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Motivation

 Consider only u, d quarks: Only p, n and π are
stable (under strong interactions).

 Even lowest ‘states’ in other quantum channels
      decay (ρ, N*,...) hadronically: scattering states

 Most hadrons in the PDG tables are resonances

 For many ‘particles’ the classification is
uncertain (multiplet, ‘molecular’ bound state, 
glueball)
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Hadron propagators and spectral function
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Example: mρ/mπ =3
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288 11 Hadron structure

Fig. 11.2. This figure illustrates the behavior of the wave function: Outside the
interaction region it is an unperturbed plane wave which picks up an extra phase
shift in the interaction region (indicated by the arrow)

may be deduced from (11.90). If the functional form δ(kn) were known, one
could use this relation to find the quantized values of the momentum in this
finite volume. On the other hand, given the momentum spectrum from some
measurement, (11.90) allows the determination of the phase shift δ(kn) for
each kn.

The momenta can be obtained from the energy values of the two parti-
cle states which are accessible in the simulation. For given L one computes
the discrete levels W0,W1,W2, . . . and from these the values of kn using the
dispersion relation

Wn = 2
√

m2 + k2
n . (11.91)

The technical problem lies in the precise determination of the single-particle
mass and of the energy levels Wn.

For the determination of the energy spectrum one has to use techniques
like the variational method (discussed in Sect. 6.3.3) considering correlation
functions of a sufficiently large number of interpolators with the correct quan-
tum numbers, capable of representing the space of scattering states [33, 34],
including the coupled single-particle channels. Usually several of the lowest
energy eigenmodes can be determined with sufficient reliability. Varying the
spatial size L of the system allows one to cover different values of the momen-
tum. In [34] a simple 2D system was studied which couples a heavier and two
lighter bosons on the lattice, with mass and coupling parameters allowing for a
decay like in the ρ → ππ system. Figure 11.3 demonstrates the expected phe-
nomenon of level-crossing avoidance, which leads to a resonating phase shift.

One has to respect carefully the limitations of the approach: The interac-
tion region and the single-particle correlation length ought to be smaller than
the spatial volume, in particular mL" 1. The relation is applicable only be-
low the first inelastic threshold. Polarization effects due to virtual particles
running around the torus should be under control. Lattice artifacts will turn
up for large values of k.

In the physical 4D situation the relationship between phase shift, lattice
size, and momentum becomes somewhat more complicated:

δ(k) = φ

(
kL

2π

)
modπ with tan(−φ(q)) =

qπ3/2

Z00(1; q2)
, φ(0) = 0 .

(11.92)

eikL+2i�(k) = 1
knL+ 2�(kn) = 2n⇥

Wn = 2
p

m2 + k2n

tan �(q) =
⇥3/2q

Z00(1; q2)

2D example: Gattringer/CBL, NP B391 (1993) 463

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237
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Hadron propagators and spectral function

  Finite volume: Energy levels are discrete

  Energy values: masses of hadrons?

  Dynamical quarks: hadronic intermediate  

states, more levels expected
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Hadron propagators and spectral function

How to extract several energy levels from 
correlation functions?

How to interpret the (hopefully) observed 
values?

  Finite volume: Energy levels are discrete

  Energy values: masses of hadrons?

  Dynamical quarks: hadronic intermediate  

states, more levels expected
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What do we need?

 Gauge configurations (with dynamical quarks)

 Quark propagators

 Hadron interpolators and propagators

 A method to extract higher energy levels

 Interpretation of the obtained energy levels
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How to get energy levels...

A fit to several exponentials is usually unstable!

Maximum entropy method Sasaki (05)Friday, August 10, 12



C. B. Lang (c) 2012

How to get energy levels...

A fit to several exponentials is usually unstable!

Bayesian analysis (stepwise reduction of        
exponential with biased estimators):

   minimize

Mathur(05), Lee(03), 
Juge(06), Zanotti(03), 
Melnichouk(03)

F = ⇤2 + �⇥
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How to get energy levels...

A fit to several exponentials is usually unstable!

Bayesian analysis (stepwise reduction of        
exponential with biased estimators):

   minimize

Mathur(05), Lee(03), 
Juge(06), Zanotti(03), 
Melnichouk(03)

F = ⇤2 + �⇥

   where     is a stabilizing function(prior)�

Maximum entropy method

Maximum entropy method Sasaki (05)

Sasaki (05)

Variational method (Michael, Lüscher/Wolff) Burch (03/06)
Basak (05)
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Use several interpolators

Compute all cross-correlations

Solve the generalized eigenvalue 
problem:

The eigenvalues give the energy levels 
(masses):

The eigenvectors are “fingerprints” of 
the state and allow to identify the 
“composition” of the state

Energy levels: Disentangle the states

Cij(t) = hXi(t)X†
j (0)i

Xi

C(t) u(n) = �(n) C(t0)u(n)

�(n)(t) / e�t En
�
1 +O(e�t�En)

�
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Use several interpolators

Compute all cross-correlations

Solve the generalized eigenvalue 
problem:

The eigenvalues give the energy levels 
(masses):

The eigenvectors are “fingerprints” of 
the state and allow to identify the 
“composition” of the state

Energy levels: Disentangle the states

Cij(t) = hXi(t)X†
j (0)i

Xi

C(t) u(n) = �(n) C(t0)u(n)

�(n)(t) / e�t En
�
1 +O(e�t�En)

�

“Variational method”

(Lüscher/Wolff; Michael)

Lüscher,Wolff: NPB339(90)222
Michael, NPB259(85)58
See also Blossier et al., 
JHEP0904(09)094
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Hadron operators

We need several hadron interpolators to allow a good
representation of the hadronic states!

• Several Dirac structures, e.g

u�5d, u�t�5d, . . .

N (i) = ✏abc �(i)
1 ua

⇣
uT

b �(i)
2 dc � dT

b �(i)
2 uc

⌘

�µ = ⇥abcua(u
T
b C�µuc)

(projected to definite parity)

�(i)
1 �(i)

2

i = 1 1 C�5
i = 2 �5 C
i = 3 i C�4�5

Pion

• Extended operators (cf. HSC)
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Quark sources

Different quark source shapes:
• Point
• Wall
• Stochastic
• Separable sources (see: distillation)
• Spatially smeared quarks (Jacobi smearing)
• Derivative sources

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

S0 = �(m�m0) ���0 �aa0

G = D�1 S0 ! DG = S0

S =
NX

n=0

�n HnS0

H(⇥n, ⇥m ) =
3X

j=1

h
Uj(⇥n, 0) �(⇥n+ ĵ , ⇥m )

+Uj(⇥n�ĵ , 0)† �(⇥n� ĵ , ⇥m )
i

⇥ri(⇥x, ⇥y) = Ui(⇥x, 0)�⇥x+î,⇥y

� Ui(⇥x� î, 0)†�⇥x�î,⇥y

S�i = ⇥riS
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Correlators

~x0

~pk

G(x0 ! pk)

vi vj

G(vi ! vj)

t

~x0

~y0

G(x0 ! y0)

t’

~x

smeared        smeared
point             point

smeared        momentum

eigenmode    eigenmode
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

e.g. meson: M = u
x

D
x,y

d
y

M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

e.g. meson: M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

NX

i

gi(x)g
†
i (x

�)
NX

i

gi(y
�)g†i (y)

e.g. meson: M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

NX

i

gi(x)g
†
i (x

�)
NX

i

gi(y
�)g†i (y)

e.g. meson:

hM(0)M(t)i =
X

ijkn

hū gi g†i D� gj g
†
j d d̄ gk g

†
k D� gn g

†
n ui

M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

NX

i

gi(x)g
†
i (x

�)
NX

i

gi(y
�)g†i (y)

e.g. meson:

hM(0)M(t)i =
X

ijkn

hū gi g†i D� gj g
†
j d d̄ gk g

†
k D� gn g

†
n ui

=
X

ijkn

⇥ij(0) �jk(0, t) ⇥kn(t) �ni(t, 0)

M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

NX

i

gi(x)g
†
i (x

�)
NX

i

gi(y
�)g†i (y)

e.g. meson:

=
X

ijkn

⇥ij(0) �jk(0, t) ⇥kn(t) �ni(t, 0)

hM(0)M(t)i =
X

ijkn

h g†i D� gj g
†
j d d̄ gk g

†
k D� gn g

†
n u ū gi i

M =
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Separable sources

LapH smearing and distillation Peardon et al. PRD80(09)054506

ū

x

S

†(x, x�)D
x

0
,y

0�S(y�, y)d
y

NX

i

gi(x)g
†
i (x

�)
NX

i

gi(y
�)g†i (y)

e.g. meson:

=
X

ijkn

⇥ij(0) �jk(0, t) ⇥kn(t) �ni(t, 0)

hM(0)M(t)i =
X

ijkn

h g†i D� gj g
†
j d d̄ gk g

†
k D� gn g

†
n u ū gi i

M =

Perambulator τ:  Propagator from source i to sink n
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“Laplacian Heaviside smearing”

Perambulator: Propagator from source i to sink j
Distillation operator: Spectral representation in terms of 
eigenvectors of the 3D Laplacian

S(x, y) =
NX

i

cigi(x)g
†
i (x

�)

e.g., for

Advantage: 
High flexibility in interpolator def.;
Disconnected contributions 
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“Laplacian Heaviside smearing”

Perambulator: Propagator from source i to sink j
Distillation operator: Spectral representation in terms of 
eigenvectors of the 3D Laplacian

S(x, y) =
NX

i

cigi(x)g
†
i (x

�)

e.g., for ci = 1, N = 32, 64, 96 !

0 2 4 6 8 10 12 14r
0

0.2

0.4

0.6

0.8

1

s
(r)

Nv=32   s=w  (wide)
Nv=64   s=m  (middle)
Nv=96   s=n  (narrow)

Advantage: 
High flexibility in interpolator def.;
Disconnected contributions 
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Plus/minus

All hadron-hadron correlators (and 3-point functions) can be 
constructed from the perambulators.

Needs many (NxNT) Dirac operator inversions 
(perambulators)! 

High flexibility for interpolator structure: �, ��i, exp(i �p · �x)

Volume scaling! Stochastic dilution        ?
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1. Motivation and lattice tools

2. Case 1: Hadron excitations

3. Case 2: Meson decay

Overview
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Case 1: Single hadron interpolators for 
baryons and mesons

Simulation with 2 sea quarks:

 Chirally improved (approximate GW) action  
+ stout smearing
 Lüscher-Weisz gauge action
 7 ensembles of 200-300 configurations
 163x32 (size 2.4 fm), 243x48 (size 3.6 fm)
 Pion masses 260..540 MeV
 Smeared sources, single hadron interpolators

 (Gattringer, 
PRD63(2001)114501)

Gattringer et al. PRD 79 (2009) 054501
Engel et al. PRD 82 (2010) 034505;
                PRD 85 (2012) 034508

see, e.g., also other collab.s: 
Edwards et al., arXiv:1104.5152
and citations in the review 
Lin, arXiv:1106.1608
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Details36 Chapter 5. Simulation Properties

would weaken the predictive power. Further details and discussions concerning the
HMC algorithm are found in [37,41,48].

set βLW m0 ms configs. L3 × T [a4] mπL a [fm]
A50 4.70 -0.050 -0.020 200 163 × 32 6.40 0.1324(11)
A66 4.70 -0.066 -0.012 200 163 × 32 2.72 0.1324(11)
B60 4.65 -0.060 -0.015 300 163 × 32 5.72 0.1366(15)
B70 4.65 -0.070 -0.011 200 163 × 32 3.38 0.1366(15)
C64 4.58 -0.064 -0.020 200 163 × 32 6.67 0.1398(14)
C72 4.58 -0.072 -0.019 200 163 × 32 5.11 0.1398(14)
C77 4.58 -0.077 -0.022 300 163 × 32 3.74 0.1398(14)
LA66 4.70 -0.066 -0.012 97 243 × 48 4.08 0.1324(11)
SC77 4.58 -0.077 -0.022 600 123 × 24 2.81 0.1398(14)
LC77 4.58 -0.077 -0.022 153 243 × 48 5.61 0.1398(14)

Table 5.1: Parameters of the simulation: Ten ensembles are generated, their names
given in the first row. We show the gauge couplings βLW , the light quark mass
parameter m0, the strange quark mass parameter ms, the number of configurations
analyzed (“configs.”) and the volume L3 × T in lattice units. The dimensionless
product of the pion mass with the spatial extent of the lattice, mπL, enters finite
volume corrections. We also give the dimensionful lattice spacing a according to the
definition discussed in Section 6.1. The three ensembles LA66, SC77 and LC77 are
separated from the others by a horizontal line, since they are used only in Section
9 for a discussion of finite volume effects. The pion masses and quark AWI-masses
are found in Table 6.2.

5.2 Monte Carlo Time Histories

After equilibration, every fifth configuration is selected for analysis. We show the
Monte Carlo (MC) time history for the pion mass of ensembles A50, C77, B70 and
A66 in Figure 5.1. No significant autocorrelation is observed, however, we stress
that for a rigorous determination of the autocorrelation much more statistics would
be necessary. The strong peaks arise naturally towards smaller pion masses through
enhanced statistical fluctuations and do not imply serious concerns. In fact, large
values of the pion mass usually go along with a cheap inversion of the Dirac operator.
Small pion masses correspond to exceptional configurations, which are suppressed in
dynamical simulations, as long as small steps are chosen in the numerical integration
of the molecular trajectory.

Autocorrelation of topological quantities is known to be particularly problem-
atic in QCD simulations with chiral Dirac operators and at small lattice spacings.
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Figure 5.3: Smallest 150 eigenvalues λ of the Dirac operator of 20 configurations of
ensemble A50 (lhs) and histogram for the smallest real parts of λ of 100 configura-
tions of A50 (rhs). The deviations from the GW-circle are predominantly towards
larger eigenvalues. (Figure taken from [41].)
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Figure 5.4: Normalized histogram of reciprocal number of conjugate gradient steps
needed for the ensembles with the smallest pion masses: A66, B70 and C77. A fit to a
Gaussian distribution is included. The ratio of the mean and the standard deviation
µ/σ is larger than five in all cases, indicating a safe algorithm setup. (Figure taken
from [48].)
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Figure 5.1: Monte Carlo time history for the dimensionless pion mass amπ (here:
measured on each individual configuration of the sequence) for ensembles A50, C77,
B70 and A66. The red horizontal lines denote the average values. No significant
autocorrelation is observed. The strong peaks arise naturally towards smaller pion
masses through enhanced statistical fluctuations. (Figure taken from [48].)
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Figure 5.2: Monte Carlo time history (lhs) and histogram (rhs) for the topological
sector ν for 200 configurations of ensemble C77. Note the frequent tunneling of the
algorithm. (Figure taken from [41].)
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Figure 6.1: Setting the scale with the Sommer parameter and the pion mass as
input at the physical point. The green (long-dashed) line is the curve Eq. (6.1). The
solid and short-dashed lines represent the extrapolation of our lattice data. Their
intersections with the green line define the lattice constants a.

A B C
(π, r0)phys 0.1324(11) 0.1366(15) 0.1398(14)
(π, r0)chiral 0.1314(12) 0.1356(17) 0.1387(15)
(π, ρ)phys 0.1330(44) 0.1378(50) 0.1400(29)

Table 6.1: Lattice spacing in physical units derived for ensembles of type A (β = 4.7),
B (β = 4.65), C (β = 4.58) (cf., Table 5.1) by the methods discussed in the text.

44 Chapter 6. Scale and Low Energy Parameters

Set a [fm] amπ mπ [MeV] amAWI mAWI [MeV]
A50 0.1324(11) 0.3997(14) 596(5) 0.03027(8) 45(1)
A66 0.1324(11) 0.1710(48) 255(7) 0.00589(40) 9(1)
B60 0.1366(15) 0.3568(15) 516(6) 0.02356(13) 34(1)
B70 0.1366(15) 0.2111(38) 305(6) 0.00836(23) 12(1)
C64 0.1398(14) 0.4163(18) 588(6) 0.02995(20) 42(1)
C72 0.1398(14) 0.3196(18) 451(5) 0.01728(16) 24(1)
C77 0.1398(14) 0.2340(27) 330(5) 0.01054(19) 15(1)

Table 6.2: Pion masses and (non-renormalized) quark AWI-masses for the different
sets of gauge configurations.

6.4 Decay Constants

The pseudoscalar decay constant describes the coupling to weak decays. It can be
extracted from the asymptotic behavior of the correlation between the pseudoscalar
or the time components of the axial interpolators.

c2
A Z2

A 〈A
−
4 (!p = 0, t)A+

4 (0)〉 ∼ mπ F 2
π e−mπt ≡ c e−mπt . (6.4)

The coefficient then gives

Fπ = 2mAWI cP ZA

√

c

m3
π

, (6.5)

and equivalently for the kaon FK .
The dependence of the pion decay constant on the quark mass can be described

by Chiral Perturbation Theory. Up to 1-loop order one finds [201]

Fπ = Fπ,0 −m
2Σ0

16π2F 3
π,0

ln

(

m
2Σ0

Λ2
4F

2
π,0

)

. (6.6)

Here, Fπ,0 and Σ0 refer to the pion decay constant and the quark condensate in the
chiral limit m→ 0 and Λ4 is a low energy constant. The corresponding expressions
including the 2-loop order can be found in [202,203].

The renormalization factor ZA cancels in the ratio FK/Fπ. We show this ratio
in Figure 6.2 where we assume a lattice spacing of 0.135 fm (the average of our
values for the scheme (π, r0)phys) and a physical pion mass of 139.57 MeV. The
extrapolation of our data to that point gives

FK/Fπ = 1.215(41) , (6.7)

which fully covers the experimental value 1.197(9) [7].
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Figure 6.2: The ratio of the pseudoscalar decay constants FK/Fπ is plotted against
m2
π (in dimensionless units) for each set of gauge configurations. The full black line

is a fit of the data using the relevant expressions for numerator and denominator; the
shaded area indicates the error band. The magenta cross indicates the experimental
value [7]. (Figure taken from [5].)
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1++: a1(1260), 1+-: b1(1235)

Good signal for ground state needs interpolators with 
derivative sources
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Strange mesons: 1/2(0-)K(495), 1/2(1-) K*(892)
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1--:  ρ(770),   ρ ‘(1450)

No decay yet (p-wave!)
1st excitation ρ(1450)
2nd excitation ρ(1570/1720) 
signal is seen for some 
combinations of interpolators

Engel et al. PRD 85 (2012) 034508
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1--:  ρ(770),   ρ ‘(1450)

No decay yet (p-wave!)
1st excitation ρ(1450)
2nd excitation ρ(1570/1720) 
signal is seen for some 
combinations of interpolators

Engel et al. PRD 85 (2012) 034508
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Challenge: Where is the ππ 
state?
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Meson summary

Engel et al. PRD 85 (2012) 034508
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1/2+: N(940), N(1440), N(1710)

Similar to quenched results! Two 
excitations (higher one vague), 

too high up! 
Roper? 

(cf. CSSM, Mahbub et al. ,Phys.Lett. B707, 389-393 (2012);
Hall et al., arXiv 1207.3562;
cf. K.-F. Liu’s talk last week)
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Engel et al. , prelim.
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1/2-: N(1535), N(1650)

Two states seen, but not 
clearly resolvable; lower 
level dominated by χ2

Is one level a πN in s-
wave signal?
 
(pro/con: eigenvectors are stable for 
A,B,C: no level crossing, no change of 
splitting towards higher valence 
masses? But: gA?)
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Engel et al. , prelim.
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Baryon summary (finite volume)
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Engel et al. , prelim.
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Extrapolation to infinite volume

123x24→163x32 →  243x48
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Engel et al. , prelim.

Only for ground states!

E(L) = E1 + c(m⇡)e
�m⇡L

(cf. Dürr et al., Science 322(2008) 1224)
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Challenge

Why do we not see the meson-meson 
and meson-baryon intermediate states?

We need to include these in the set of
hadron interpolators!

see also: Bulava et al. 
PRD82(10)014507
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Challenge

Why do we not see the meson-meson 
and meson-baryon intermediate states?

(a)

(b)

(c)

(e)(d)

But: These involve 
(partially) disconnected 
contractions!

We need to include these in the set of
hadron interpolators!

see also: Bulava et al. 
PRD82(10)014507
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Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL: http://pdg.lbl.gov)

f0(600)f0(600)f0(600)f0(600) [i ]

or σor σor σor σ

IG (JPC ) = 0+(0 + +)

Mass m = (400–1200) MeV
Full width Γ = (600–1000) MeV

f0(600) DECAY MODESf0(600) DECAY MODESf0(600) DECAY MODESf0(600) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ dominant –
γγ seen –

ρ(770)ρ(770)ρ(770)ρ(770) [j ] IG (JPC ) = 1+(1 −−)

Mass m = 775.49 ± 0.34 MeV
Full width Γ = 149.1 ± 0.8 MeV
Γee = 7.04 ± 0.06 keV

Scale factor/ p

ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ππ ∼ 100 % 363

ρ(770)± decaysρ(770)± decaysρ(770)± decaysρ(770)± decays

π±γ ( 4.5 ±0.5 ) × 10−4 S=2.2 375

π±η < 6 × 10−3 CL=84% 153

π±π+π−π0 < 2.0 × 10−3 CL=84% 254

ρ(770)0 decaysρ(770)0 decaysρ(770)0 decaysρ(770)0 decays

π+π−γ ( 9.9 ±1.6 ) × 10−3 362

π0γ ( 6.0 ±0.8 ) × 10−4 376

ηγ ( 3.00±0.20 ) × 10−4 194

π0π0γ ( 4.5 ±0.8 ) × 10−5 363

µ+µ− [k] ( 4.55±0.28 ) × 10−5 373

e+ e− [k] ( 4.72±0.05 ) × 10−5 388

π+π−π0 ( 1.01+0.54
−0.36±0.34) × 10−4 323

π+π−π+π− ( 1.8 ±0.9 ) × 10−5 251

π+π−π0π0 < 4 × 10−5 CL=90% 257

π0 e+ e− < 1.2 × 10−5 CL=90% 376

ω(782)ω(782)ω(782)ω(782) IG (JPC ) = 0−(1 −−)

Mass m = 782.65 ± 0.12 MeV (S = 1.9)
Full width Γ = 8.49 ± 0.08 MeV
Γee = 0.60 ± 0.02 keV

HTTP://PDG.LBL.GOV Page 4 Created: 6/1/2009 14:31

Overview

1. Motivation and lattice tools

2. Case 1: Hadron excitations

3. Case 2: Meson decay see also D. Mohler, LAT12
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Rho decay CBL,Mohler,Prelovsek, Vidmar
PR D84 (2011)054503 (1105.5636)
PoS LAT11, 137 (1111.0409)

Study ππ→ρ→ππ scattering (p wave)

Nf=2, improved Wilson fermions
 (mπ=266 MeV); 

     280 configurations from A. Hasenfratz et al.
     (Thanks! See Hasenfratz et al., PRD78(08)014515,054511)

Up to 18 interpolators

Non-zero momentum states

Determine p-wave phase shift
also:
Aoki et al., PoS LAT10,108 + 
LAT11(1106.5385+1111.0337)
Feng et al., PoS LAT10,104
Frison et al. PoS LAT10,139

Friday, August 10, 12



C. B. Lang (c) 2012

Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)
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Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)

... include   ππ   operator
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Interpolators

4

bers IG(JPC) = 1−(0−+) of the pion, we construct
a matrix C(t)ij of lattice interpolating fields contain-
ing both quark-antiquark and meson-meson (in our case
pion-pion) interpolators

C(t)ij =
∑

n

e−tEn
〈

0|Oi|n
〉〈

n|O†
j |0

〉

. (17)

For this matrix, the generalized eigenvalue problem

C(t)!ψ(n) = λ(n)(t)C(t0)!ψ
(n) (18)

is solved for each time slice. For the eigenvalues λ(n)(t)
one obtains

λ(n)(t) ∝ e−t En
(

1 +O
(

e−t∆En
))

, (19)

so that each eigenvalue is dominated by a single energy
at large time separations. This method is called the vari-
ational method [24–27]. For a detailed discussion of the
energy difference ∆En, which is in general given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [27].
We calculate the eigenvector components of the regular

eigenvector problem

C(t0)
− 1

2C(t)C(t0)
− 1

2 !ψ(n) ′ = λ(n)(t)!ψ(n) ′ . (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a
given state. To track the eigenvalue corresponding to a
given energy over the full range of time separations, the
eigenvalues have to be sorted, either by their magnitude
or by scalar products of their eigenvectors. In the pres-
ence of backwards running contributions caused by the
finite time extent of the lattice, a combination of both
methods works well: the eigenvalues are sorted by mag-
nitude at low time separations and by scalar products at
larger time separation. For our analysis we choose this
method.

C. Interpolators

For the ρ channel we employ fifteen quark-antiquark
interpolators and one pion-pion interpolator with JPC =
1−− and |I, I3〉 = |1, 0〉 in the variational basis for each of
the three choices for P as given in (2). All previous sim-
ulations aimed at determining the ρ meson width used
at most one quark-antiquark and one pion-pion inter-
polator and extracted the two lowest energy levels from
a 2 × 2 variational basis. This may not be reliable if
the third energy level is nearby and does not allow test-
ing whether the resulting two levels are robust against
the choice of interpolators. A larger basis enables us
to exploit the dependence of the extracted energies on
the choice of the interpolators. It also indicates whether
the lowest two states can be reliably extracted using our
quark-antiquark interpolators alone, or whether the pion-
pion interpolators are required in the variational basis.
The 15 different quark-antiquark interpolators Os

type
(type = 1, .., 5, s = n,m,w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths s = n, m, w (narrow,
middle, wide) for individual quarks and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an inter-
polator is a straightforward generalization and one just
needs to pay attention that the resulting C-parity is cor-
rect.) The details on the smearing are given in Subsect.
II E. The interpolator O6 is the ππ interpolator whose
structure is explained at the end of this subsection. Our
sixteen ρ interpolators are:

Os
1(t) =

∑

x,i

1√
2
ūs(x) Aiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
2(t) =

∑

x,i

1√
2
ūs(x) γtAiγi e

iPx us(x) − {us ↔ ds} (s = n,m,w) ,

Os
3(t) =

∑

x,i,j

1√
2
ūs(x)

←−
∇j Aiγi e

iPx −→
∇jus(x) − {us ↔ ds} (s = n,m,w) ,

Os
4(t) =

∑

x,i

1√
2
ūs(x) Ai

1
2 [e

iPx −→
∇i −

←−
∇ ie

iPx]us(x) − {us ↔ ds} (s = n,m,w) ,

Os
5(t) =

∑

x,i,j,k

1√
2
εijl ūs(x) Aiγjγ5 1

2 [e
iPx−→∇ l −

←−
∇ le

iPx]us(x)− {us ↔ ds} (s = n,m,w) ,

Os=n
6 (t) = 1√

2
[π+(p1)π

−(p2)− π−(p1)π
+(p2)] , π±(pi) =

∑

x

q̄n(x)γ5τ
±eipixqn(x) . (21)

... include   ππ   operator

... and three quark widths (s, m, w)
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Energy levels and phase shift

Only 2 (3?) levels can be determined reliably for 
given volume!

Use different momenta (“moving frame”)!

Rummukainen, Gottlieb: NP B 450(1995) 397
Kim, Sachrajda,Sharpe: NP B 727 (2005) 218
Feng, Jansen, Renner: PoS LAT10 (2010) 104
Fu, PR  D85 (2012) 014506
Leskovec, Prelovsek, PR D85(2012)114507
Göckeler et al., arXiv:1206.4141
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Rho momenta

Relativistic 
distortion

⇥p = (0, 0, 0) (units2�/L)

�p = (0, 0, 1)

�p = (1, 1, 0)
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Rho momenta

Relativistic 
distortion

⇥p = (0, 0, 0) (units2�/L)

�p = (0, 0, 1)

�p = (1, 1, 0)

Symmetry 
group

Irrep
for ρ

Oh T�
1

D4d A�
2

D2d B�
1

Friday, August 10, 12



C. B. Lang (c) 2012

Energy levels give phase shift values

E, m� ! ECM ! q ! �(q)

tan ⇥(q) =
�⇤3/2q3

q2Z �d
00(1; q

2)�
q

1
5 Z �d

20(1; q
2) + i

q
3
10 (Z �d

22(1; q
2)� Z �d

22̄(1; q
2))

tan ⇥(q) =
�⇤3/2q3

q2Z �d
00(1; q

2) +
q

4
5 Z �d

20(1; q
2)

(0,0,1) :

(1,1,0) :

tan �(q) =
⇡3/2q

Z00(1; q2)
(0,0,0) :
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Recipe

E, m� ! ECM ! q ! �(q)

 Up to 6 pion interpolators, var. analysis → pion mass

 Up to 18 ρ interpolators,var. analysis →energy levels E

 - the distillation method allows to include                            

 Compute ECM and q

 Compute from q the values of the phase shift

 Repeat for each momentum set → total of 6 energy 

values

(a)

(b)

(c)

(e)(d)

(c) M. Apitz
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Tests - how many do we need?

Lowest two levels
(for selected 
submatrices)

t0=4
fit range 7-10
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Lowest two energy levels

Bands: Fit range for λ(t)  -  2 exp fits
----- noninteracting π π energy
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ππ→ππ  scattering amplitude

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

-0.2

-0.1

0

0.1

0.2

(p
*3 /s1/

2 ) c
ot

 b
r

2/d.o.f. = 7.42/3
r

2/d.o.f. = 8.42/3
r

2/d.o.f. = 12.91/3
r

2/d.o.f. = 11.01/3

a1 =
�
p
s�(s)

s�m2
⇥ + i

p
s�(s)

= ei�(s) sin �(s) (s = E2
CM )

p
s�(s) cot �(s) = m2

⇢ � s

with �(s) =
p3

s

g2⇢⇡⇡
6�

(in units of a=.1239 fm)
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Phase shift

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

0

50

100

150

b 1

g⇢⇡⇡ = 5.13(20)

m⇡ = 266(3)(3) MeV

m⇢ = 792(7)(8) MeV

g⇥��,exp = 5.96

g⇢⇡⇡ = 6.77(67)

m⇡ = 290 MeV

m⇢ = 980 MeV

Feng et al. (ETMC)
PoS LAT10(10)104

g⇢⇡⇡ = 5.24(51)

m⇡ = 410 MeV

m⇢ = 891 MeV

Aoki et al. (PACS-CS)
PoS LAT10(10)108

g⇢⇡⇡ = 5.5(2.9)/6.6(3.4)

m⇡ = 200/340 MeV

Frison et al. (BMW)
PoS LAT10(10)139

CBL,Mohler,Prelovsek, 
Vidmar

Aoki et al. (PACS-CS)
PRD84(11)094505

g⇢⇡⇡ = 5.52(40)/5.98(56)

m⇡ = 410/300 MeV

m⇢ = 893/863 MeV
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Further results

πρ - a1  (JPC=1++) Prelovsek et al., 
PoS LAT2011, 137
arXiv:1111.0409

πK - s-wave and p-wave L., Leskovec, Mohler, Prelovsek
arXiv:1207.3204

→ talk by Sasa Prelovsek on friday!

Unequal mass mesons in moving 
frames

Leskovec, Prelovsek
PRD85(2012)114507

arXiv:1202.2145
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Summary

One needs to bring together 
several sophisticated tools:

Dynamical fermions
Many hadron interpolators
Variational analysis
Momentum states
Methods for disconnected graphs
Phase shift methods

There is a lot to do:

Volume study
Further hadronic channels (like scalar
mesons or meson-baryon states)
Method improvement (more levels)
Extension to inelastic region (e.g. 
Rusetsky et al.(09), Bernard et al.(10))

First results are being 
obtained:

Excited hadrons, lowest levels
Meson decay
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