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Overview

• The �renaissance� in charmonium spectroscopy

• What tools do we need for excited-state spectroscopy?

• New method � �distillation�

• Results � charmonium excitations

• Dispersion relation
• Variational analysis and spin identi�cation
• The excitation spectrum
• Lattice artefacts

• Scattering with distillation � I = 2ππ as a test

• Summary



The renaissance

• Early 2000's � new discoveries in B-factories of narrow
states above the open-charm threshold, the �XYZ�s

• Provoked substantial phenomenological interest, since
they are not explained by quark models

• X(3872) � close to DD̄∗ threshold and very narrow
Γ ≈ 0− 3 MeV

• Z+(4430) � charged state, so can not be simply c̄c

• About 20 more; Z (3930),X (3940),X (4160),Y (4260),
X (4350),Y (4360),Y (4660), . . .

• Very little consensus regarding the internal structure of
these states

Can we use lattice QCD to study these states?



Panda@FAIR, GSI

• Extensive new construction at
GSI Darmstadt

• Expected to start operation
2014?

PANDA: Anti-Proton ANnihilation
at DArmstadt

• Anti-proton beam from FAIR
on �xed-target.

• Physics goals include
charmonium spectroscopy . . .



Methods for

excited-state spectroscopy



Field theory on a Euclidean lattice

• Monte Carlo simulations are only
practical using importance sampling

• Need a non-negative weight for each �eld
con�guration on the lattice

Minkowski → Euclidean

• Bene�t: can isolate lightest states in the spectrum.

• Problem: direct information on scattering is lost and
must be inferred indirectly.

• For excitations and resonances, must use a variational
method.



Variational method in Euclidean QFT

• Ground-state energies found from t →∞ limit of:

Euclidean-time correlation function

C (t) = 〈0| Φ(t) Φ†(0) |0〉
=

∑
k,k ′

〈0| Φ|k〉〈k |e−Ĥt |k ′〉〈k ′|Φ† |0〉

=
∑
k

|〈0| Φ|k〉|2 e−Ek t

• So limt→∞ C (t) = Ze−E0t

• Variational idea: �nd operator Φ to maximise C (t)/C (t0)
from sum of basis operators Φ =

∑
a vaφa

[C. Michael and I. Teasdale. NPB215 (1983) 433]

[M. Lüscher and U. Wol�. NPB339 (1990) 222]



Excitations

Variational method

If we can measure Cab(t) = 〈0|φa(t)φ†b(0)|0〉 for all a, b and
solve generalised eigenvalue problem:

C(t) v = λC(t0) v

then
lim

t−t0→∞
λk = e−Ek t

For this to be practical, we need:

• a `good' basis set that resembles the states of interest

• all elements of this correlation matrix measured

[see Blossier et.al. JHEP 0904 (2009) 094]



A tale of two symmetries

• Continuum: states classi�ed by JP irreducible
representations of O(3).

O(3) Oh

• Lattice regulator breaks O(3)→ Oh

• Lattice: states classi�ed by RP �quantum letter�
labelling irrep of Oh



Irreps of Oh

• O has 5 conjugacy classes (so Oh has 10)

• Number of conjugacy classes = number of irreps

• Schur: 24 = 12 + 12 + 22 + 32 + 32

• These irreps are labelled A1,A2,E ,T1,T2

E 8C3 6C2 6C4 3C2

A1 1 1 1 1 1
A2 1 1 -1 -1 1
E 2 -1 0 0 2
T1 3 0 -1 1 -1
T2 3 0 1 -1 -1



Spin on the lattice

• Oh has 10 irreps: {Ag ,u
1 ,Ag ,u

2 ,E g ,u,T g ,u
1 ,T g ,u

2 , },
where {g , u} label even/odd parity.

• Link to continuum: subduce representations of O(3) into
Oh

A1 A2 E T1 T2

J = 0 1
J = 1 1
J = 2 1 1
J = 3 1 1 1
J = 4 1 1 1 1

...
...

...
...

...
...

• Enough to search for degeneracy patterns in the
spectrum?

4 ≡ 0⊕ 1⊕ 2



Operator basis � derivative construction

• A closer link to the continuum is needed

• Start with continuum operators, built from n derivatives:

Φ = ψ̄ Γ (Di1Di2Di3 . . .Din)ψ

• Construct irreps of SO(3), then subduce these
representations to Oh

• Now replace the derivatives with lattice �nite di�erences:

Djψ(x)→ 1

a

(
Uj(x)ψ(x + ̂)− U

†
j (x − ̂)ψ(x − ̂)

)



Example: JPC = 2++ meson creation operator

• Need more information to discriminate spins. Consider
continuum operator that creates a 2++ meson:

Φij = ψ̄

(
γiDj + γjDi −

2

3
δijγ · D

)
ψ

• Lattice: Substitute gauge-covariant lattice
�nite-di�erence Dlatt for D

• A reducible representation:

ΦT2 = {Φ12,Φ23,Φ31}

ΦE =

{
1√
2

(Φ11 − Φ22),
1√
6

(Φ11 + Φ22 − 2Φ33)

}
• Look for signature of continuum symmetry:

〈0|Φ(T2)|2++(T2)〉 = 〈0|Φ(E)|2++(E)〉



To use all these ideas in a practical calculation, we need

access to all elements
† of the quark propagator

† not quite - as we will see



New measurement methods

for hadron correlation function



Smearing

• Smeared �eld: ψ̃ from ψ, the �raw� quark �eld in the
path-integral:

ψ̃(t) = �[U(t)] ψ(t)

• Extract the essential degrees-of-freedom.
• Smearing should preserve symmetries of quarks.
• Now form creation operator (e.g. a meson):

OM(t) = ¯̃ψ(t)Γψ̃(t)

• Γ: operator in {s, σ, c} ≡ {position,spin,colour}
• Smearing: overlap 〈n|OM |0〉 is large for low-lying
eigenstate |n〉



Can rede�ning smearing help?

• Computing quark propagation in con�guration generation
and observable measurement is expensive.

• Objective: extract as much information from correlation
functions as possible.

Two problems:

1 Most correlators: signal-to-noise falls exponentially

2 Making measurements can be costly:

• Variational bases
• Exotic states using more sophisticated creation operators
• Isoscalar mesons
• Multi-hadron states

• Good operators are smeared; helps with problem 1, can
it help with problem 2?



Gaussian smearing

• To build an operator that projects e�ectively onto a
low-lying hadronic state need to use smearing

• Instead of the creation operator being a direct function
applied to the �elds in the lagrangian �rst smooth out the
UV modes which contribute little to the IR dynamics
directly.

• A popular gauge-covariant smearing algorithm �
Gaussian smearing: Apply the linear operator

�J = exp(σ∆2)

• ∆2 is a lattice representation of the 3-dimensional
gauge-covariant laplace operator on the source time-slice

∆2
x ,y = 6δx ,y −

3∑
i=1

Ui(x)δx+ı̂,y + U
†
i (x − ı̂)δx−ı̂,y

• Correlation functions look like Tr �JM
−1�JM

−1�J . . .



Distillation

�distill: to extract the quintessence of� [OED]

• Distillation: de�ne smearing to be explicitly a very
low-rank operator. Rank is ND(� Ns × Nc).

Distillation operator

�(t) = V (t)V †(t)

with V a
x ,c(t) a ND × (Ns × Nc) matrix

• Example (used to date): �∇ the projection operator
into D∇, the space spanned by the lowest
eigenmodes of the 3-D laplacian

• Projection operator, so idempotent: �2
∇ = �∇

• limND→(Ns×Nc) �∇ = I

• Eigenvectors of ∇2 not the only choice. . .



Distillation: preserve symmetries

• Using eigenmodes of the gauge-covariant laplacian
preserves lattice symmetries

Ui(x)
g−→ U

g
i (x) = g(x)Ui(x)g †(x + ı̂)

�∇(x , y)
g−→ �g

∇(x , y) = g(x)�∇(x , y)g †(y)

• Translation, parity, charge-conjugation symmetric

• Oh symmetric

• Close to SO(3)
symmetric

• �local� operator
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• Consider an isovector meson two-point function:

CM(t1−t0) = 〈〈ū(t1)�t1Γt1�t1d(t1) d̄(t0)�t0Γt0�t0u(t0)〉〉

• Integrating over quark �elds yields

CM(t1 − t0) =

〈Tr{s,σ,c} (�t1Γt1�t1M
−1(t1, t0)�t0Γt0�t0M

−1(t0, t1))〉

• Substituting the low-rank distillation operator � reduces
this to a much smaller trace:

CM(t1 − t0) = 〈Tr{σ,D} [Φ(t1)τ(t1, t0)Φ(t0)τ(t0, t1)]〉

• Φα,a
β,b and τα,aβ,b are (Nσ × ND)× (Nσ × ND) matrices.

Φ(t) = V †(t)ΓtV (t) τ(t, t ′) = V †(t)M−1(t, t ′)V (t ′)

The �perambulator�



Results



HadSpec lattices

• Anisotropic lattice: as 6= at

• Gauge action is tree-level O(a2s )-improved

• Quarks: tree-level O(a)-improved SW action

• Non-perturbative tuning of action parameters such that
ξ = as/at = 3.5

• Nf = 2⊕ 1 dynamical �avours

• mπ ≈ 400 MeV

• Scale set from Ω baryon mass

• 163 × 128 and 243 × 128 volumes used here

• 96 and 552 samples in each ensemble

• ND = 64 for 163, ND = 162 for 243 volumes



Charmonium



Dispersion relations - ηc and D mesons

• Action parameters for charm quark tuned to ensure
dispersion relation for ηc is relativistic

• Using these tuned parameters, D meson also has
relativistic dispersion relation
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Fits to λk(t)

• Variational basis, so can access excited states

• Fit λk(t) to one or two exponentials

• Second exponential to stabilise some �ts - value not used

• Plots show λk(t)× eEk(t−t0)

0 5 10 15 20 25 30

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

t � at

0 5 10 15 20 25 30
0.9

1.0

1.1

1.2

1.3

t � at

0 5 10 15 20 25 30
0.95

1.00

1.05

1.10

1.15

t � at

0 5 10 15 20 25 30

0.9

1.0

1.1

1.2

1.3

1.4

t � at

• Data from T−−1 channel (J = 1, 3, 4, . . . )



Subduction of derivative-based operators

• T−−1 variational basis

• 26 operators, up to DiDjDk

• Correlation matrix at
t/at = 5, normalised:

Qij =
Cij√
CiiCjj

• Reasonable spin separation
seen 0.2 0.4 0.6 0.8 1.0



Spin identi�cation

• Using Z = 〈0|Φ|k〉, helps to identify continuum spins

• For high spins, can look for agreement between irreps

• Data below for T−−1 irrep, colour-coding is Spin 1, Spin
3 and Spin 4.

0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.667H3L 0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.667H3L 0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.667H3L 0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.667H3L 0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.667H3L 0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.667H3L 0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.667H3L 0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.667H3L 0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.667H3L

• Can help identify glue-rich states, using operators with
[Di ,Dj ]



. . . the rest of the spin-4 state

• All polarisations of the spin-4 state are seen

• Spin labelling: Spin 2, Spin 3 and Spin 4.

0.763H6L0.763H6L0.763H6L0.667H3L
0.6770H6L0.6770H6L0.6770H6L0.667H3L 0.774H2L0.774H2L0.774H2L0.667H3L 0.6765H7L0.6765H7L0.6765H7L0.6765H7L0.667H3L 0.759H4L0.759H4L0.759H4L0.759H4L0.667H3L 0.771H4L0.771H4L0.771H4L0.771H4L0.667H3L 0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.667H3L 0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.667H3L 0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.667H3L 0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.667H3L 0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.667H3L

A−−1 A−−2 E−− T−−2



Identifying spin - operator overlaps

• Example � 3−− continuum

• Look for remnant of
continuum symmetry:

〈0|Φ[J=3]

A−−
2

|k〉=〈0|Φ[J=3]

T−−
1

|k〉=〈0|Φ[J=3]

T−−
2

|k〉

• Can identify two spin-3 states.
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Spectrum - dependence on distillation basis

• 163 lattice - vary ND

• Calculation done on smaller ensemble
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• Stable spectrum for ND > 48



Excitation spectrum of charmonium

DDDD

DsDsDsDs
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• Quark model: 1S , 1P , 2S , 1D, 2P , 1F , 2D, . . . all seen.
• Not all �t quark model: spin-exotic (and non-exotic)
hybrids seen

[Liu et.al. arXiv:1204.5425]



Gluonic excitations in charmonium?

DDDD

DsDsDsDs
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• See states created by operators that excite intrinsic gluons

• two- and three-derivatives create states in the
open-charm region.

[Liu et.al. arXiv:1204.5425]



Lattice artefacts in charmonium
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• Hyper�ne structure sensitive to lattice artefacts. Boost
co-e�cient of action term to suppress these.

• green → light blue. Shifts are ≈ 40 MeV.

[Liu et.al. arXiv:1204.5425]



Measuring scattering properties
using distillation



Scattering

Scattering matrix elements not directly accessible from Eu-
clidean QFT [Maiani-Testa theorem]

• Scattering matrix elements:
asymptotic |in〉, |out〉 states.
〈out |e i Ĥt | in〉 → 〈out |e−Ĥt | in〉

• Euclidean metric: project onto
ground-state

In

States

Out

States

• Lüscher's formalism: information on elastic scattering
inferred from volume dependence of spectrum

• Requires precise data, resolution of two-hadron and
excited states.



Hadrons in a �nite box: scattering
• On a �nite lattice with periodic b.c., hadrons have quantised
momenta; p = 2π

L
{nx , ny , nz}

• Two hadrons with total P = 0 have a discrete spectrum

• These states can have same quantum numbers as those created by
q̄Γq operators and QCD can mix these

• This leads to shifts in the
spectrum in �nite volume

• This is the same physics that
makes resonances in an
experiment

• Lüscher's method - relate
elastic scattering to energy
shifts

Toy model

H =

(
m g

g 4π
L

)
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I = 2 π − π phase shift
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• Lüscher's method: �rst
determine energy shifts
as volume changes

• Data for
L = 16as , 20as , 24as

• Small energy shifts are
resolved

• Measured δ0 and δ2 (δ4 is very small)

• I = 2 a useful �rst test - simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]

• See Christopher Thomas' talk later in this workshop



I = 2 π − π phase shift
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Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]



Summary

Progress

• Variational methods very
e�ective in constructing
states up to ≈ 4.5 GeV

• Spin identi�cation possible

• Hybrid excitations emerge

• �Distillation� method
works well for charmonium

Challenges

• Include multi-hadron
operators to study
scattering and resonance
behaviour.

• Molecules, tetraquarks, . . .

• Precision needs better
control of a→ 0

• mπ closer to physical value

• Molecular states will need
very (too) large lattices.

The lattice should help us to understand the nature of the new
charmonium states, although many problems remain unsolved


