

Non-relativistic field theories in a finite volume

Akaki Rusetsky, University of Bonn

In collaboration with:

V. Bernard, D. Hoja,

U.-G. Meißner, K. Polejaeva

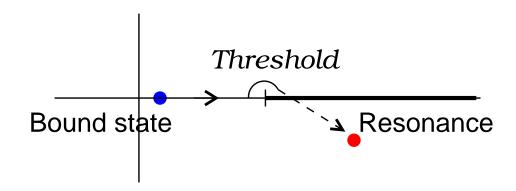
Seattle, 16 August 2012

Plan

- Introduction
- Resonances: Lüscher approach
- Non-relativistic EFT in a finite volume: essentials
- Lüscher-Lellouch formula
- Resonance matrix elements
- Three particles in a finite volume
 Separation of the infinite- and finite-volume contributions
 Disconnected diagrams
- Conclusions, outlook

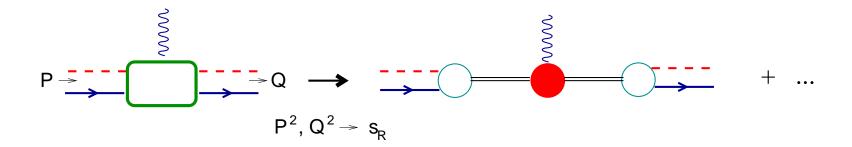
Resonances in Quantum Field Theory

- Resonances are characterized by their mass, their lifetime, . . .
- These are the *intrinsic* properties of a resonance that should not depend neither on a particular *experiment* nor a particular theoretical model which is used to describe the data
 - \longrightarrow Resonances correspond to S-matrix poles on the unphysical Riemann sheets



Matrix elements with the resonances

A consistent definition of a formfactor of an unstable particle in QFT



Example: electromagnetic formfactor of the Δ -resonance:

- Gauge independent
- Invariant under field redefinitions

Note: Definitions which do not imply analytic continuation, do not have the above properties

How does one perform analytic continuation of the lattice data?

Determining particle masses on the lattice

The two-point function in the Euclidean space

$$C(t) = \langle 0|\mathcal{O}(t)\mathcal{O}^{\dagger}(0)|0\rangle = \int dU d\psi d\bar{\psi} e^{-S_{QCD}(U,\psi,\bar{\psi})} \mathcal{O}(t)\mathcal{O}^{\dagger}(0)$$

yields the spectrum of stable particles at large t

$$C(t) = \sum_{n} |\langle 0|\mathcal{O}(0)|n\rangle|^2 e^{-E_n t} \longrightarrow |\langle 0|\mathcal{O}(0)|1\rangle|^2 e^{-mt} + \cdots$$

The method does not apply to the case of unstable particles: ρ , Δ , ...

- How does one study scattering processes in lattice QCD?
- How does one calculate the resonance properties?

Lüscher's approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, · · ·

ullet Lattice simulations are always done at a finite box size L

It is assumed: $R^{-1}L \simeq ML \gg 1$.

R: the range of interaction

- Momenta are small: $p \simeq 2\pi/L \ll$ the lightest mass
- ullet Finite-volume corrections to the energy levels are only power-suppressed in L
- Studying the dependence of the energy levels on L gives the scattering phase in the infinite volume \Rightarrow Resonances

Non-relativistic effective field theories (NREFT) can be used to study the energy spectrum in a box

Covariant NREFT in the infinite volume

G. Colangelo, J. Gasser, B. Kubis and AR, PLB 638 (2006) 187
 J. Gasser, B. Kubis and AR, NPB 850 (2011) 96

The Lagrangian:

$$\mathcal{L} = \sum_{i} \Phi_{i}^{\dagger}(2W_{i})(i\partial_{t} - W_{i})\Phi_{i} + C_{0}\Phi_{1}^{\dagger}\Phi_{2}^{\dagger}\Phi_{1}\Phi_{2}$$

$$+ C_{1}\left((\Phi_{1}^{\dagger})^{\mu}(\Phi_{2}^{\dagger})_{\mu}\Phi_{1}\Phi_{2} - M_{1}M_{2}\Phi_{1}^{\dagger}\Phi_{2}^{\dagger}\Phi_{1}\Phi_{2} + \text{h.c.}\right) + \cdots$$

$$W_i = \sqrt{M_i^2 - \Delta}, \qquad (\Phi_i)^{\mu} = (W_i, i\nabla)\Phi_i$$

The propagator:

$$D_i(p) = \frac{1}{2W_i(\mathbf{p})} \frac{1}{W_i(\mathbf{p}) - p_0 - i0}$$

Lippmann-Schwinger equation

• Expand $W_i(\mathbf{p}) = M_i + \mathbf{p}^2/(2M_i) + \cdots$ in all Feynman integrands, integrate in the dimensional regularization and sum up again

$$\longrightarrow \mathsf{loop} = \frac{ip}{8\pi\sqrt{s}} \,, \qquad p = \frac{\lambda^{1/2}(s, M_1^2, M_2^2)}{2\sqrt{s}}$$

→ Scattering amplitude is <u>Lorentz-invariant:</u>

$$T_l = \frac{8\pi\sqrt{s}}{p\cot\delta_l(p) - ip}$$

Important in nonrest frames (formfactors, 3-body scattering)

Covariant NREFT in a finite volume

Loops modified, Lüscher's zeta-function emerges (nonrest frame):

$$\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{\mathbf{p}} , \qquad \text{loop} = \frac{ip}{8\pi\sqrt{s}} \to \frac{Z_{00}^{\mathbf{p}}}{4\pi^{3/2}L\gamma\sqrt{s}} \quad \text{(S-wave)}$$

Poles in the LS equation = spectrum of the Hamiltionan

(see S. R. Beane et al., NPA 747 (2005) 55)

Gottlieb-Rummukainen equation:

$$\det\left(\delta_{ll'}\delta_{mm'} - \tan\delta_{l}(s)\mathcal{M}_{lm,l'm'}\right) = 0$$

- $\mathcal{M}_{lm,l'm'}$ is a linear combination of $Z_{lm}^{\mathbf{P}}$
- Partial-wave mixing occurs in a finite volume

Where are the resonance poles?

Suppose that there exists an isolated narrow resonance in the vicinity of the elastic threshold. Assume that effective range expansion for the quantity $p \cot \delta(p)$ is convergent in the resonance region.

$$p \cot \delta(p) = A_0 + A_1 p^2 + \cdots$$

- \Rightarrow A_0, A_1, \cdots are measured on the lattice
- ⇒ Resonance pole in the complex momentum plane:

$$\cot \, \delta(p_R) = -i \quad \sqrt{}$$

Example of using NREFT: Lüscher-Lellouch formula

V. Bernard, D. Hoja, U.-G. Meißner and AR, arXiv:1205.4642

- Aim: extract the formfactor in a timelike region
- Method: Calculate the formfactor in NREFT, in the infinite and in a finite volume; single out the infinite-volume formfactor in the finite-volume expression

Most general NREFT Lagrangian with the external field:

$$\mathcal{L} = \sum_i \Phi_i^\dagger(2W_i)(i\partial_t - W_i)\Phi_i + C_0\Phi_1^\dagger\Phi_2^\dagger\Phi_1\Phi_2 + eA(\Phi_1^\dagger\Phi_2^\dagger + \text{h.c.}) + \cdots$$

Summing up bubble diagrams in the vertex function

$$+$$
 C_0 C_0 C_0 C_0

Derivation of the LL formula

Formfactor in a finite volume:

$$|\langle E_n(\mathbf{P})|j(0)|0\rangle| = L^{-3/2} |\Gamma(s_n)| \frac{p\cos\delta(s_n)}{2\pi\sqrt{s_n}E_n} \frac{1}{|\delta'(s_n) + \phi'(s_n)|^{1/2}}$$

Formfactor in the infinite volume, with $(k_1 + k_2)^2 = s_n$:

$$|F(s_n)| = |\langle k_1, k_2; out | j(0) | 0 \rangle| = |\Gamma(s_n) \cos \delta(s_n)|$$

LL formula for the timelike formfactor in the nonrest frame

(see also H. Meyer, PRL 107 (2011) 072002)

$$|F(s_n)|^2 = |L^{3/2}\langle E_n(\mathbf{P})|j(0)|0\rangle|^2 \frac{2\pi\sqrt{s_n}E_n}{p^2} |\delta'(s_n) + \phi'(s_n)| \sqrt{\frac{1}{2}}$$

Resonance matrix elements

D. Hoja, U.-G. Meißner and AR, JHEP 1004 (2010) 050 V. Bernard, D. Hoja, U.-G. Meißner and AR, arXiv:1205.4642

Field operators with resonance quantum numbers:

$$O_{\mathbf{P}}(t) = \sum_{\mathbf{x}} e^{-i\mathbf{P}\mathbf{x}} O(\mathbf{x}, t),$$

Three- and two-point functions on the lattice:

$$\tilde{V}_{\mu}(\mathbf{P}, t'; \mathbf{Q}, t) = \langle 0|TO_{\mathbf{P}}(t')J_{\mu}(0)O_{\mathbf{Q}}^{\dagger}(t)|0\rangle,$$

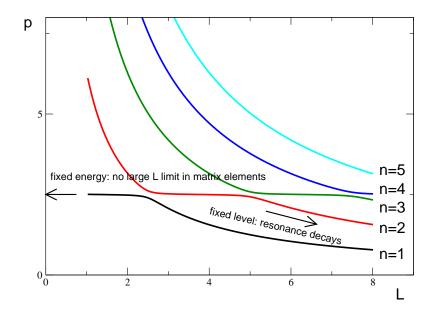
$$D(\mathbf{P}, t) = \langle 0|TO_{\mathbf{P}}(t)O_{\mathbf{P}}^{\dagger}(0)|0\rangle.$$

Extraction of the formfactor (ground-state):

$$\langle \mathbf{P}|J_{\mu}(0)|\mathbf{Q}\rangle_{0} = \lim_{\substack{t' \to \infty \\ t \to -\infty}} \tilde{V}_{\mu}(\mathbf{P}, t'; \mathbf{Q}, t) \sqrt{\frac{D(\mathbf{Q}, t')D(\mathbf{P}, t)}{D(\mathbf{Q}, t)D(\mathbf{Q}, t' - t)D(\mathbf{P}, t - t')D(\mathbf{P}, t')}}$$

Infinite-volume limit of the matrix elements

- For stable particles, the limit $L \to \infty$ exists
- Both methods give the matrix element sandwiched by the eigenvectors of the Hamiltonian. The resonances, however, do not correspond to a single energy level. How does one calculate the infinite-volume limit for these matrix elements?



- Fixed energy levels decay in the limit $L \to \infty$
- The matrix elements at fixed energy oscillate in the limit $L \to \infty$

Framework: non-relativistic EFT with the external fields

- Use NREFT in a finite volume to calculate the matrix element
- Extract the matrix element in the infinite volume

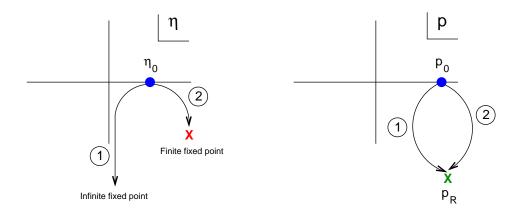
Loop graph: analytic continuation (rest system)

$$= \underbrace{\frac{m^2 - p^2}{8\pi E^3 p^2} \, p \cot \delta(p)}_{\text{(polynomial in } p^2)/p^2} + \underbrace{\frac{1}{32\pi E p} \, (1 + \cot^2 \delta(p)) \eta \phi'(\eta)}_{\text{culprit}}$$

$$p = p_n = \sqrt{\frac{E_n^2}{4} - m^2}$$
, $\tan \phi(\eta) = \frac{\pi^{3/2} \eta}{Z_{00}(1; \eta^2)}$, $\eta = \frac{pL}{2\pi}$

- A polynomial in p^2 , can be analytically continued $p^2 \to p_R^2$
- An analytic continuation of $\eta \phi'(\eta)$ is ambiguous

p- and η - planes



• Problem: $\cot \phi(\eta) + i \propto (\eta - \eta_R)$ and $\phi(\eta) \propto \ln(\eta - \eta_R)$

$$(\cot \phi(\eta) + i)\phi'(\eta) \to \text{const}$$

• Remedy: $\eta \phi'(\eta)$ depends on the energy level n, since $\eta = \eta_n(p)$. The culprit can be eliminated by measuring two energy levels:

$$ar{V}(p) = rac{b_m V_{nn}(p) - b_n V_{mm}(p)}{b_n - b_m}$$
 where $b_n = \eta_n \phi'(\eta_n)$

How does one extract resonance formfactors?

i) Measure the quantities $\langle {\bf P} | J_{\mu}(0) | - {\bf P} \rangle_n$ on the lattice, <u>Breit frame</u>

ii)
$$V_{nn}(p) = \underbrace{\frac{\delta'(p) + \phi'(\eta)}{4\sin^2\delta(p)}} \underbrace{\frac{L^3E_n}{2\pi\sqrt{E_n^2 - \mathbf{P}^2}}}_{\text{L\u00e4scher-Lellouch factor}} \langle \mathbf{P}|J_{\mu}(0)| - \mathbf{P}\rangle_n$$

iii) Form the linear combination:

$$\bar{V}(p) = \frac{b_m(p, \mathbf{P})V_{nn}(p) - b_n(p, \mathbf{P})V_{mm}(p)}{b_n(p, \mathbf{P}) - b_m(p, \mathbf{P})}$$

iv) Effective-range expansion for $\overline{V}(p)$ holds

$$\bar{V}(p) = \frac{V_{-1}}{p^2} + V_0 + V_1 p^2 + \dots \to \frac{V_{-1}}{p_R^2} + V_0 + V_1 p_R^2 + \dots$$

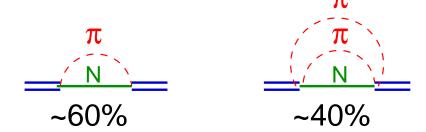
v) Resonance formfactor:
$$\langle {\bf P}|J_{\mu}(0)|-{\bf P}\rangle = \underbrace{B_R}_{\text{w.f. norm.}} \bar{V}(p_R) \quad \sqrt{}$$

Three-body intermediate states

K. Polejaeva and AR, EPJA 48 (2012) 67

The problem:

finite-volume effects in the spectrum of the Roper resonance



Approximations:

- No Lorentz-invariance
- No 4- and more particle states
- No 2- and 3-particle bound states

$$H = \sum_{i=1}^{3} H_0^{(i)} + H_{22} + (H_{23} + h.c.)$$

Two-body case: Splitting

Two-body propagator in a finite volume, with $q_0^2 = 2\mu z$:

$$G_0^{\mathsf{L}}(\mathbf{p};z) = \frac{2\mu}{L^3} \sum_{\mathbf{k}} \frac{(2\pi)^3 \delta^3(\mathbf{p} - \mathbf{k})}{\mathbf{k}^2 - q_0^2} = G^{\mathsf{K}}(\mathbf{p};z) + G^{\mathsf{F}}(\mathbf{p};z)$$

$$G^{\mathsf{K}}(\mathbf{p};z) = \mathsf{P.V.} \frac{2\mu}{\mathbf{p}^2 - q_0^2}$$

$$G^{\mathsf{F}}(\mathbf{p};z) = \sum_{l} \frac{2}{\eta^{l+1}} Y_{lm}^*(\hat{p}) Z_{lm}(1;\eta^2) \delta(\mathbf{p}^2 - q_0^2), \qquad \eta = \frac{q_0 L}{2\pi}$$

Derivation of Lüscher equation:

$$T^{\mathsf{L}} = V + VG_0^{\mathsf{L}}T^{\mathsf{L}} \quad \Rightarrow \quad K = V + VG^{\mathsf{K}}K \,, \quad \underbrace{T^{\mathsf{L}} = K + KG^{\mathsf{F}}T^{\mathsf{L}}}_{\text{L\u00e4scher}}$$

• Due to the presence of $\delta(\mathbf{p}^2 - q_0^2)$, only on-shell K-matrix elements determine the finite-volume spectrum!

Splitting in the 3-particle case

$$G_{0\alpha}^{\mathsf{L}} = \frac{1}{L^6} \sum_{\mathbf{p}\mathbf{q}} \frac{(2\pi)^3 \delta^3(\mathbf{p} - \mathbf{k})(2\pi)^3 \delta^3(\mathbf{q} - \mathbf{l})}{M + \frac{\mathbf{p}^2}{2M_\alpha} + \frac{\mathbf{q}^2}{2\mu_\alpha} - z} = G_\alpha^{\mathsf{K}} + G_\alpha^{\mathsf{F}}$$

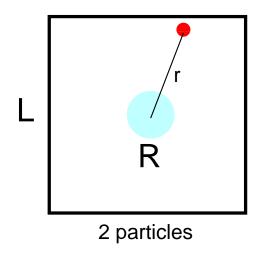
Can be the splitting used in the 3-body LS equations as well, in order to prove that the finite-volume energy spectrum is determined by the on-shell K-matrix elements only?

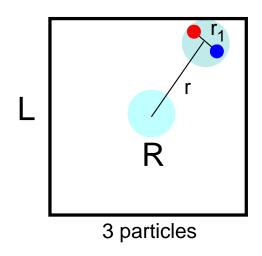
• Cusp singularity at $q_{0\alpha}^2=0$, breakdown of the regular summation theorem

$$G_{\alpha}^{\mathsf{F}} \sim \delta(\mathbf{q}^2 - q_{0\alpha}^2), \qquad q_{0\alpha}^2 = 2\mu_{\alpha} \left(z - M - \frac{\mathbf{p}^2}{2M_{\alpha}}\right)$$

• The splitting holds, if applied to the <u>regular</u> test functions. Disconnected diagrams in the 3-body scattering are not regular (contain the δ -function).

Physical interpretation





- In case of 2 particles: $r \gg R$, when particles are near the walls
- In case of 3 particles: it may happen that $r\gg R,\quad r_1\simeq R,$ when the particles are near the walls

The problem with the disconnected contributions: is the finite-volume spectrum in the 3-particle case determined solely through the on-shell scattering matrix?

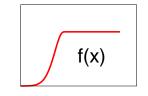
The cusp singularity

The cusp singularity leads to the breakdown of the regular summation theorem:

$$\frac{1}{L^3} \sum_{\mathbf{p}}^{\Lambda} |\mathbf{p}| = \int^{\Lambda} \frac{d^3 \mathbf{p}}{(2\pi)^3} |\mathbf{p}| + \underbrace{\sum_{\mathbf{n} \in \mathbb{Z} \setminus \mathbf{0}} \int^{\Lambda} \frac{d^3 \mathbf{p}}{(2\pi)^3} |\mathbf{p}| e^{i\mathbf{n}\mathbf{p}L}}_{O(L^{-2}), \text{ not exponent}}$$

remedy:
$$\delta(\mathbf{p}^2 - q_0^2) \rightarrow \Delta(\mathbf{p}^2, q_0^2)$$

where:
$$\int d{\bf p}^2 \Delta({\bf p}^2,q_0^2) \phi({\bf p}^2) = f(q_0^2/\mu^2) \phi(q_0^2)$$
 :



- Smearing recovers the regular summation theorem
- Price to pay: information enters from the subthreshold region

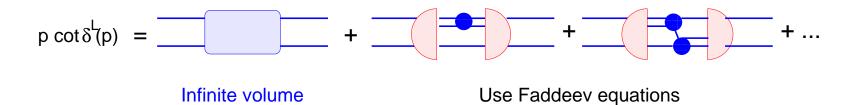
(power-suppressed in L)

Lüscher's equation with 3-particle intermediate states

Energy levels are determined from the Lüscher equation:

$$\tan \delta^{L}(p) = -\tan \phi(\eta), \qquad \eta = \frac{pL}{2\pi}$$

The pseudophase is given by:



Splitting in the 3-body equations

Naive analog of Faddeev equations in a finite volume:

$$\mathbf{R}_{4\beta} = \boldsymbol{\theta}_{4}\mathbf{G}_{\mathsf{F}}\left(\boldsymbol{\theta}_{\beta} + \sum_{\gamma=1}^{3} \mathbf{R}_{\gamma\beta}\right)$$

$$\mathbf{R}_{\alpha\beta} = \boldsymbol{\theta}_{\alpha}\mathbf{G}_{\mathsf{F}}\boldsymbol{\theta}_{\beta} + \boldsymbol{\theta}_{\alpha}\mathbf{G}_{\mathsf{F}}\left(\sum_{\gamma=1}^{3} (1 - \delta_{\alpha\gamma})\mathbf{R}_{\gamma\beta} + \mathbf{R}_{4\beta}\right)$$

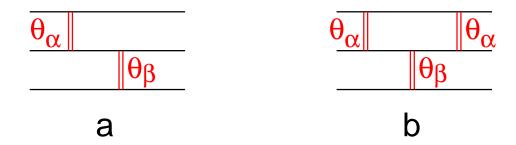
$$\mathbf{R}_{\alpha4} = \boldsymbol{\theta}_{\alpha}\mathbf{G}_{\mathsf{F}}\sum_{\gamma=1}^{3} (1 - \delta_{\alpha\gamma})\mathbf{R}_{\gamma4} + \boldsymbol{\theta}_{\alpha}\mathbf{G}_{\mathsf{F}}\mathbf{R}_{44}$$

$$\mathbf{R}_{44} = \boldsymbol{\theta}_{4} + \boldsymbol{\theta}_{4}\mathbf{G}_{\mathsf{F}}\sum_{\gamma=1}^{3} \mathbf{R}_{\gamma4}$$

$$\theta_{\alpha} = \mathbf{K}_{\alpha} + \mathbf{K}_{\alpha} \mathbf{G}_{\mathsf{F}} \theta_{\alpha}$$
, $\theta_{4} = \mathbf{K}_{4} + \mathbf{K}_{4} \mathbf{G}_{\mathsf{F}} \theta_{4}$

Disconnected contributions

Naive Faddeev equations in a finite volume <u>incorrect</u> due to the presence of the disconnected contributions:



- One iteration of θ_{α} and θ_{β} gives a tree diagram: no finite-volume effects
- The term $\theta_{\alpha}G^{\mathsf{F}}\theta_{\beta}$ in the naive Faddeev equations superfluous
- Dropping this term, the Born series of the Faddeev equations in a finite volume are shown to coinside order by order with that of the original Lippmann-Schwinger equation

3-body problem in a finite volume: summary

- Despite the presence of the disconnected contributions, the energy spectrum of the 3-particle system in a finite box is still determined by the <u>on-shell</u> scattering matrix elements in the infinite volume
- The information from the subthreshold region is needed. This is the price for recovering the regular summation theorem
- A full-fledged field- theoretical treatment of the problem (Lorentz-invariance, particle creation/annihilation) is planned

Conclusions

- Use of the effective field theory methods in a finite volume enables one to carry out a detailed study of resonances on the lattice
- With the use of these methods, resonance matrix elements (e.g., magnetic moments of Δ, ρ, \cdots) can be extracted from lattice data. The study of transition formfactors (e.g., $\Delta N \gamma$ vertex) is planned
- In the non-relativistic potential model, it was demonstrated that the finite-volume spectrum in the presence of the 3-body decay channels is still completely determined by the on-shell input in the infinite volume
- This result opens way to the investigation of the finite-volume effects in the spectrum of the Roper resonance