The excitation spectrum of charmonium
from lattice QCD

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland




The excitation spectrum of charmonium
from lattice QCD

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland




Charmonium spectroscopy — collaborators:

JLab:

Jo Dudek, Robert Edwards, Balint Joé, David Richards
Trinity College Dublin:

Liuming Liu, Graham Moir, Mike Peardon,

Christopher Thomas, Pol Vilaseca

Details presented in arXiv:1204.5425
(Accepted for publication in JHEP).



Overview

The “renaissance” in charmonium spectroscopy

What tools do we need for excited-state spectroscopy?
New method — “distillation”

Results — charmonium excitations

e Dispersion relation

e Variational analysis and spin identification
e The excitation spectrum

e Lattice artefacts

Scattering with distillation — / = 277 as a test

Summary



The renaissance

Early 2000’s — new discoveries in B-factories of narrow
states above the open-charm threshold, the “XYZ"s

Provoked substantial phenomenological interest, since
they are not explained by quark models

X(3872) — close to DD* threshold and very narrow
[~ 0—3 MeV

77 (4430) — charged state, so can not be simply ¢
About 20 more; Z(3930), X (3940), X (4160), Y (4260),
X (4350), Y (4360), Y (4660), . ..

Very little consensus regarding the internal structure of
these states

Can we use lattice QCD to study these states? J




Panda@FAIR, GSI

e Extensive new construction at
GSI| Darmstadt

e Expected to start operation
20147

PANDA: Anti-Proton ANnihilation
at DArmstadt

e Anti-proton beam from FAIR
on fixed-target.

e Physics goals include
charmonium spectroscopy . ..




Methods for
excited-state spectroscopy



Field theory on a Euclidean lattice

e Monte Carlo simulations are only
practical using importance sampling

e Need a non-negative weight for each field
configuration on the lattice

Minkowski — Euclidean

e Benefit: can isolate lightest states in the spectrum.

e Problem: direct information on scattering is lost and
must be inferred indirectly.

e For excitations and resonances, must use a variational
method.



Variational method in Euclidean QFT

e Ground-state energies found from t — oo limit of:
Euclidean-time correlation function
C(t) = (0] &(r) @'(0) 10)
= ) (0] ®lk)(k|e™|K')(K'|T |0)

kK’

= D [0 oK) e
k

e So lim; ., C(t) = Ze ot

e Variational idea: find operator ® to maximise C(t)/C(t)
from sum of basis operators ® = 3" v,¢,

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Liischer and U. Wolff. NPB339 (1990) 222]



Excitations

Variational method

If we can measure C,,(t) = (0]¢,(t)¢5(0)]0) for all a, b and
solve generalised eigenvalue problem:

C(t) v=AC(t)) v

then
lim A\ = e Ext

t—to—00

For this to be practical, we need:
e a ‘good’ basis set that resembles the states of interest
e all elements of this correlation matrix measured
[see Blossier et.al. JHEP 0904 (2009) 094]



A tale of two symmetries

e Continuum: states classified by J” irreducible
representations of O(3).

0(3) O

e Lattice regulator breaks O(3) — Oy
e Lattice: states classified by R “quantum letter”
labelling irrep of Oy



Irreps of Oy,

O has 5 conjugacy classes (so Oy has 10)

Number of conjugacy classes = number of irreps
Schur: 24 =12 + 12 + 2% + 32 4 32
These irreps are labelled Ay, A>, E, T1, T>

E 8C 6C 6C 3G
A1 1 1 1 1
Ayl 1 -1 1 1
El2 -1 0o 0 2
/3 0o -1 1 -1
(3 0 1 -1 -1




Spin on the lattice

o Oy has 10 irreps: {A$Y, ASY E&H TEY T5Y 1},
where {g, u} label even/odd parity.
e Link to continuum: subduce representations of O(3) into

O
Al A E T T,
J=0]1
J=1 1
J=2 1 1
J=3 1 1 1
J=4]1 1 1 1

e Enough to search for degeneracy patterns in the
spectrum?

450@1@2)




Operator basis — derivative construction

A closer link to the continuum is needed

Start with continuum operators, built from n derivatives:

& =1 (DyD;,D;, ...D;) 7

Construct irreps of SO(3), then subduce these
representations to O

Now replace the derivatives with lattice finite differences:

D) = = (G0 -+ 9) — Ul — lx — )



Example: JP¢ = 27" meson creation operator

e Need more information to discriminate spins. Consider
continuum operator that creates a 271 meson:

2
=1 <7iDj +%0i = 3057 D> Y

e Lattice: Substitute gauge-covariant lattice
finite-difference Dy, for D
e A reducible representation:

DR {P12, Doz, P31 }
1

OF = {ﬁ(cp11 — By), \%(@11 + by — 2¢33)}

e Look for signature of continuum symmetry:
(O[O = (0[tE)|2++)



To use all these ideas in a practical calculation, we need
access to all elements' of the quark propagator

t not quite - as we will see



New measurement methods
for hadron correlation function



Smearing

Smeared field: ¢ from 1, the “raw” quark field in the
path-integral:

(t) = O[U(t)] ¥(t)

Extract the essential degrees-of-freedom.
Smearing should preserve symmetries of quarks.
Now form creation operator (e.g. a meson):

Oum(t) = B(1)(¢)

[: operator in {s, o, c} = {position,spin,colour}
Smearing: overlap (n|Ouy|0) is large for low-lying
eigenstate |n)



Can redefining smearing help?

e Computing quark propagation in configuration generation
and observable measurement is expensive.

e Objective: extract as much information from correlation
functions as possible.

Two problems:
® Most correlators: signal-to-noise falls exponentially
® Making measurements can be costly:

e Variational bases
o Exotic states using more sophisticated creation operators
o l|soscalar mesons
e Multi-hadron states )

e Good operators are smeared; helps with problem 1, can
it help with problem 27



Gaussian smearing

To build an operator that projects effectively onto a
low-lying hadronic state need to use smearing

Instead of the creation operator being a direct function
applied to the fields in the lagrangian first smooth out the
UV modes which contribute little to the IR dynamics
directly.

A popular gauge-covariant smearing algorithm —
Gaussian smearing: Apply the linear operator

O, = exp(cA?)

A? is a lattice representation of the 3-dimensional
gauge-covariant laplace operator on the source time-slice

3
Aiy = (00, — Z Ui(x)dxra,y + U,'T(X — 1)0x—ty
i=1

Correlation functions look like Tr O,M~t0O0,M~1, . ..



“distill: to extract the quintessence of” [OED]

Distillation

Distillation: define smearing to be explicitly a very
low-rank operator. Rank is Np(<< Ns x N).

Distillation operator

O(t) = V(1) Vi(t)
with V2 (t) a Np x (Ns x N¢) matrix

Example (used to date): Oy the projection operator
into Dy, the space spanned by the lowest
eigenmodes of the 3-D laplacian

Projection operator, so idempotent: (12 = [y,
limp,—vxn) Oy =1

Eigenvectors of V2 not the only choice. . .



Distillation: preserve symmetries

Using eigenmodes of the gauge-covariant laplacian
preserves lattice symmetries

Ui(x) = UE(x) = g(x)Ui(x)g"(x + 1)

Og(x, ¥) = DE(x, ¥) = g(x)0g(x, )L)gT(L)J

Translation, parity, charge-conjugation symmetric

11*-::&"\ T T T T T T T =
aclk \\\ ‘0.\\ ® N=8 |
Close to SO(3) orl R i
. . 2
symmetric osf- “a L T y
= LY °
m 1 é’_’ B[ \\\ % K
local” operator ol . .
w
03 . ]
02— ) LY -
0.1 ® o9 o
oLl | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10




Consider an isovector meson two-point function:

C/V’(tl_to) = <<a(t1)|:|t1rt1|jt1d(t1) C_1(t0)|jtorl‘0[jl“ou(t())»

Integrating over quark fields yields

Cu(ti — t) =
<Tr{§,UaC} (Dh r1‘1Dl‘1 Mﬁl(th tO)DtortODtoMil(t(Jv tl)))

Substituting the low-rank distillation operator [ reduces
this to a much smaller trace:

Cu(ts — to) = (Trio,py [P(t1)7(t1, o) P(t0)7(to, tl)w

o &3% and 75 are (N, x Np) x (N, x Np) matrices.

o(t) = VT(t)FtV(t} T(t, ') = VI(t)M (¢, t’)V(t’)J

The “perambulator”



Results




HadSpec lattices

Anisotropic lattice: as # a;

Gauge action is tree-level O(a?)-improved
Quarks: tree-level O(a)-improved SW action
Non-perturbative tuning of action parameters such that
£ =as/a; =35

N = 2 & 1 dynamical flavours

m, ~ 400 MeV

Scale set from Q baryon mass

163 x 128 and 243 x 128 volumes used here
96 and 552 samples in each ensemble

Np = 64 for 163, Np = 162 for 243 volumes



Charmonium




Dispersion relations - n. and D mesons

e Action parameters for charm quark tuned to ensure
dispersion relation for 7). is relativistic

e Using these tuned parameters, D meson also has
relativistic dispersion relation

0347 T 017 T

033 A 5 [}
33 T = 4

b £,=3.3803)
= [
L3213 Y ERENE L ]
S 031F = 3o

0.14F ]

(4

0.30 = r
. = 0.13F ]
029F 3 E L]
*® m Y 0.121~ 9
028F A ] E
o.11[m 3

= o



Fits to Ax(t)

e Variational basis, so can access excited states
e Fit \¢(t) to one or two exponentials
e Second exponential to stabilise some fits - value not used
o Plots show \(t) x efk(t—t)
1.10 13 115 ) 14
108 13
1.06 12 1.10
104 12
102 11 105 11
1.00
098 1.0 1.00 10 l»
0.96 09 095 ji0.9
0 5 10 15 20 25 30 O 5 10 15 20 25 30 O 5 10 15 20 25 30 0O 5 10 15 20 25 30
t/a t/a t/a t/a
e Data from T; ~ channel (J =1,3,4,...)



Subduction of derivative-based operators

T, ~ variational basis
26 operators, up to D;D;D;

Correlation matrix at o=
t/a; = 5, normalised:
Qs = —2
i =
Gi Cj
ol=?
Reasonable spin separation /-4

Seen 02 04



Spin identification

e Using Z = (0|®|k), helps to identify continuum spins
e For high spins, can look for agreement between irreps

e Data below for T; ~ irrep, colour-coding is Spin 1, Spin
3 and

Lol ]

726(4) 0. 646(1) 0.6713(5) 0.676(1) 0.727(5) 0.7532 0. 759(7) 0.767(3)

e Can help identify glue-rich states, using operators with
[Di? Dj]



.the rest of the spin-4 state

o All polarisations of the spin-4 state are seen

e Spin labelling: Spin 2, Spin 3 and

I vl

0.763(6) 067706)  0.774(2) 0.6765(7) 0. 759(4) 0.771(4) 0.6768(7) 0.6772(5) 0.762(3) 0.769(3) 0.777(2)

AT A ** s



|dentifying spin - operator overlaps

| | | @ ama,= 0.6770(7)] |
@ amr,= 0.676(1) !
@ amr,= 0.6768(7) |,
& ama,=0.774(2)
& amp = 0.767(3)
& aimr,= 0.769(3)

e Example — 37~ continuum al

e Look for remnant of
continuum symmetry: i ‘ ; 00

N

A T, T,

(005 1k) = (o]0l k) = (0job= " 2

e Can identify two spin-3 states. }H
| X100 | |

ATTTLATITLATI T, ATIT AT T,



Spectrum - dependence on distillation basis

e 16° lattice - vary Np

e Calculation done on smaller ensemble

I T I T I T I
0.8F i l i % .
! : -
1
0.7 a
3 %
s % i£ 03 = +
= - =
0.6 » spin 1 |
' + spin 3
= spin4
L 1 L 1 L 1 L 1 L 1 L
0'510 20 30 40 50 60 70

vecs

e Stable spectrum for Np > 48



Excitation spectrum of charmonium

=
1500 |- - % D = - =
— —
= = = = [
B == [ ]
— = =
= T — = == ==
— =] _
1000 |- Mo = =2 = 0sDs |
3 = — —
s =
2 —
§~ DD
2 —
500 |- Fo e L N
ol L L i
O 1 ot 2 3 4t 4| grt 1 1t gt g gt o4t |1 g 2t

Quark model: 15,1P,2S5,1D,2P,1F,2D, ... all seen.
Not all fit quark model: spin-exotic (and non-exotic)
hybrids seen

[Liu et.al. arXiv:1204.5425]



Gluonic excitations in charmonium?

1500 - = —
R = i -
B = 0 = 1
[ o= =
| == T —_ = |
% 1000 j _— . = DsDs t
2 = =
Eé = DD
[ r _ — -
= 500+ T -
Or O+t 1~ 2% 1~F 0ot 1+ 1t 2+ 3 (ot 2+ T

e See states created by operators that excite intrinsic gluons
e two- and three-derivatives create states in the
open-charm region.

[Liu et.al. arXiv:1204.5425]



| attice artefacts in charmonium

160 7 600 7 1400¢
140} ] = =
120l 1 550 —{ 1350 D
3 —_— [
S 100} ]
< 500 == 1 1300¢
2‘ 80 mmm
> [ ] | —
60 450 1 1250/
: ] —
T, At Tt Tt Et Tt —+
20t 1 Jogol™ T © ) ool ™

e Hyperfine structure sensitive to lattice artefacts. Boost
co-efficient of action term to suppress these.

e green — . Shifts are ~ 40 MeV.
[Liu et.al. arXiv:1204.5425]



Measuring scattering properties
using distillation



Scattering

Scattering matrix elements not directly accessible from Eu-
clidean QFT [Maiani-Testa theorem]

e Scattering matrix elements:
asymptotic |in), |out) states.

iHt) - —Ht| | Out
(out ’e | |n> —v <OUt |e | m> Star:es Staltjes

e Euclidean metric: project onto
ground-state

e Liischer's formalism: information on elastic scattering
inferred from volume dependence of spectrum

e Requires precise data, resolution of two-hadron and
excited states.



Hadrons in a finite box: scattering
On a finite lattice with periodic b.c., hadrons have quantised
momenta; p = 2* {n,, n,, n;}
Two hadrons with total P = 0 have a discrete spectrum

These states can have same quantum numbers as those created by
gl g operators and QCD can mix these

This leads to shifts in the
spectrum in finite volume

This is the same physics that
makes resonances in an
experiment

E/m

Lischer's method - relate

elastic scattering to energy
shifts




| =2 w — 7 phase shift

17 = 396 MeV

e Liischer's method: first
determine energy shifts
as volume changes

e Data for
L = 16a,,20a,, 242

e Small energy shifts are
resolved

e Measured 0y and &, (d4 is very small)

e | = 2 a useful first test - simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]

e See Christopher Thomas' talk later in this workshop



de/°

ol % %{
S

50L

| =2 w — 7 phase shift

0.002 0.004 _ 0.006

0.01 @.01J 0.014 (@t pem)?

=2

_ 0.008

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]



Summary

Challenges

Progress .
e Include multi-hadron

operators to study
scattering and resonance
behaviour.

e Variational methods very
effective in constructing

states up to &~ 4.5 GeV
e Spin identification possible « Molecules, tetraquarks

e Hybrid excitations emerge ..
y & e Precision needs better

e “Distillation” method _ control of a — 0
works well for charmonium )

e m, closer to physical value

e Molecular states will need
very (too) large lattices.

v

The lattice should help us to understand the nature of the new
charmonium states, although many problems remain unsolved

v




