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Resonances in Quantum Field Theory

• Resonances are characterized by their mass, their lifetime, . . .

• These are the intrinsic properties of a resonance that should not
depend neither on a particular experiment nor a particular
theoretical model which is used to describe the data

→֒ Resonances correspond to S-matrix poles on the
unphysical Riemann sheets

Resonance

Threshold

Bound state
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Matrix elements with the resonances

A consistent definition of a formfactor of an unstable particle in QFT

2 2P  , Q        sR

QP +   ...

Example: electromagnetic formfactor of the ∆-resonance:

• Gauge independent

• Invariant under field redefinitions

Note: Definitions which do not imply analytic continuation, do not
have the above properties

How does one perform analytic continuation of the lattice data?
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Determining particle masses on the lattice

The two-point function in the Euclidean space

C(t) = 〈0|O(t)O†(0)|0〉 =

∫

dUdψdψ̄ e−SQCD(U,ψ,ψ̄) O(t)O†(0)

yields the spectrum of stable particles at large t

C(t) =
∑

n

|〈0|O(0)|n〉|2e−Ent → |〈0|O(0)|1〉|2 e−mt + · · ·

The method does not apply to the case of unstable particles: ρ, ∆, . . .

• How does one study scattering processes in lattice QCD?

• How does one calculate the resonance properties?
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Lüscher’s approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, · · ·

• Lattice simulations are always done at a finite box size L

It is assumed: R−1L ≃ML≫ 1 .

R: the range of interaction

• Momenta are small: p ≃ 2π/L≪ the lightest mass

• Finite-volume corrections to the energy levels are only
power-suppressed in L

• Studying the dependence of the energy levels on L gives the

scattering phase in the infinite volume ⇒ Resonances

Non-relativistic effective field theories (NREFT) can be used
to study the energy spectrum in a box
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Covariant NREFT in the infinite volume

G. Colangelo, J. Gasser, B. Kubis and AR, PLB 638 (2006) 187

J. Gasser, B. Kubis and AR, NPB 850 (2011) 96

The Lagrangian:

L =
∑

i

Φ†
i (2Wi)(i∂t −Wi)Φi + C0Φ

†
1Φ

†
2Φ1Φ2

+ C1

(

(Φ†
1)
µ(Φ†

2)µΦ1Φ2 −M1M2Φ
†
1Φ

†
2Φ1Φ2 + h.c.

)

+ · · ·

Wi =
√

M2
i −△ , (Φi)

µ = (Wi, i∇)Φi

The propagator:

Di(p) =
1

2Wi(p)

1

Wi(p) − p0 − i0

A. Rusetsky, Seattle, 16 August 2012 – p.7



Lippmann-Schwinger equation

• Expand Wi(p) = Mi + p2/(2Mi) + · · · in all Feynman integrands,
integrate in the dimensional regularization and sum up again

→֒ loop =
ip

8π
√
s
, p =

λ1/2(s,M2
1 ,M

2
2 )

2
√
s

+ + + ...T =

→֒ Scattering amplitude is Lorentz-invariant:

Tl =
8π

√
s

p cot δl(p) − ip

• Important in nonrest frames (formfactors, 3-body scattering)
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Covariant NREFT in a finite volume

Loops modified, Lüscher’s zeta-function emerges (nonrest frame):

∫
d3p

(2π)3
→ 1

L3

∑

p

, loop =
ip

8π
√
s
→ ZP

00

4π3/2Lγ
√
s

(S-wave)

Poles in the LS equation = spectrum of the Hamiltionan
(see S. R. Beane et al., NPA 747 (2005) 55)

→֒ Gottlieb-Rummukainen equation:

det (δll′δmm′ − tan δl(s)Mlm,l′m′) = 0

• Mlm,l′m′ is a linear combination of ZP
lm

• Partial-wave mixing occurs in a finite volume
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Where are the resonance poles?

Suppose that there exists an isolated narrow resonance in the vicinity
of the elastic threshold. Assume that effective range expansion for
the quantity p cot δ(p) is convergent in the resonance region.

p cot δ(p) = A0 +A1p
2 + · · ·

⇒ A0, A1, · · · are measured on the lattice

⇒ Resonance pole in the complex momentum plane:

cot δ(pR) = −i
√
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Example of using NREFT: Lüscher-Lellouch formula

V. Bernard, D. Hoja, U.-G. Meißner and AR, arXiv:1205.4642

• Aim: extract the formfactor in a timelike region

• Method: Calculate the formfactor in NREFT, in the infinite and in
a finite volume; single out the infinite-volume formfactor in the
finite-volume expression

Most general NREFT Lagrangian with the external field:

L =
∑

i

Φ†
i (2Wi)(i∂t −Wi)Φi + C0Φ

†
1Φ

†
2Φ1Φ2 + eA(Φ†

1Φ
†
2 + h.c.) + · · ·

Summing up bubble diagrams in the vertex function
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Derivation of the LL formula

Formfactor in a finite volume:

|〈En(P)|j(0)|0〉| = L−3/2 |Γ(sn)|
p cos δ(sn)

2π
√
snEn

1

|δ′(sn) + φ′(sn)|1/2

Formfactor in the infinite volume, with (k1 + k2)
2 = sn:

|F (sn)| = |〈k1, k2; out|j(0)|0〉| = |Γ(sn) cos δ(sn)|

→֒ LL formula for the timelike formfactor in the nonrest frame
(see also H. Meyer, PRL 107 (2011) 072002)

|F (sn)|2 = |L3/2〈En(P)|j(0)|0〉|2 2π
√
snEn
p2

|δ′(sn) + φ′(sn)|
√
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Resonance matrix elements

D. Hoja, U.-G. Meißner and AR, JHEP 1004 (2010) 050

V. Bernard, D. Hoja, U.-G. Meißner and AR, arXiv:1205.4642

Field operators with resonance quantum numbers:

OP(t) =
∑

x

e−iPxO(x, t) ,

Three- and two-point functions on the lattice:

Ṽµ(P, t
′;Q, t) = 〈0|TOP(t′)Jµ(0)O

†
Q(t)|0〉 ,

D(P, t) = 〈0|TOP(t)O†
P(0)|0〉 .

Extraction of the formfactor (ground-state):

〈P|Jµ(0)|Q〉0 = lim
t′→∞

t→−∞

Ṽµ(P, t′;Q, t)

s

D(Q, t′)D(P, t)

D(Q, t)D(Q, t′ − t)D(P, t − t′)D(P, t′)
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Infinite-volume limit of the matrix elements

• For stable particles, the limit L→ ∞ exists

• Both methods give the matrix element sandwiched by the
eigenvectors of the Hamiltonian. The resonances, however, do
not correspond to a single energy level. How does one calculate
the infinite-volume limit for these matrix elements?

0 2 4 6 8
0

5

fixed energy: no large L limit in matrix elements

n=1

n=2
n=3
n=4
n=5

fixed level: resonance decays

L

p

• Fixed energy levels decay in the limit L→ ∞
• The matrix elements at fixed energy oscillate in the limit L→ ∞
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Framework: non-relativistic EFT with the external fields

M 1
(1)

= Γ1

Γ2

M 1
(2)

= Γ1

M 1
(3)

= Γ1

Γ2

M 1
(4)

= Γ1

Γ2

+

...

...

M 2 =

...

... ...

+

+( )

... ( + )

( )

Z

• Use NREFT in a finite volume to calculate the matrix element

• Extract the matrix element in the infinite volume
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Loop graph: analytic continuation (rest system)

��
��
��
��

=
m2 − p2

8πE3p2
p cot δ(p)

︸ ︷︷ ︸

(polynomial in p2)/p2

+
1

32πEp
(1 + cot2 δ(p))ηφ′(η)

︸ ︷︷ ︸

culprit

p = pn =

√

E2
n

4
−m2 , tanφ(η) =

π3/2η

Z00(1; η2)
, η =

pL

2π

• A polynomial in p2, can be analytically continued p2 → p2
R

• An analytic continuation of ηφ′(η) is ambiguous
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p- and η- planes

p
0

η
0

p
R

1

2

1
2

X

X

pη

Infinite fixed point

Finite fixed point

• Problem: cotφ(η) + i ∝ (η − ηR) and φ(η) ∝ ln(η − ηR)

(cotφ(η) + i)φ′(η) → const

• Remedy: ηφ′(η) depends on the energy level n, since η = ηn(p).

The culprit can be eliminated by measuring two energy levels:

V̄ (p) =
bmVnn(p) − bnVmm(p)

bn − bm
where bn = ηnφ

′(ηn)
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How does one extract resonance formfactors?

i) Measure the quantities 〈P|Jµ(0)| −P〉n on the lattice, Breit frame

ii) Vnn(p) =
δ′(p) + φ′(η)

4 sin2 δ(p)

L3En

2π
√

E2
n − P2

︸ ︷︷ ︸

Lüscher-Lellouch factor

〈P|Jµ(0)| −P〉n

iii) Form the linear combination:

V̄ (p) =
bm(p,P)Vnn(p) − bn(p,P)Vmm(p)

bn(p,P) − bm(p,P)

iv) Effective-range expansion for V̄ (p) holds

V̄ (p) =
V−1

p2
+ V0 + V1p

2 + · · · → V−1

p2
R

+ V0 + V1p
2
R + · · ·

v) Resonance formfactor: 〈P|Jµ(0)| −P〉 = BR
︸︷︷︸

w.f. norm.

V̄ (pR)
√
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Three-body intermediate states

K. Polejaeva and AR, EPJA 48 (2012) 67

The problem:
finite-volume effects in the spectrum of the Roper resonance

~60% ~40%
N N

π
π

π

Approximations:

• No Lorentz-invariance

• No 4- and more particle states

• No 2- and 3-particle bound states

H =
3∑

i=1

H
(i)
0 + H22 + H23 +h.c.( )
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Two-body case: Splitting

Two-body propagator in a finite volume, with q20 = 2µz:

GL

0(p; z) =
2µ

L3

∑

k

(2π)3δ3(p − k)

k2 − q20
= GK(p; z) +GF(p; z)

GK(p; z) = P.V.
2µ

p2 − q20

GF(p; z) =
∑

lm

2

ηl+1
Y ∗
lm(p̂)Zlm(1; η2)δ(p2 − q20) , η =

q0L

2π

Derivation of Lüscher equation:

T L = V + V GL

0T
L ⇒ K = V + V GKK , T L = K +KGFT L

︸ ︷︷ ︸

Lüscher equation

• Due to the presence of δ(p2 − q20), only on-shell K-matrix
elements determine the finite-volume spectrum!
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Splitting in the 3-particle case

GL

0α =
1

L6

∑

pq

(2π)3δ3(p − k)(2π)3δ3(q − l)

M + p2

2Mα
+ q2

2µα
− z

= GK

α +GF

α

Can be the splitting used in the 3-body LS equations as well, in order
to prove that the finite-volume energy spectrum is determined by the
on-shell K-matrix elements only?

• Cusp singularity at q20α = 0, breakdown of the regular summation
theorem

GF

α ∼ δ(q2 − q20α) , q20α = 2µα

(

z −M − p2

2Mα

)

• The splitting holds, if applied to the regular test functions.
Disconnected diagrams in the 3-body scattering are not regular
(contain the δ-function).
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Physical interpretation
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��

r r

R R
L L

2 particles 3 particles

r1��
��
��

��
��
��

�
�
�
�

• In case of 2 particles: r ≫ R, when particles are near the walls

• In case of 3 particles: it may happen that r ≫ R, r1 ≃ R, when
the particles are near the walls

The problem with the disconnected contributions: is the
finite-volume spectrum in the 3-particle case determined

solely through the on-shell scattering matrix?

A. Rusetsky, Seattle, 16 August 2012 – p.22



The cusp singularity

The cusp singularity leads to the breakdown of the regular
summation theorem:

1

L3

Λ∑

p

|p| =

∫ Λ d3p

(2π)3
|p| +

∑

n∈Z\0

∫ Λ d3p

(2π)3
|p|einpL

︸ ︷︷ ︸

O(L−2), not exponent

remedy: δ(p2 − q20) → ∆(p2, q20)

where:
∫

dp2∆(p2, q20)φ(p2) = f(q20/µ
2)φ(q20) : f(x)

• Smearing recovers the regular summation theorem

• Price to pay: information enters from the subthreshold region
(power-suppressed in L)
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Lüscher’s equation with 3-particle intermediate states

Energy levels are determined from the Lüscher equation:

tan δL(p) = − tanφ(η) , η =
pL

2π

The pseudophase is given by:

p cot   (p)δL ��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
�
�
�
�
�

�
�
�
�
�

= + + + ...

Infinite volume Use Faddeev equations
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Splitting in the 3-body equations

Naive analog of Faddeev equations in a finite volume:

R4β = θ4GF

„

θβ +

3
X

γ=1

Rγβ

«

Rαβ = θαGFθβ + θαGF

„ 3
X

γ=1

(1 − δαγ)Rγβ + R4β

«

Rα4 = θαGF

3
X

γ=1

(1 − δαγ)Rγ4 + θαGFR44

R44 = θ4 + θ4GF

3
X

γ=1

Rγ4

θα = Kα + KαGFθα , θ4 = K4 + K4GFθ4
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Disconnected contributions

Naive Faddeev equations in a finite volume incorrect due to the
presence of the disconnected contributions:

θα θα θα
θβ θβ

a b

• One iteration of θα and θβ gives a tree diagram: no finite-volume
effects

• The term θαG
Fθβ in the naive Faddeev equations superfluous

• Dropping this term, the Born series of the Faddeev equations in
a finite volume are shown to coinside order by order with that of
the original Lippmann-Schwinger equation
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3-body problem in a finite volume: summary

• Despite the presence of the disconnected contributions, the
energy spectrum of the 3-particle system in a finite box is still
determined by the on-shell scattering matrix elements in the
infinite volume

• The information from the subthreshold region is needed. This is
the price for recovering the regular summation theorem

• A full-fledged field- theoretical treatment of the problem
(Lorentz-invariance, particle creation/annihilation) is planned
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Conclusions

• Use of the effective field theory methods in a finite volume
enables one to carry out a detailed study of resonances on the
lattice

• With the use of these methods, resonance matrix elements (e.g.,
magnetic moments of ∆, ρ, · · · ) can be extracted from lattice
data. The study of transition formfactors (e.g., ∆Nγ vertex) is
planned

• In the non-relativistic potential model, it was demonstrated that
the finite-volume spectrum in the presence of the 3-body decay
channels is still completely determined by the on-shell input in
the infinite volume

• This result opens way to the investigation of the finite-volume
effects in the spectrum of the Roper resonance
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