Roper Resonance and 1⁻⁺ Meson

Roper resonance: lattice calculations and its nature
 Is 1⁻⁺ meson a hybrid?

 χ QCD Collaboration:

A. Alexandru, Y. Chen, S.J. Dong, T. Draper, M. Gong, F.X. Lee, A. Li, K.F. Liu, X.F. Meng, N. Mathur, Y. Yang

INT, Aug. 2, 2012

Many Facets of Roper Resonance

Roper resonance (P₁₁ in πN scattering, with I = ½, M = 1440 MeV, Γ ~ 300 MeV) was discovered in pion-nucleon partial wave analysis in 1963.

 πN and γN has large contamination from Δ.

Confirmation from (α, α') scattering and $J/\psi \rightarrow NN\pi$ decay. (review by L. Alvarez-Ruso)

M. Ablikim, et al., PRL 97, 062001 (2006)

FIG. 6. Data divided by Monte Carlo phase space versus $p\pi$ invariant mass for $J/\psi \rightarrow p\pi^{-}\bar{n}$ (solid circles) and $J/\psi \rightarrow \bar{p}\pi^{+}n$ (open squares), compared with our fit (solid curve). The contributions of each resonance peak are shown by the dot-dashed lines in the same figure. The dashed line is the contribution of background terms including the nucleon pole term.

Many Facets of Roper Resonance Theory:

- Quark potential model prediction is 100-200 MeV too high (Liu and Wong, 1983, Capstick and Isgur, 1986)
- Skyrmion can accommodate it as a radial excitation (J. Breit and C. Nappi, 1984, Liu, Zhang, Black, 1984; U. Kaulfuss and U. Meissner, 1985)
- Suggestion as a pentaquark (Krewald 2000); as a member of the antidecuplet (Jaffe, Wilczek, 2003)
- Perhaps a hybrid (Barnes, Close, etc. 1983)
- $\blacksquare \rightarrow \text{Lattice calculations}$

Quenched Lattice Calculations of Roper

Roper on the lattice

4 issues about lattice calculations:

- Radial excitation or pentaquark state?
- Dynamical fermions
- Variation vs Bayesian fitting
- Chiral dynamics

- Roper is seen on the lattice with three-quark interpolation field.
- Weight :

 $| < 0 | O_N | R > |^2 > | < 0 | O_N | N > |^2 > 0$ (point source, point sink)

Bethe-Salpeter Wavefunction

 $O_{RN} = \int dr \,\Psi_{R}^{*}(r)\Psi_{N}(r) = 0 \text{ at non - relativist ic limit,}$ $O_{RN} = \int dr \,\Psi_{R}^{*}(r)\Psi_{N}(r) \uparrow \text{ as } m_{q} \downarrow$

Nucleon and Roper wavefunctions for $m_{\Pi} = 633 \text{ MeV}$

 $O_{RN} = 0.30$

NSTR, 2009, page 8

Roper and Nucleon Wavefunctions at $m_{\pi} = 438 \text{ MeV}$

 $O_{RN} = 0.59$

R/a

Dynamical Fermions

Dynamical Fermions (Overlap on DWF Configurations)

Improvement of nucleon correlator with low-mode substitution

 $24^3 \times 64$ lattice with $m_{\pi} = 331$ MeV, a = 1.73 GeV⁻¹ 47 configurations

NSTR, 2009, page 11

Roper resonance from Coulomb wall source

 $m_N = m_0 + c_1 m_\pi^2 + c_2 m_\pi^3 \text{(mixed)} + c_3 m_\pi^4 \ln(m_\pi^2 / \mu^2) + \dots$

 $24^3 \times 64$ lattice with $m_{\pi} = 331$ MeV(sea), a = 1.73 GeV⁻¹

Roper and Nucleon Wavefunctions at $m_{\pi} = 438 \text{ MeV}$

 $O_{RN} = 0.59$

R/a

Variation with 2 operators

(10 – operator 1, no smearing, 23 – operator 2, 3 smearing

Variation with wall and point sources?

Glozman and Riska Challenge Phys. Rep. 268, 263 (1996)

Hyperfine Interaction of Quarks in Baryons

• Color-spin

 $\lambda_1^c \bullet \lambda_2^c \overrightarrow{\sigma}_1 \bullet \overrightarrow{\sigma}_2$

- One-gluon exchange
- Flavor-spin $\lambda_1^F \bullet \lambda_2^F \overrightarrow{\sigma}_1 \bullet \overrightarrow{\sigma}_2$
- Goldstone boson exchange

Evidence of $\eta'N$ GHOST State in S₁₁ (1535) Channel

Lattice2005, page 17

Dynamical Fermions

NSTR, 2009, page 20

N* spectrum in LQCD & dynamical coupling

Lattice N* states (m_{π} =396MeV)

LQCD finds states as predicted in SU(6)xO(3)

R. Edwards, J. Dudek, D. Richards, S. Wallace, PRD84, 074508 (2011)

Dynamics of P₁₁-states:

Wednesday, June 9, 2010

The bare state at ~1750 MeV through coupling to inelastic channels generates 2 poles below 1400 MeV. They are identified with the "Roper" resonance.

Dynamics of the Roper-like states

The "bare" quark state at ~1750 MeV through coupling to inelastic channels generates a pole near1820 MeV and two poles at ~1360 MeV. The latter may be identified with the "Roper" resonance.

N. Suzuki et al. (JLab/EBAC), Phys.Rev.Lett.104:042302,2010

Nature of Roper Resonance --- current understanding

- Roper is the radial excitation of nucleon with large couplings to Nn and N π . The real part of the Nn and N π loops pushes down the pole of radial excitation and the imaginary part gives the width of Roper, much the same way the N π coupling changes the Δ mass and gives rise of its width.
- Issues with lattice calculations:
 - Variation vs Bayesian fitting: the size of the operators.
 - Chiral dynamics of the fermion action.

Is 1⁻⁺ Meson a Hybrid?

Y. Yang, Y. Chen, KFL, arXiv:1202.2205

Exotics:

❖ Glueballs
❖ Hybrids (qqqg)
❖ Tetraquark mesoniums (qqqqq); pentaquark baryons (q⁴q)

How to identify glueballs and hybrids in experiments and lattice calculations and distinguish them from ordinary $q\overline{q}$ mesons? exotic quantum numbers, e.g.

 $J^{PC} = 0^{+-}, 1^{-+}, 2^{-+}$

Meson Interpolation Fields

- dim 3 ΨΓΨ
- $\blacksquare \dim 4 \quad \overline{\Psi} \Gamma \vec{D} \Psi, \ GG$
- **dim 5** $\overline{\Psi}\Gamma\Psi G$, $\overline{\Psi}\Gamma DD\Psi$, GDG
- dim 6 $\overline{\Psi}\Gamma\Psi\overline{\Psi}\Gamma\Psi$, *GGG*, *GDDG*, etc

Dim 3 operators $\overline{\Psi}\Gamma\Psi$ do not generate exotic mesons with $J^{PC} = 1^{-+}, 0^{--}, 0^{+-}, 2^{+-}$ but they can be produced with dim 5 $\overline{\Psi}\Gamma\Psi G$ ops. they are hybrids.

Experiments and Lattice Results

Expts on 1⁻⁺:

- > π₁(1400), M= 1376±17 MeV, Γ=300±40 MeV
- > π₁(1600), M=1653±17 MeV, Γ=225±38 MeV (?)

Lattice calculations (Quenched):

- > UKQCD (1997): 2.0(2) GeV
- MILC (1997): 2.0(1) GeV, 2.1(1) GeV
- Lacock and Schilling (1998): 1.9(2) GeV
- MILC (2003): ~ 1.6 GeV
- Adelaide (2004): ~ 2.4 GeV; ~1.6 GeV
- > HSC (2010)
- > J. Dudek (2011)

$\vec{J} = \vec{L} + \vec{S}, P = (-)^{L+1}, C = (-)^{L+S}$ are non-relativistic definitions!

For example:	Pauli Spinor	Dirac Spinor
L = 1, S = 1, J = 0	$\overline{\psi} ec{\sigma} \cdot ec{\Delta} \psi$	$\overline{\Psi}\Psi$
L = 1, S = 1, J = 1	$\overline{\psi} ec{\sigma} imes ec{\Delta} \psi$	$\overline{\Psi}\gamma_i\gamma_5\Psi$
L = 1, S = 1, J = 2	$\overline{\psi} ec{\sigma} \otimes ec{\Delta} \psi$	$\overline{\Psi}\gamma \otimes ec{D}\Psi$
L = 1, S = 0, J = 1	$\overline{\psi}\vec{\Delta}\psi$	$\overline{\Psi}\sigma_{_{ij}}\Psi$

Lower component of Dirac spinor has a different parity from the upper one.

$$\Psi_{free} \propto \left(\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \right) \chi e^{ip.x}$$

1⁻⁺ Meson

Exotic: $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}, P = (-)^{L+1}, C = (-)^{L+S}$ $\overrightarrow{P} \longrightarrow L = even$ $\overrightarrow{J} \longrightarrow S = 1$ $\overrightarrow{C} = \overrightarrow{C} = \overrightarrow{C} = -$

■ Yet dim 4 $\overline{\Psi}_{\gamma_4} \vec{D}_i \Psi$ is 1⁻⁺ (B.A. Li, 1975) > $P: \Psi(\vec{x}) \rightarrow \gamma_4 \Psi(-\vec{x})$ > $C: \Psi \rightarrow \mathcal{O} \overline{\Psi}$ > Exotic $q\overline{q}$? > Note: there is no dim 3 op. for 2⁺⁺ It is produced with $\overline{\Psi}_{\gamma_i} \vec{D}_i \Psi$.

Content and Interpolation Field

- One cannot always judge the content of a hadronic state by its interpolation field. For example
 - the lowest state from $\overline{\Psi}\Psi$ is $\eta\pi$ and $\pi\pi$, not a_0 and f_0 .
 - the lowest P-wave state from χ_N is $\pi N \text{ not } S_{11}$.
- The lowest pseudoscalars from $G\tilde{G}$ is η and η' not glueball. $<0|G\tilde{G}|\eta>,<0|G\tilde{G}|\eta> \ge <0|G\tilde{G}|G>$
 - will need $\langle 0 | \overline{\Psi} \gamma_5 \Psi | \eta \rangle, \langle 0 | \overline{\Psi} \gamma_5 \Psi | \eta \rangle >> \langle 0 | \overline{\Psi} \gamma_5 \Psi | G \rangle$ to help decide which one is a glueball.

(Cheng, Li and Liu, PRD 79, 014024 (2009))

Criteria for a meson to be a hybrid:

Compare the matrix elements of both the dim 4 and dim 5 operators of 1⁻⁺ against other ordinary mesons, particularly the 2⁺⁺

• Dim 4 m.e. $<0|\overline{\Psi}\gamma_4 D_i \Psi|1^{-+}> << <0|O_4|0^{-+},1^{--},0^{++},1^{+\pm},2^{++}>$

• Dim 5 m.e. $<0 | \overline{\Psi} \varepsilon_{ijk} \gamma_j B_k \Psi | 1^{-+} > >> <0 | O_5 | 0^{-+}, 1^{--}, 0^{++}, 1^{+\pm}, 2^{++} >$

Dim 3, 4 (D-type) and dim 5 (B-type) operators

Table 1: Interpolation operators $\bar{\psi}\Gamma\psi$ (dimension 3, Γ -type), $\bar{\psi}\Gamma\times \overleftarrow{D}\psi$ (dimension 4, D-type), and $\bar{\psi}\Gamma\times B\psi$ (dimension 5, B-type). $\Sigma_i \equiv \frac{1}{2}\varepsilon_{ijk}\sigma_{jk}$ and repeated indices are summed over.

	Г	D_{\perp}	B
0^{-+}	γ_5	$\Sigma_i \overleftarrow{D}_i$	$\gamma_i B_i$
1	γ_i	\overline{D}_i	$\gamma 5B_i$
0^{++}	I	$\gamma_i \overleftrightarrow{D}_i$	$\Sigma_i B_i$
1++	$\gamma_5 \gamma_i$	$\varepsilon_{ijk}\gamma_j D_k$	$\varepsilon_{ijk} \Sigma_j B_k$
1+-	Σ_i	$\gamma_5 D_i$	B_i
2^{++}		$ \varepsilon_{ijk} \gamma_j \overleftarrow{D}_k$	$ \varepsilon_{ijk} \Sigma_j B_k$
1^{-+}		$\gamma_4 \overleftarrow{D}_i$	$\varepsilon_{ijk}\gamma_j B_k$
		$\varepsilon_{ijk} \Sigma_j D_k$	

Non-relativistic Reduction why no such operators in quark model

Table 2: Non-relativistic form for the three kinds of operators $(\Gamma, D \text{ and } B)$ as shown in Table 1. Here we list the operators \mathcal{O} in the interpolation field $\chi^{\dagger}\mathcal{O}\phi$. Repeated indices are summed over.

Note: $\vec{D} + \vec{D}$ is the $q\vec{q}$ center of mass momentum which is not a dynamical d.o.f. in the constituent quark model.

Charmoniums

Anisotropic 12^3 x 96 lattice with Wilson action, $\beta = 2.8$, $\zeta = 5$, $a_s = 0.138$ fm.

Table 3: Masses of charmonium states from Γ - and *B*-type sources and point sinks.

	$\Gamma_w \to \Gamma_p$	$B_w \to \Gamma_p$	$B_w \to B_p$	$B_w \to D_p$	PDG
0^{-+}	3000 ± 3	$3000\pm~3$	2999 ± 3	$3000\pm~3$	2980.3 ± 1.2
1	3096 ± 3	$3095\pm~3$	3093 ± 3	$3094\pm~3$	3096.916 ± 0.011
0^{++}	3458 ± 30	3485 ± 18	3485 ± 21	3476 ± 18	3414.75 ± 0.31
1++	3497 ± 21	3491 ± 10	3492 ± 28	3492 ± 28	3510.66 ± 0.07
1+-	3489 ± 30	3475 ± 21	3486 ± 12	$3494\pm~6$	3525.42 ± 0.29
2^{++}	_	_	3529 ± 40	3501 ± 13	3556.20 ± 0.09
1-+	_	_	4205 ± 84	4234 ± 42	_

Figure 4: The same as Fig. 2 for $\chi_{c2}(2^{++})$ and $\eta_{c1}(1^{-+})$

Table 2: Non-relativistic form for the three kinds of operators (Γ , D and B) as shown in Table 1. Here we list the operators \mathcal{O} in the interpolation field $\chi^{\dagger}\mathcal{O}\phi$. Repeated indices are summed over.

$$\begin{array}{|c|c|c|c|c|c|}\hline & \Gamma & D & B \\ \hline 0^{-+} & \mathbb{I} & \frac{1}{2m_c} \overrightarrow{D}_i \overrightarrow{D}_i & i\sigma_i B_i \\ 1^{--} & \sigma_i & \frac{1}{2m_c} \sigma_j \overrightarrow{D}_j \overrightarrow{D}_i & B_i \\ 0^{++} & \frac{1}{2m_c} \overrightarrow{D}_i \sigma_i & \sigma_i \overrightarrow{D}_i & B_i \\ 1^{++} & \frac{1}{2m_c} \varepsilon_{ijk} \overrightarrow{D}_j \sigma_k & \varepsilon_{ijk} \sigma_j \overrightarrow{D}_k & \frac{1}{2m_c} (\varepsilon_{ijk} \overrightarrow{D}_j B_k + i\partial_i (\sigma_j B_j)) \\ 1^{+-} & \frac{1}{2m_c} \overrightarrow{D}_i & \overrightarrow{D}_i & \frac{1}{2m_c} (\varepsilon_{ijk} \overrightarrow{D}_j B_k + i\partial_i (\sigma_j B_j)) \\ 2^{++} & | & | \varepsilon_{ijk} | \sigma_j \overrightarrow{D}_k & \frac{1}{2m_c} (\varepsilon_i \overrightarrow{D}_j B_k + i\varepsilon_{jmn} \sigma_m \partial_n (B_k)) \\ 1^{-+} & | & \frac{1}{2m_c} (\overrightarrow{D}_i \sigma_j \overrightarrow{D}_j + \sigma_j \overrightarrow{D}_j \overrightarrow{D}_i) & \varepsilon_{ijk} \sigma_j B_k \end{array}$$

$$\int d^{3}x \overline{\psi} \gamma_{4} \vec{D}_{i} \psi \xrightarrow{N.R.} \int d^{3}x \frac{-\varepsilon_{ijk}}{m} \chi^{\dagger} \sigma_{j} B_{k} \phi;$$
$$\int d^{3}x \varepsilon_{ijk} \overline{\psi} \Sigma_{j} \vec{D}_{k} \psi \xrightarrow{N.R.} \int d^{3}x \frac{\varepsilon_{ijk}}{m} \chi^{\dagger} \sigma_{j} B_{k} \phi$$

Table 4: Matrix elements $< 0|\mathcal{O}_p|J^{PC} >$ for charmoniums.

$$\frac{1}{ma} = \frac{v}{m_c a_t \zeta} \sim 0.7048;$$
$$\varepsilon = \frac{1}{2ma} \sim 0.352,$$
$$v_{c\overline{c}} = \frac{\vec{D} + \vec{D}}{2m} \sim v_c \sim 0.3c;$$
$$v_{rev} = \frac{\vec{D} - \vec{D}}{2m} \sim 0.3c$$

Figure 5: Global fit for the ratios of Γ for χ_{c0}, χ_{c1} and h_c (2 D for 1⁻⁺) m.e. to the corresponding m.e. of D (B for 1⁻⁺).

$$0^{++}, 1^{++}, 1^{+-}: \Gamma \text{ m.e. } \approx \frac{1}{2m} \text{ D m.e.}$$

 $1^{-+}: \text{ D m.e. } \approx \frac{1}{m} \text{ B m.e.}$
 $\varepsilon = \frac{1}{2m} \sim 0.352$

Leading NR reduction is reasonably good.
Mixing of operators with different dimensions seems to be small.

Strangeness mesons

Table 6: The matrix elements $< 0|\mathcal{O}_p|J^{PC} >$ for strange quarkoniums.

	Γ_p	D	В
0^{-+}	0.0247 ± 0.0002	0.021 ± 0.002	0.005 ± 0.0001
1	0.0141 ± 0.0002	0.0113 ± 0.0005	0.0025 ± 0.0001
0^{++}	0.043 ± 0.006	0.033 ± 0.005	0.017 ± 0.004
1^{++}	0.029 ± 0.004	$0.034 \ \pm 0.004$	0.0018 ± 0.0002
1^{+-}	0.019 ± 0.006	0.029 ± 0.005	0.0019 ± 0.0004
2^{++}		$0.010\ \pm 0.007$	0.0003 ± 0.0001
1^{-+}		0.007 ± 0.001	0.004 ± 0.001
		$0.006 \ \pm 0.002$	

D and B m.e. of 1⁻⁺ are comparable in size to those of other ordinary mesons.
No evidence for 1⁻⁺ in the charmonium and strangeonium regions to be hybrids.

Exotic Quantum Numbers

• NR reduction shows that 1⁻⁺ involves a center of mass motion of the $q\overline{q}$ pair.

 MIT bag model (Jaffe and Johnson, 1976; DeGrand and Jaffe, 1976)

 $\Psi(2^{+\pm}) = \frac{1}{\sqrt{2}} (S_{1/2} \overline{P}_{3/2} \mp P_{3/2} \overline{S}_{1/2}) \rightarrow \text{cm motion for } 2^{+-}$ $\Rightarrow \text{ Spectrum is doubled. Simiarly (hamonic oscillator wf),}$ $\Psi(1^{-\pm}) = \frac{1}{\sqrt{2}} (1S_{1/2} 2\overline{S}_{1/2} \mp 2S_{1/2} 1\overline{S}_{1/2})$

The `exotic' q.n. can be accommodated by

$$C = (-)^{l+s}$$

$$\vec{J} = \vec{L} + \vec{l} + \vec{s} \quad 1^{-+}: \ L = l = 1, \ s = 1$$

$$P = L + l + 1$$

Conclusion

- By examining m.e. of dim 4 and dim 5 operators of 1⁻⁺ against those of ordinary mesons, we find no evidence for it to be a hybrid in the cc and ss regions.
- NR reduction shows that it involves a center of mass AM of the $q\overline{q}$ pair.
- These `exotic' q.n. are accessible in chiral quark models, bag models, flux-tube models, and QCD.
- To accommodate these q.n., the parity and AM rules need to be modified to

 $C = (-)^{l+s}, \ \vec{J} = \vec{L} + \vec{l} + \vec{s}, \ P = L + l + 1$