

Nuclei

Martin J. Savage University of Washington August 2012, INT

The Structure and Interactions of Matter from Quantum Chromodynamics

(Partial) Unification of Nuclear Physics - Quantifiable Uncertainties

Fine-Tunings define our Universe

- Nuclear physics exhibits fine-tunings
 - Why ??
 - Range of parameters to produce sufficient carbon ?

A = 12 Energy-Level Diagram

HyperNuclear Programs J-PARC, FAIR, JLab,

NPLQCD

Silas Beane New Hampshire

Emmanuel Chang Barcelona

William Detmold William+Mary / MIT

Huey-Wen Lin U. of Washington

Tom Luu LLNL

Saul Cohen

U. of Washington

Pari Junnarkar New Hampshire

Kostas Orginos William+Mary

Assumpta Parreno Barcelona

Martin Savage U. of Washington

Andre Walker-Loud ex-New Hampshire LBNL

+

... to make predictions for the structure and interactions of nuclei using lattice QCD.

Aaron Torok

US Lattice Quantum Chromodynamics

Two-Particle Energy Levels (Luscher's Method)

Below Inelastic Thresholds :

Measure on lattice

$$\delta E = 2\sqrt{p^2 + m^2} - 2m$$

$$\mathbf{S}\left(\,\eta\,\right) \;\equiv\; \sum_{\mathbf{j}}^{\Lambda_{j}} \frac{1}{|\mathbf{j}|^{2} - \eta} \;-\; 4\pi\Lambda_{j}$$

Gives the scattering amplitude at δE

Luscher Eigenvalue Relation

A₁+ Bound-state or Scattering state ?

$$p \cot \delta(p) = \frac{1}{\pi L} \mathbf{S} \left(\left(\frac{Lp}{2\pi} \right)^2 \right)$$

$$k = \frac{2\pi}{L}n$$

n = (nx, ny, nz)

Beyond S-wave

e.g. A_{2^+} , L=6

Luscher phenomenology :

Tom Luu et al, Phys. Rev. D83 (2011) 114508

$$q^{13} \cot \delta_{6} = \left(\frac{2\pi}{L}\right)^{13} \frac{1}{\pi^{3/2}} \times \left(\tilde{q}^{12} \mathcal{Z}_{0,0}\left(1;\tilde{q}^{2}\right) + \frac{6\tilde{q}^{8} \mathcal{Z}_{4,0}\left(1;\tilde{q}^{2}\right)}{17} - \frac{160\sqrt{13}\tilde{q}^{6} \mathcal{Z}_{6,0}\left(1;\tilde{q}^{2}\right)}{323} - \frac{40\tilde{q}^{4} \mathcal{Z}_{8,0}\left(1;\tilde{q}^{2}\right)}{19\sqrt{17}} - \frac{2592\sqrt{21}\tilde{q}^{2} \mathcal{Z}_{10,0}\left(1;\tilde{q}^{2}\right)}{7429} + \frac{1980 \mathcal{Z}_{12,0}\left(1;\tilde{q}^{2}\right)}{7429} + \frac{264\sqrt{1001} \mathcal{Z}_{12,4}\left(1;\tilde{q}^{2}\right)}{7429}\right)$$

Bound-States At Rest and in Motion

Zohreh Davoudi et al, Phys. Rev. D84 (2011) 114502

Bound-States in Motion Equal Masses

Multi-Volume Anisotropic Clover Study by NPLQCD 2009 - 2011

lattice spacing : $b \sim 0.123$ fm pion mass : $m_{\pi} \sim 390$ MeV fermion action : Clover anisotropy : $\xi_t \sim 3.5$

 $L \sim 2 \text{ fm}$

 $L \sim 3 ~{\rm fm}$

 $L \sim 4 \,\mathrm{fm}$

resources :~ 80×10^6 core hrs $m_{\pi}L \sim 4$, 5 , 6 , 8 $m_{\pi}T \sim 9$, 9 , 9 , 18 Thursday, August 16, 2012

Anisotropic Clover Multi-Volume Study : Details

L	cfgs	Srcs
24	2215	390,000
32	739	135,000

$L^3 \times T$	$16^3 \times 128$	$20^3 imes 128$	$24^3 imes 128$	$32^3 \times 256$	Extrapolation
$L \ (fm)$	~ 2.0	~ 2.5	~ 3.0	~ 4.0	∞
$m_{\pi}L$	3.86	4.82	5.79	7.71	∞
$m_{\pi}T$	8.82	8.82	8.82	17.64	∞
M_N (t.l.u.)	0.21004(44)(85)	0.20682(34)(45)	0.20463(27)(36)	0.20457(25)(38)	0.20455(19)(17)
M_{Λ} (t.l.u.)	0.22446(45)(78)	0.22246(27)(38)	0.22074(20)(42)	0.22054(23)(31)	0.22064(15)(19)
M_{Σ} (t.l.u.)	0.22861(38)(67)	0.22752(32)(43)	0.22791(24)(31)	0.22726(24)(43)	0.22747(17)(19)
M_{Ξ} (t.l.u.)	0.24192(38)(63)	0.24101(27)(38)	0.23975(20)(32)	0.23974(17)(31)	0.23978(12)(18)

Multi-Volume Study : Finite-Volume Baryon Masses

m L~ 3.9, 4.8, 5.8, 7.7

H-Dibaryon - An Exotic Nucleus The First QCD Calculation of a Nucleus

APS » Journals » Physics » Synopses » Binding baryons on the lattice

Binding baryons on the lattice

Evidence for a Bound H Dibaryon from Lattice QCD

S. R. Beane, E. Chang, W. Detmold, B. Joo, H. W. Lin, T. C. Luu, K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD Collaboration) Phys. Rev. Lett. 106, 162001 (Published April 20, 2011)

Bound H Dibaryon in Flavor SU(3) Limit of Lattice QCD

Takashi Inoue, Noriyoshi Ishii, Sinya Aoki, Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, Keiko Murano, Hidekatsu Nemura, and Kenji Sasaki (HAL QCD Collaboration) Phys. Rev. Lett. **106**, 162002 (Published April 20, 2011)

H-Dibaryon An Exotic Nucleus

Two-Body Bound States (I)

Two-Body Bound States (II)

Hyperon Nucleon Interactions

Meissner+Haidenbauer - Experiment + YN-EFT (LO)

Cancellation between channels in dense matter energy-shift of hyperon

Hyperon Nucleon Interactions

NPLQCD - Lattice QCD + YN-EFT (LO)

Cancellation between channels in dense matter energy-shift of hyperon

The Golden Window

b~0.123 fm 20x20x20 x 128 pion ~ 390 MeV

Signal-to-Noise Degradation

 $\frac{\sigma}{\overline{x}} = \alpha \exp\left(\frac{E_s(t)t}{t}\right)$

From Anisotropic to Isotropic Clover Configurations

- Binding becoming smaller at smaller pion mass
 - FV effects getting larger for fixed volume
 - Need larger volumes and better statistics
- Don't have resources to complete in reasonable time-frame
 - Can't compete with K-machine head-on
- Only need 1 or 2 levels cleanly not 10 (at present)

Many Nucleons (Baryons)

Large number of Wick contractions

Proton : N ^{cont} = 2
²³⁵U : N ^{cont} = 10¹⁴⁹⁴

$$N_{\text{cont.}} = u!d!s!$$
 (Naive)
 $= (A + Z)!(2A - Z)!s!$
 $\sim A^3$ (Kaplan)

Symmetries provide significant reduction

 $^{3}\mathrm{He}$: $2880 \rightarrow 93$

Recursion Relations Other Tricks

Multi-Volume Isotropic Clover Study by NPLQCD In Search of Nuclei

- b ~ 0.145 fm
- SU(3) Symmetry Limit
- m ~ 800 MeV
- Isotropic Clover

L~3.4 fm

L~4.5 fm

L~6.7 fm

m L ~ 14.3, 19.0, 28.5

Isotropic Clover Multi-Volume Study : Details

L	cfgs	Srcs
24	3822	183 456
32	3050	73 200
48	1212	38784

ensemble	$ \mathbf{n} = 0$	$ {f n} ^2 = 1$	$ \mathbf{n} ^2 = 2$	$ {f n} ^2 = 3$	$ {f n} ^2 = 4$	$ {f n} ^2 = 5$
$24^3 \times 48$	1.2028(10)(02)	1.2286(11)(01)	1.2538(13)(02)	1.2787(16)(02)	1.3020(20)(03)	1.3256(23)(03)
$32^3 imes 48$	1.2040(15)(06)	1.2188(15)(5)	1.2336(16)(6)	1.2484(17)(8)	1.2624(19)(8)	1.2770(20)(10)
$48^3\times 64$	1.2022(21)(05)	1.2087(22)(06)	1.2152(23)(06)	1.2216(24)(06)	1.2281(25)(11)	1.2341(26)(12)
$L = \infty$	1.2034(13)(03)					
Label L	/h T/h B P	hm h[fm] I	[fm] T [fm]	m [MeV]	m I. m	

Label	L/b	T/b	β	$b m_q$	$b [{\rm fm}]$	$L \; [{ m fm}]$	$T [\mathrm{fm}]$	$m_\pi [{ m MeV}]$	$m_\pi \; L$	$m_\pi \; T$	$N_{ m cfg}$	$N_{ m src}$
Α	24	48	6.1	-0.2450	0.145	3.4	6.7	806.5(0.3)(0)(8.9)	14.3	28.5	3822	48
В	32	48	6.1	-0.2450	0.145	4.5	6.7	806.9(0.3)(0.5)(8.9)	19.0	28.5	3050	24
С	48	64	6.1	-0.2450	0.145	6.7	9.0	806.7(0.3)(0)(8.9)	28.5	38.0	1212	32

A-body SU(3) Structure

 $\begin{array}{ll} (8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=0^{+}} \rightarrow 1 \oplus \mathbf{27} \oplus \overline{\mathbf{28}} \\ (8 \otimes 8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=1^{+}} \rightarrow 8 \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \overline{\mathbf{35}} \\ (8 \otimes 8 \otimes 8 \otimes 8 \otimes 8)_{J^{\pi}=2^{+}} \rightarrow 8 \oplus \mathbf{27} \end{array}, \qquad A=4$

Thursday, August 16, 2012

```
A=2
```

A=3

A-body SU(3) Structure

Label	Α	s	Ι	J^{π}	Local SU(3) irreps	This work
Ν	1	0	1/2	$1/2^{+}$	8	8
Λ	1	-1	0	$1/2^{+}$	8	8
Σ	1	-1	1	$1/2^{+}$	8	8
Ξ	1	-2	1/2	$1/2^{+}$	8	8
d	2	0	0	1+	10	10
nn	2	0	1	0^+	27	27
$n\Lambda$	2	-1	1/2	0^{+}	27	27
$n\Lambda$	2	-1	1/2	1+	$8_A, \overline{10}$	
$n\Sigma$	2	-1	3/2	0^{+}	27	27
$n\Sigma$	2	-1	3/2	1+	10	10
$n\Xi$	2	-2	0	1+	8_A	8_A
$n\Xi$	2	-2	1	1+	$8_A,10,\overline{10}$	
H	2	-2	0	0^+	1 , 27	1, 27
3 H, 3 He	3	0	1/2	$1/2^{+}$	35	35
$^3_{\Lambda}{ m H}(1/2^+)$	3	-1	0	$1/2^{+}$	35	
$^3_{\Lambda}{ m H}(3/2^+)$	3	-1	0	$3/2^{+}$	$\overline{10}$	$\overline{10}$
$^3_{\Lambda}{ m He},^3_{\Lambda}{ m ilde{H}},nn\Lambda$	3	-1	1	$1/2^{+}$	$27, \overline{35}$	$27, \overline{35}$
$^{3}_{\Sigma}$ He	3	-1	1	$3/2^{+}$	27	27
⁴ He	4	0	0	0+	28	28
$^4_{\Lambda}$ He, $^4_{\Lambda}$ H	4	-1	1/2	0^{+}	28	
$^{4}_{\Lambda\Lambda}$ He	4	-2	0	0^+	$27, \overline{28}$	27 , 28
$\Lambda \Xi^0 pnn$	5	-3	0	$3/2^{+}$	$\overline{10} +$	10

SU(3) Symmetry 2-Body Spectrum

NPLQCD: e-Print: arXiv:1206.5219 [hep-lat]

Deuteron and nn : All Lattice Calculations

SU(3) Symmetry 3-Body Nuclear Spectrum

NPLQCD : e-Print: arXiv:1206.5219 [hep-lat]

³He : All Calculations

SU(3) Symmetry 3-Body Hypernuclear Spectrum

SU(3) Symmetry 4-Body Nuclear Spectrum

NPLQCD : e-Print: arXiv:1206.5219 [hep-lat]

⁴He : All Calculations

SU(3) Symmetry 5-Body Hypernuclear Spectrum

SU(3) Symmetry Summary Spectrum from Isotropic

Volume Dependence ?

A>2 : Volume dependence unknown

⁴He : R << 3.5 fm

Medium A Nuclei : Developments in Contractions

(Detmold and Orginos, arXiv:1207.1452)

A Challenge

Summary

- Algorithmic progress in contractions
 - s-shell nuclei and beyond
 - ongoing
- A < 5 ground state energies (not physical pion mass)

END

An Unnecessary Diversion

A Primer -1990 : Luscher says

Explicitly, the stationary effective Schrödinger equation in the centre-ofmass frame reads

$$-\frac{1}{2\mu}\Delta\psi(\mathbf{r}) + \frac{1}{2}\int \mathrm{d}^3r' \, U_E(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}') = E\psi(\mathbf{r}),\tag{7.1}$$

where the parameter E is related to the true energy W of the system through

$$W = 2\sqrt{m^2 + mE}.$$
 (7.2)

The "potential" $U_E(\mathbf{r}, \mathbf{r}')$ is the Fourier transform of the modified Bethe-Salpeter kernel $\hat{U}_E(\mathbf{k}, \mathbf{k}')$ introduced in ref.[3]. It depends analytically on

38

E in the range -m < E < 3m and is a smooth function of the coordinates **r** and **r**', decaying exponentially in all directions \dagger . Furthermore, the potential

It therefore follows that....

Taking U to be energy-independent is a modeldependent assertion and not a QCD prediction

Schrödinger equation [14, 16]:

A Reminder 2005 : Aoki says

The static two-pion wave function $\phi(\vec{x};k)$ with the energy eigenvalue $E = 2\sqrt{k^2 + m_\pi^2}$

in the center of mass system on a finite periodic box of volume L^3 satisfies the effective

 $(\triangle + k^2)\phi(\vec{x};k) = \int d^3y \ U_k(\vec{x},\vec{y})\phi(\vec{y};k) \ ,$

where \vec{x} and \vec{y} are the relative coordinate of the two pions. $U_k(\vec{x}, \vec{y})$ is the Fourier transform

of the modified Bethe-Salpeter kernel for the two-pion interaction on the finite volume [14],

and is related to the off-shell two-pion scattering amplitude (see Appendix A). It is generally

non-local and depends on the two-pion energy. It should be noticed that k^2 in (1) is not a

I = 2 Pion Scattering Length from Two-Pion Wave Functions S. Aoki,¹ M. Fukugita,² K-I. Ishikawa,³ N. Ishiruka,^{1,4} Y. Iwasaki,¹ K. Kanaya,¹ T. Kaneko,⁵ Y. Kuramashi,^{1,4} M. Okawa,³ A. Ukawa,^{1,4} T. Yamazaki,³ and T. Yoshié^{1,5}

(CP-PACS Collaboration) ¹ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan ² Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277 8582, Japan 3 Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 4 Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan ¹ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan Dated: February 1, 2008) Abstract We calculate the two-pion wave function in the ground state of the I = 2 S-wave system and find the interaction range between two pions, which allows us to examine the validity of the ner condition for the finite-volume method for the scattering length proposed by Lüscher the quenched approximation employing a renormalization group improved gauge action for gluon and an improved Wilson action for quarks at 1/a = 1.207(12) GeV on $16^3 \times$ 24³ × 80 lattices. We couclude that the necessary condition is satisfied within the statistical errors for the lattice sizes $L \ge 24$ (3.92 fm) when the quark mass is in the range that corresponds to $m_v^2 = 0.273 - 0.736$ GeV². We obtain the scattering length with a smaller statistical error from the wave function than from the two-pion time correlator

PACS numbers: 12.38.Gc, 11.15.Ha

arXiv:hep-lat/0503025v2 14 May 2005

(1)

"Present address : RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

1

It therefore follows that....

Taking U to be energy-independent is a modeldependent assertion and not a QCD prediction

Back To Reality

HyperNuclear Programs EM results

Hypernuclear γ-ray data since 1998 ⁷Li (π⁺,K⁺γ) KEK E419 ⁹Be (Κ⁻,π⁻γ) BNL E930('98) ¹⁰B (Κ⁻,π⁻γ) BNL E930('01) 1/2+ 3.88 3.563 0+ 3/2⁺3.067 2 < 0.1 T=1 3.040 2+ 5/2+ 3.024 0 ⁹B ${}^{10}_{\Lambda}B$ 7/2+ 2.520 2.186 3 M1 -5/2⁺ 2.050 **E2 F**2 3/2+0.692 0 1/2+ ⁹∆Be ⁸Be 6Li 1/2+ 0 PRL 88 (2002) 082501 NPA 754 (2005) 58c 7Li PRL 84 (2000) 5963 NPA 754 (2005) 58c PRL 86 (2001) 1982 PLB 579 (2004) 258 PRC 73 (2006) 012501 ¹³C (Κ^{*},π^{*}γ) BNL E929 (Nal) ¹²C (π⁺,K⁺γ) KEK E566 ¹⁶O (Κ⁻,π⁻γ) BNL E930('01) 1/2⁻ 10.98 3/2⁻ 10.83 x Ap1/2 _ 07 ¹¹B (π⁺,K⁺γ) KEK E518 х Арз/2 ~~ ·2° 6.784 4.709 6.176 1° 6.560 3/2+,1/2+ 3/2 3/2+ 2.667 4.228 .00 1/2 E1 E1 0.718 2.31 1/2 2.268 T=1T=1 3/2+ 4.88 0.262 4.439 3/25/2+ ¹⁰B 5/2* ^{11}C $^{11}_{\Lambda}B$ F2 1⁻ 0.026 $^{12}_{\Lambda}C$ 3/2+0 -0- 0 ¹⁴N 1/2+ 0 15O 16 16 $^{15}_{\Lambda}N$ 12C $^{13}_{\Lambda}C$ NPA 754 (2005) 58c

PRL 86 (2001) 4255

PRC 65 (2002) 034607

PRL 93 (2004) 232501

E. Hiyama (2008)