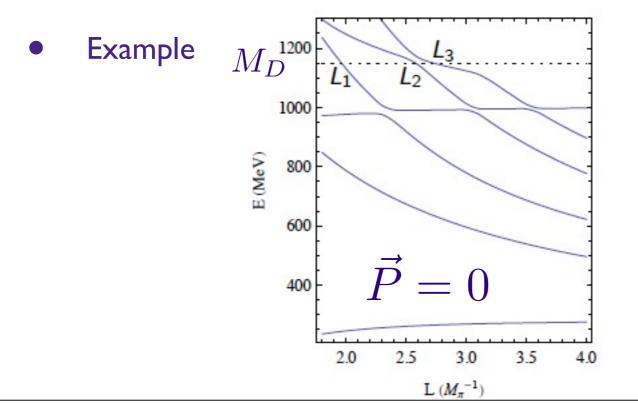
Result

• Explicit result for $M_{\infty} = e^{i\phi_1} \sqrt{q_1^* \eta_1} A_{D \to \pi\pi} + z e^{i\phi_2} \sqrt{q_2^* \eta_2} A_{D \to KK}$

$$M_{\infty}^{2} = -|M_{D \to n}|^{2} (16\pi M_{D} E_{n} L^{6}) \frac{\frac{\partial \phi_{1}}{\partial L} + z^{2} \frac{\partial \phi_{2}}{\partial L}}{\frac{d E_{n}}{d L} + \frac{\vec{P}^{2}}{E_{n} L}}$$

 \star In addition to δ_{β} & ϵ , need to determine dE_n/dL to use this formula

- To separately extract the two (complex) infinite volume amplitudes, need 3 values of (L, \vec{P}) satisfying $E_n = E_D$
- Positivity of LHS implies $dE_n^*/dL < 0$ for all spectral lines above all thresholds



Need $M_{D \rightarrow n}$ and slope dE_n/dL at L_1, L_2, L_3

Clearly very challenging in practice!

Comments

$$M_{\infty}^{2} = -|M_{D \to n}|^{2} (16\pi M_{D} E_{n} L^{6}) \frac{\frac{\partial \phi_{1}}{\partial L} + z^{2} \frac{\partial \phi_{2}}{\partial L}}{\frac{d E_{n}}{d L} + \frac{\vec{P}^{2}}{E_{n} L}}$$

- Result in terms of spectral energies E_n is unfamiliar
- Single channel result (original LL result) can be expressed similarly

$$\Gamma_{D \to \pi\pi} = \frac{2E_n L^6 |M_{D \to n}|^2}{M_D} \left[\frac{-\frac{\partial \phi}{\partial L}}{\frac{dE_n}{dL} + \frac{\vec{P}^2}{E_n L}} \right]$$

***** Need only determine $E_n \& dE_n/dL$ if want width

* Since $\partial \phi/\partial L < 0$ must have $dE_n^*/dL < 0$ if spectral line above threshold

Comments

• Generalized Watson's theorem shows that following combinations are real

$$v_1 = e^{-i\delta_{\alpha}} \left[\sqrt{q_1^* \eta_1} A_{D \to \pi\pi} c_{\epsilon} + \sqrt{q_2^* \eta_2} A_{D \to KK} s_{\epsilon} \right],$$
$$v_2 = e^{-i\delta_{\beta}} \left[-\sqrt{q_1^* \eta_1} A_{D \to \pi\pi} s_{\epsilon} + \sqrt{q_2^* \eta_2} A_{D \to KK} c_{\epsilon} \right]$$

• Can express M_{∞} in terms of these real quantities

$$M_{\infty} = \sin(\phi_1 - \phi_2) \left[-v_1 \frac{c_{\epsilon}}{\sin(\delta_{\alpha} + \phi_2)} + v_2 \frac{s_{\epsilon}}{\sin(\delta_{\beta} + \phi_2)} \right]$$

* Relative sign of
$$v_1 \& v_2$$
 is physical
* Need three determinations of $|M_{\infty}|$ to determine v_j

Sketch of derivation

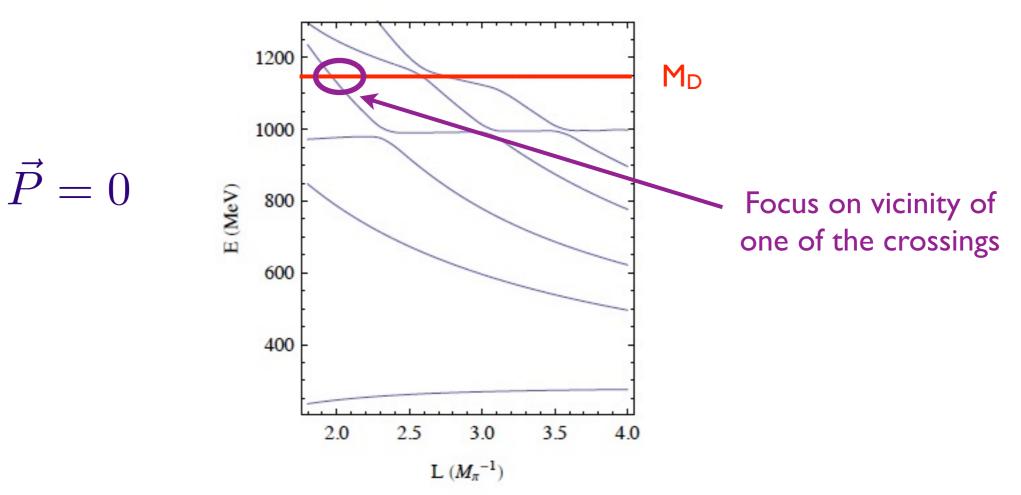
- Determining coefficients in decomposition of FV state knows nothing about D $L\langle n| = C_{\pi}\langle \pi\pi, \text{out}| + C_{K}\langle K\overline{K}, \text{out}| + \cdots$
- However, LL used a trick involving the D & the quantization condition to pick out the coefficients, and we generalize it to the multiple-channel case

Sketch of derivation

• Begin with strong-interaction spectrum for (say) I=0 and chosen \vec{P}

***** Two-particle spectrum E_n plus D meson (exactly stable)

• Example

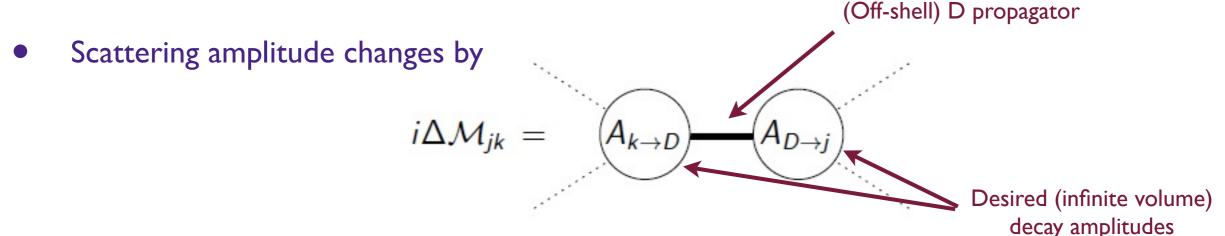


Sketch of derivation

• Add an (arbitrarily) weak interaction into the full Hamiltonian, so that the D couples to $\pi\pi$, etc. and thus becomes a resonance

$$\mathcal{H}(x) \longrightarrow \mathcal{H}(x) + \lambda \mathcal{H}_W(x)$$

• Mixing implies level splitting: $E_n \rightarrow E_D + \Delta E$ $\Delta E = \pm \lambda L^3 |_L \langle n | \mathcal{H}_W | D \rangle_L | \equiv \pm \lambda L^3 |M_{D \rightarrow n}|$



• The quantization condition changes to

$$\Delta^{\mathcal{M}+\Delta\mathcal{M}}(L, E^* = M_D + \lambda\Delta E^*, \vec{P}) = 0$$

- Expand in λ ; linear term gives relation between FV and infinite volume amplitudes
- As expected, result is independent of form of H_W

Outline

- Motivation
- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

- Method of KSS does not use auxiliary QM theory, but is directly based in QFT
- Simplifies generalization to arbitrary 3-momentum and multiple channels
- Work in EFT describing interactions between stable hadrons (π , K) with NO assumptions about form of interactions (other than range < L)
- Consider two-point correlator in finite volume with fixed total \dot{P} ; poles in E give positions of spectral lines

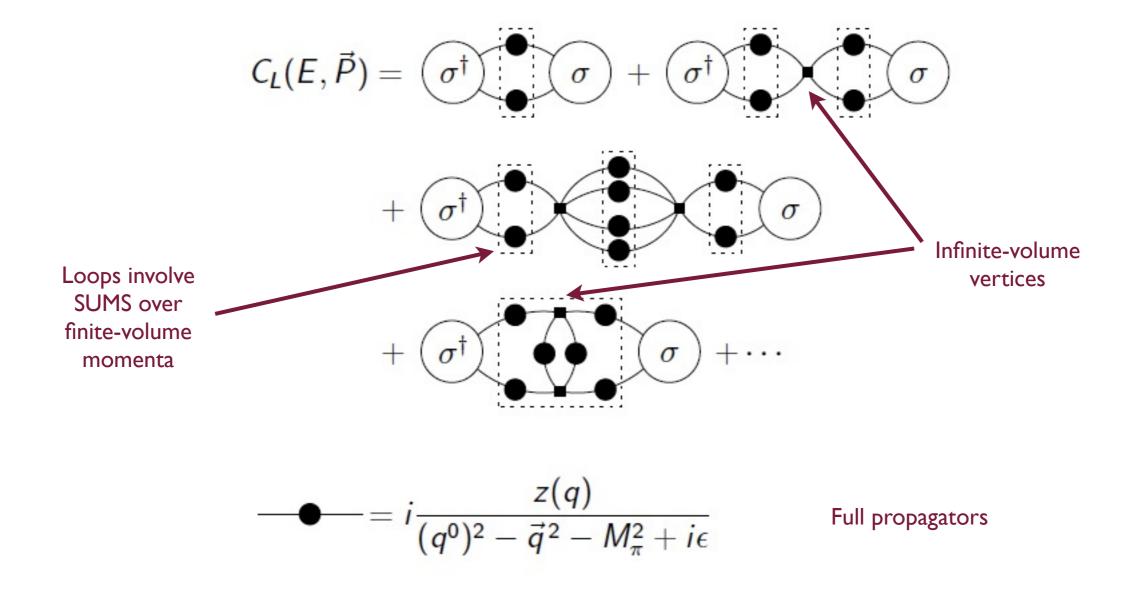
$$C_L(E, \vec{P}) \equiv \int_L d^4 x \ e^{-i\vec{P}\cdot\vec{x} + iEt} \langle \Omega | T\sigma(x)\sigma^{\dagger}(0) | \Omega \rangle_L$$

Any op

Any operator coupling to desired two particle states

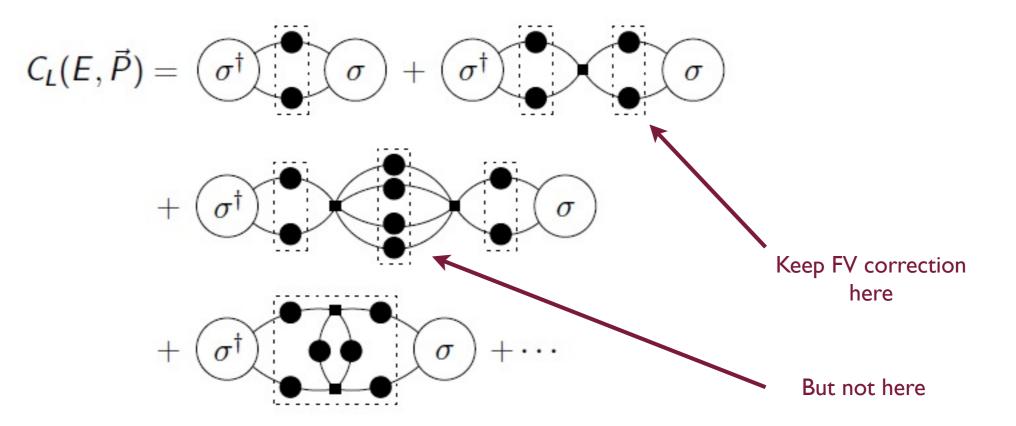
$$C_L(E,\vec{P}) \equiv \int_L d^4x \ e^{-i\vec{P}\cdot\vec{x}+iEt} \langle \Omega | T\sigma(x)\sigma^{\dagger}(0) | \Omega \rangle_L$$

Consider first a single two-particle channel [KSS]

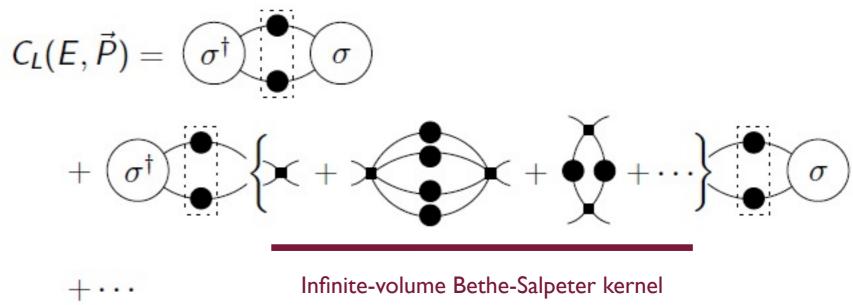


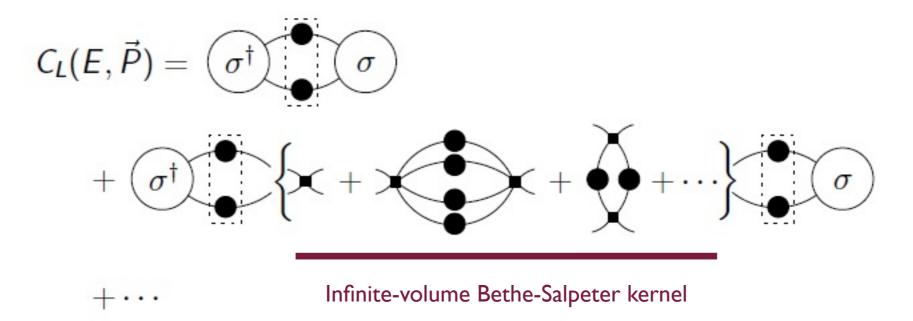
- Key point: finite-volume loop sums differ from infinite-volume loop integrals ONLY if ALL particles can go on shell for given E (aside from exponentially suppressed corrections)
- If all particles can go on shell then difference between FV and infinite volume loops is not exponentially suppressed---use summation formula of [KSS]

• Only get FV corrections in toy model from $\pi\pi$ and KK loops (and not 4π , etc.)

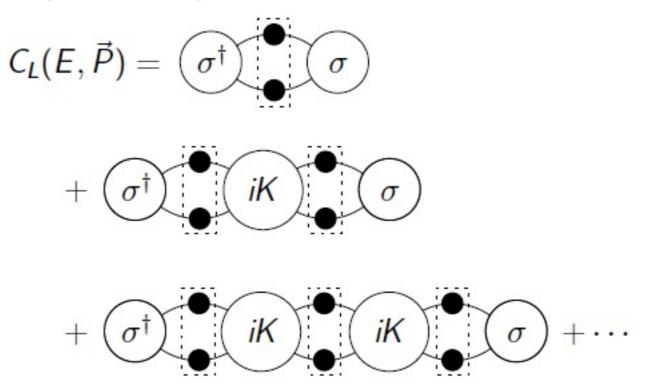


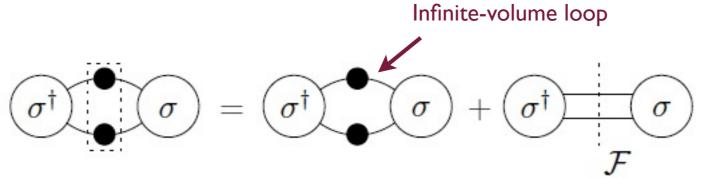
So can rewrite as:





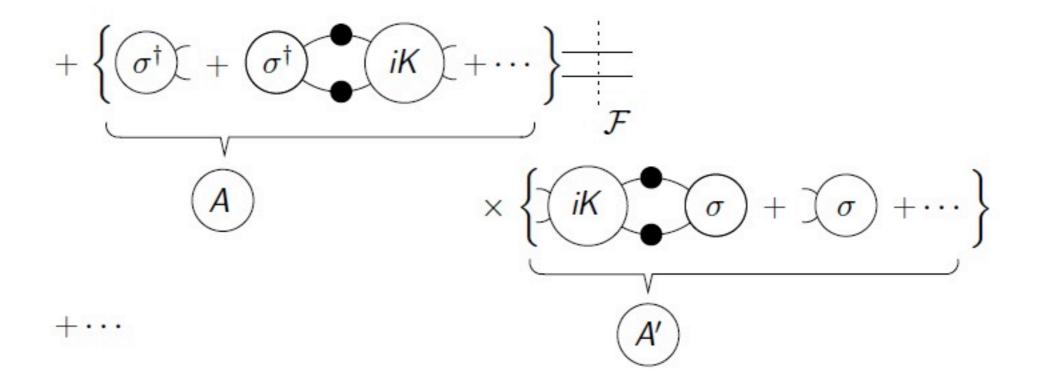
Working to higher order get:



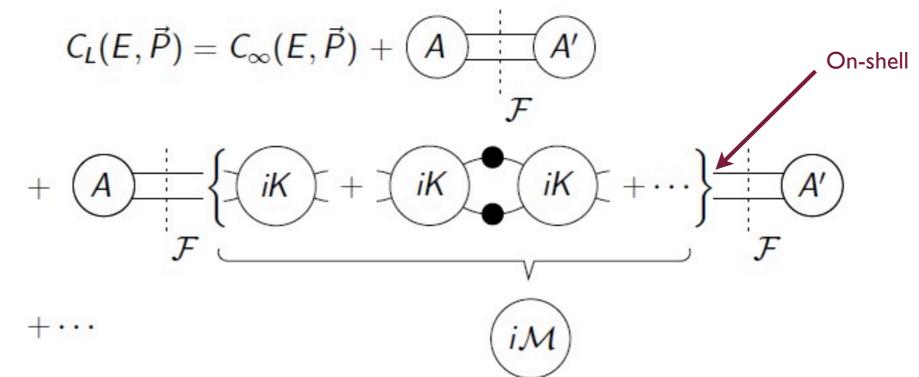


And obtain:

$$C_L(E,\vec{P})=C_\infty(E,\vec{P})$$



At second-order in F full on-shell scattering amplitude appears:



And so get geometric series:

$$C_{L}(E, \vec{P}) = C_{\infty}(E, \vec{P}) + (A) + (A')$$

$$F$$

$$+ (A) + (iM) + (A')$$

$$F$$

$$F$$

$$+ (A) + (iM) + (iM) + (A') + \cdots$$

$$F$$

$$F$$

$$F$$

$$F$$

We conclude

$$C_L(E,\vec{P}) - C_{\infty}(E,\vec{P}) = -\sum_{n=0}^{\infty} A' F[-i\mathcal{M}F]^n A = -A' \frac{1}{F^{-1} + i\mathcal{M}} A$$

So for given values of $\{L, \vec{n}_P\}$, the energies in the spectrum are all E^* for which

 $\det(F^{-1}+i\mathcal{M})=0.$

Generalization to multiple 2-particle channels requires addition of channel index for different "cuts", and Bethe-Salpeter kernel becomes irreducible in s-channel w.r.t. both two pions and two kaons

Outline

- Motivation
- Problem to be solved (multiple 2-particle channels)
- Generalized Luscher quantization condition
- Generalized Lellouch-Luscher formula
- Technical details
- Other applications & outlook

Other applications of generalized LL formula

- $K \rightarrow \pi \pi$ including isospin breaking
 - $\pi^{+}\pi^{-}$ and $\pi^{0}\pi^{0}$ not degenerate---so have two 2-particle channels and no further inelasticity
- K→ππ using staggered fermions including taste breaking
- $\Omega^- \to \Lambda K^-, \ \Xi^0 \pi^-, \ \Xi^- \pi^0$

* 3 body $\Xi \pi \pi$ channel highly suppressed

 Many applications of generalized Luscher quantization formula already investigated

Outlook for $D \rightarrow \pi\pi$,KK

- Including multiple 2-particle channels is only first step
- Even that step will be challenging numerically as need multiple spectral lines
- Some simplification may be possible by changing the boundary conditions (G-parity-like?)
- Key problem is including 4π channel
 - Quantization condition for 3 NR particles obtained by [Polejaeva & Rusetsky] with related work by [Kreuzer & Griesshammer]
- Should be possible in principle

41