The excitation spectrum of charmonium from lattice QCD

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland

INT Seattle, 30th July 2012

The excitation spectrum of charmonium from lattice QCD

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland

INT Seattle, 30th July 2012

$Charmonium spectroscopy \t - collaborators$

JLab:

Jo Dudek, Robert Edwards, Bálint Joó, David Richards Trinity College Dublin:

> Liuming Liu, Graham Moir, Mike Peardon, Christopher Thomas, Pol Vilaseca

Details presented in arXiv:1204.5425 (Accepted for publication in JHEP).

- The "renaissance" in charmonium spectroscopy
- What tools do we need for excited-state spectroscopy?
- \bullet New method $-$ "distillation"
- Results charmonium excitations
	- Dispersion relation
	- Variational analysis and spin identification
	- The excitation spectrum
	- Lattice artefacts
- Scattering with distillation $\frac{1}{2} = 2\pi\pi$ as a test
- Summary

The renaissance

- Early 2000's new discoveries in B-factories of narrow states above the open-charm threshold, the "XYZ"s
- Provoked substantial phenomenological interest, since they are not explained by quark models
- $\mathsf{X}(3872)$ close to $D\bar{D}^*$ threshold and very narrow $Γ \approx 0 - 3$ MeV
- \bullet Z⁺(4430) charged state, so can not be simply $\bar{c}\,c$
- About 20 more; $Z(3930)$, $X(3940)$, $X(4160)$, $Y(4260)$, $X(4350), Y(4360), Y(4660), \ldots$
- Very little consensus regarding the internal structure of these states

Can we use lattice QCD to study these states?

Panda@FAIR, GSI

- Extensive new construction at GSI Darmstadt
- Expected to start operation 2014?

PANDA: Anti-Proton ANnihilation at DArmstadt

- Anti-proton beam from FAIR on fixed-target.
- Physics goals include charmonium spectroscopy . . .

Methods for excited-state spectroscopy

Field theory on a Euclidean lattice

- Monte Carlo simulations are only practical using *importance* sampling
- Need a non-negative weight for each field configuration on the lattice

Minkowski → Euclidean

- Benefit: can isolate lightest states in the spectrum.
- Problem: direct information on scattering is lost and must be inferred indirectly.
- For excitations and resonances, must use a variational method.

Variational method in Euclidean QFT

• Ground-state energies found from $t \to \infty$ limit of:

Euclidean-time correlation function

$$
C(t) = \langle 0 | \Phi(t) \Phi^{\dagger}(0) | 0 \rangle
$$

=
$$
\sum_{k,k'} \langle 0 | \Phi(k) \langle k | e^{-\hat{H}t} | k' \rangle \langle k' | \Phi^{\dagger} | 0 \rangle
$$

=
$$
\sum_{k} |\langle 0 | \Phi | k \rangle|^2 e^{-E_k t}
$$

• So $\lim_{t\to\infty} C(t) = Ze^{-E_0 t}$

• Variational idea: find operator Φ to maximise $C(t)/C(t_0)$ from sum of basis operators $\mathsf{\Phi} = \sum_{\mathsf{a}} \mathsf{v}_{\mathsf{a}} \phi_{\mathsf{a}}$

> [C. Michael and I. Teasdale. NPB215 (1983) 433] [M. Lüscher and U. Wolff. NPB339 (1990) 222]

Excitations

Variational method

If we can measure $C_{ab}(t) = \langle 0 | \phi_a(t) \phi^\dagger_b$ $\binom{1}{b}(0)|0\rangle$ for all a,b and solve generalised eigenvalue problem:

 $C(t)$ $v = \lambda C(t_0)$ v

then

$$
\lim_{t-t_0\to\infty} \lambda_k = e^{-E_k t}
$$

For this to be practical, we need:

- a 'good' basis set that resembles the states of interest
- all elements of this correlation matrix measured [see Blossier et.al. JHEP 0904 (2009) 094]

A tale of two symmetries

• Continuum: states classified by J^P irreducible representations of $O(3)$.

- Lattice regulator breaks $O(3) \rightarrow O_h$
- Lattice: states classified by R^P "quantum letter" labelling irrep of O_h

Irreps of O_h

- O has 5 conjugacy classes (so O_h has 10)
- Number of conjugacy classes $=$ number of irreps
- Schur: $24 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2$
- These irreps are labelled A_1, A_2, E, T_1, T_2

Spin on the lattice

- O_h has 10 irreps: $\{A_1^{g,u}\}$ $a_1^{\mathbf{g},\mathbf{u}}, A_2^{\mathbf{g},\mathbf{u}}$ $\zeta^{g,u}$, $E^{g,u}$, $T_1^{g,u}$ $T_1^{\mathcal{g},u}, T_2^{\mathcal{g},u}$ $\binom{2}{2}$, $\}$, where $\{g, u\}$ label even/odd parity.
- Link to continuum: subduce representations of $O(3)$ into O_b

• Enough to search for degeneracy patterns in the spectrum?

$$
4\equiv 0\oplus 1\oplus 2
$$

Operator basis $-$ derivative construction

- A closer link to the continuum is needed
- Start with continuum operators, built from *n* derivatives:

$$
\Phi = \bar{\psi} \Gamma(D_{i_1}D_{i_2}D_{i_3}\dots D_{i_n}) \psi
$$

- Construct irreps of $SO(3)$, then subduce these representations to O_h
- Now replace the derivatives with lattice finite differences:

$$
D_j\psi(x) \to \frac{1}{a}\left(U_j(x)\psi(x+\hat{j})-U_j^{\dagger}(x-\hat{j})\psi(x-\hat{j})\right)
$$

Example: $J^{PC} = 2^{++}$ meson creation operator

• Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$
\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi
$$

- Lattice: Substitute gauge-covariant lattice finite-difference D_{lat} for D
- A reducible representation:

$$
\Phi^{T_2} = \{\Phi_{12}, \Phi_{23}, \Phi_{31}\}
$$

$$
\Phi^{\text{E}} = \left\{ \frac{1}{\sqrt{2}}(\Phi_{11} - \Phi_{22}), \frac{1}{\sqrt{6}}(\Phi_{11} + \Phi_{22} - 2\Phi_{33}) \right\}
$$

• Look for signature of continuum symmetry:

 $\langle 0|\Phi^{(\mathcal{T}_2)}|2^{++(\mathcal{T}_2)}\rangle = \langle 0|\Phi^{(\mathcal{E})}|2^{++(\mathcal{E})}\rangle$

To use all these ideas in a practical calculation, we need access to all elements[†] of the quark propagator

 \dagger not quite - as we will see

New measurement methods for hadron correlation function

Smearing

• Smeared field: $\tilde{\psi}$ from ψ , the "raw" quark field in the path-integral:

$$
\tilde{\psi}(t)=\square[U(t)]\ket{\psi(t)}
$$

- Extract the essential degrees-of-freedom.
- Smearing should preserve symmetries of quarks.
- Now form creation operator (e.g. a meson):

$$
O_M(t)=\bar{\tilde{\psi}}(t)\Gamma\tilde{\psi}(t)
$$

- Γ: operator in $\{s, \sigma, c\} \equiv \{$ position, spin, colour $\}$
- Smearing: overlap $\langle n|O_M|0\rangle$ is large for low-lying eigenstate $|n\rangle$

Can redefining smearing help?

- Computing quark propagation in configuration generation and observable measurement is expensive.
- Objective: extract as much information from correlation functions as possible.

Two problems:

1 Most correlators: signal-to-noise falls exponentially

- ² Making measurements can be costly:
	- Variational bases
	- Exotic states using more sophisticated creation operators
	- Isoscalar mesons
	- Multi-hadron states
- Good operators are smeared; helps with problem 1, can it help with problem 2?

Gaussian smearing

- To build an operator that projects effectively onto a low-lying hadronic state need to use smearing
- Instead of the creation operator being a direct function applied to the fields in the lagrangian first smooth out the UV modes which contribute little to the IR dynamics directly.
- A popular gauge-covariant smearing algorithm $-$ Gaussian smearing: Apply the linear operator

 $\square_J = \exp(\sigma \Delta^2)$

 \bullet Δ^2 is a lattice representation of the 3-dimensional gauge-covariant laplace operator on the source time-slice

$$
\Delta_{x,y}^2=6\delta_{x,y}-\sum_{i=1}^3U_i(x)\delta_{x+\hat{\imath},y}+U_i^\dagger(x-\hat{\imath})\delta_{x-\hat{\imath},y}
$$

• Correlation functions look like $Tr \Box_l M^{-1} \Box_l M^{-1} \Box_l \ldots$

Distillation

"distill: to extract the quintessence of" [OED]

• Distillation: define smearing to be explicitly a very low-rank operator. Rank is $N_{\mathcal{D}}(\ll N_s \times N_c)$.

Distillation operator

$$
\Box(t) = V(t) V^{\dagger}(t)
$$

with $\overline{V^{\,a}_{\underline{x},c}(t)}$ a $N_{\mathcal{D}}\times (N_s\times N_c)$ matrix

- Example (used to date): \square_{∇} the projection operator into \mathcal{D}_{∇} , the space spanned by the lowest eigenmodes of the 3-D laplacian
- Projection operator, so idempotent: $\Box^2_\nabla = \Box_\nabla$
- $\lim_{N_D\to (N_s\times N_c)} \Box_{\nabla} = I$
- Eigenvectors of ∇^2 not the only choice...

Distillation: preserve symmetries

• Using eigenmodes of the gauge-covariant laplacian preserves lattice symmetries

> $U_i(\underline{x}) \stackrel{g}{\longrightarrow} U_i^g$ $\int_{i}^{g}(\underline{x})=g(\underline{x})U_{i}(\underline{x})g^{\dagger}(\underline{x}+\hat{\underline{i}})$

$$
\Box_{\nabla}(\underline{x}, \underline{y}) \xrightarrow{\mathcal{E}} \Box_{\nabla}^{\mathcal{E}}(\underline{x}, \underline{y}) = g(\underline{x}) \Box_{\nabla}(\underline{x}, \underline{y}) g^{\dagger}(\underline{y})
$$

- Translation, parity, charge-conjugation symmetric
- O_h symmetric
- Close to $SO(3)$ symmetric
- "local" operator

• Consider an isovector meson two-point function:

 $\mathcal{C}_{\textit{M}}(t_1-t_0)=\langle\!\langle \bar{u}(t_1)\Box_{t_1}\Gamma_{t_1}\Box_{t_1}d(t_1) \quad \bar{d}(t_0)\Box_{t_0}\Gamma_{t_0}\Box_{t_0}u(t_0)\rangle\!\rangle$

• Integrating over quark fields yields

 $C_M(t_1 - t_0) =$ $\langle Tr_{\{s, \sigma, c\}} (\Box_{t_1} \Gamma_{t_1} \Box_{t_1} M^{-1}(t_1, t_0) \Box_{t_0} \Gamma_{t_0} \Box_{t_0} M^{-1}(t_0, t_1)) \rangle$

• Substituting the low-rank distillation operator \square reduces this to a much smaller trace:

$$
C_M(t_1-t_0)=\langle \text{Tr}_{\{\sigma,\mathcal{D}\}}\left[\Phi(t_1)\tau(t_1,t_0)\Phi(t_0)\tau(t_0,t_1)\right]\rangle
$$

 \bullet $\Phi_{\beta,b}^{\alpha,a}$ $_{\beta,b}^{\alpha,a}$ and $\tau_{\beta,b}^{\alpha,a}$ $\frac{d\alpha,\bm{s}}{\beta,\bm{b}}$ are $(N_{\sigma}\times N_{\mathcal{D}})\times (N_{\sigma}\times N_{\mathcal{D}})$ matrices.

 $\Phi(t)=\overline{V}^{\dagger}(t)\Gamma_tV(t)\hspace{0.5cm}\tau(t,t')=V^{\dagger}(t)M^{-1}(t,t')V(t')$

The "perambulator"

HadSpec lattices

- Anisotropic lattice: $a_s \neq a_t$
- Gauge action is tree-level $\mathcal{O}(a_s^2)$ -improved
- Quarks: tree-level $\mathcal{O}(a)$ -improved SW action
- Non-perturbative tuning of action parameters such that $\xi = a_s/a_t = 3.5$
- $N_f = 2 \oplus 1$ dynamical flavours
- $m_{\pi} \approx 400$ MeV
- Scale set from Ω baryon mass
- $16^3 \times 128$ and $24^3 \times 128$ volumes used here
- 96 and 552 samples in each ensemble
- $N_{\cal D}=64$ for 16^3 , $N_{\cal D}=162$ for 24^3 volumes

Charmonium

Dispersion relations - η_c and D mesons

- Action parameters for charm quark tuned to ensure dispersion relation for η_c is relativistic
- Using these tuned parameters, D meson also has relativistic dispersion relation

Fits to $\lambda_k(t)$

- Variational basis, so can access excited states
- Fit $\lambda_k(t)$ to one or two exponentials
- Second exponential to stabilise some fits value not used
- Plots show $\lambda_k(t)\times e^{E_k(t-t_0)}$

• Data from T_1^{--} \mathcal{I}_1^{--} channel $(J=1,3,4,\dots)$

Subduction of derivative-based operators

- T_1^{--} $\frac{1}{1}$ variational basis
- 26 operators, up to $D_iD_iD_k$
- Correlation matrix at $t/a_t = 5$, normalised:

$$
Q_{ij} = \frac{C_{ij}}{\sqrt{C_{ii}C_{jj}}}
$$

• Reasonable spin separation $\mathcal{O}_m^{[J=4]}$ seen

Spin identification

- Using $Z = \langle 0|\Phi|k\rangle$, helps to identify continuum spins
- For high spins, can look for agreement between irreps
- Data below for T_1^{--} $\frac{1}{1}^{-}$ irrep, colour-coding is $\mathsf{Spin}\ 1$, $\mathsf{Spin}\ 1$ 3 and Spin 4.

• Can help identify glue-rich states, using operators with $[D_i, D_j]$

. . . the rest of the spin-4 state

- All polarisations of the spin-4 state are seen
- Spin labelling: Spin 2, Spin 3 and Spin 4.

Identifying spin - operator overlaps

Spectrum - dependence on distillation basis

- \bullet 16^3 lattice vary $N_{\mathcal{D}}$
- Calculation done on smaller ensemble

• Stable spectrum for $N_{\mathcal{D}} > 48$

Excitation spectrum of charmonium

- Quark model: $1S$, $1P$, $2S$, $1D$, $2P$, $1F$, $2D$, ... all seen.
- Not all fit quark model: spin-exotic (and non-exotic) hybrids seen

[Liu et.al. arXiv:1204.5425]

Gluonic excitations in charmonium?

- See states created by operators that excite intrinsic gluons
- two- and three-derivatives create states in the open-charm region.

[Liu et.al. arXiv:1204.5425]

Lattice artefacts in charmonium

- Hyperfine structure sensitive to lattice artefacts. Boost co-efficient of action term to suppress these.
- green \rightarrow light blue. Shifts are \approx 40 MeV.

[Liu et.al. arXiv:1204.5425]

Measuring scattering properties using distillation

Scattering matrix elements not directly accessible from Euclidean QFT [Maiani-Testa theorem]

- Scattering matrix elements: asymptotic $|in\rangle$, $|out\rangle$ states. \langle out $|e^{i\hat{H}t}|$ in $\rangle \rightarrow \langle$ out $|e^{-\hat{H}t}|$ in \rangle
- Euclidean metric: project onto ground-state

- Lüscher's formalism: information on elastic scattering inferred from volume dependence of spectrum
- Requires precise data, resolution of two-hadron and excited states.

Hadrons in a finite box: scattering

- On a finite lattice with periodic b.c., hadrons have quantised momenta; $p = \frac{2\pi}{l}$ $\frac{2\pi}{L}$ { n_x, n_y, n_z }
- Two hadrons with total $P = 0$ have a discrete spectrum
- These states can have same quantum numbers as those created by $\overline{q}\Gamma q$ operators and QCD can mix these
- This leads to shifts in the spectrum in finite volume
- This is the same physics that makes resonances in an experiment
- Lüscher's method relate elastic scattering to energy shifts

$I = 2$ $\pi - \pi$ phase shift

- Measured δ_0 and δ_2 (δ_4 is very small)
- $I = 2$ a useful first test simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]

• See Christopher Thomas' talk later in this workshop

$I = 2$ $\pi - \pi$ phase shift

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]

Summary

Progress

- Variational methods very effective in constructing states up to \approx 4.5 GeV
- Spin identification possible
- Hybrid excitations emerge
- "Distillation" method works well for charmonium

Challenges

- Include multi-hadron operators to study scattering and resonance behaviour.
- Molecules, tetraquarks, ...
- Precision needs better control of $a \rightarrow 0$
- m_{π} closer to physical value
- Molecular states will need very (too) large lattices.

The lattice should help us to understand the nature of the new charmonium states, although many problems remain unsolved