Finite Volume Methods to extract Resonances

Michael Döring

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

in collaboration with J. Haidenbauer, U.-G. Meißner, E. Oset, A. Rusetsky

INT 12-2b, Lattice QCD Studies of Excited Resonances and Multi-Hadron Systems Institute for Nuclear Theory, Seattle WA, USA, August 17, 2012

Lüscher's equation L-dependence and effective field theory

The simple cubic lattice

- Side length *L*, $V = L^3$ (+*L*_t), periodic boundary conditions $\Psi(x) \stackrel{!}{=} \Psi(x + \hat{\mathbf{e}}_i L)$
 - \rightarrow finite volume effects
 - \rightarrow Infinite volume $L\rightarrow\infty$ extrapolation
- Lattice spacing a
 → finite size effects
 Modern lattice calculations:
 a ≃ 0.07 fm → p ~ 2.8 GeV
 → (much) larger than typical
 hadronic scales:

not considered here.

 Unphysically large quark/hadron masses
 → chiral extrapolation required.

Lüscher's equation L-dependence and effective field theory

Notation (I) Scattering in the infinite volume limit

 \bullet \rightarrow Generic (Lippman-Schwinger) equation for unitarizing the $\mathit{T}\text{-matrix:}$

$$T = V + V G T$$

V: (Pseudo)potential

• G: Green's function:

$$\begin{array}{lll} G & = & \displaystyle \int \frac{d^3 \vec{q}}{(2\pi)^3} \, \frac{f(|\vec{q}|)}{E^2 - (\omega_1 + \omega_2)^2 + i\epsilon}, \\ \omega_{1,2}^2 & = & m_{1,2}^2 + \vec{q}^{\ 2} \end{array}$$

Lüscher's equation L-dependence and effective field theory

Notation (II)

Discretized momenta in the finite volume with periodic boundary conditions

$$\Psi(x) \stackrel{!}{=} \Psi(x + \hat{\mathbf{e}}_i L) = \exp\left(i L q_i\right) \Psi(x) \implies q_i = \frac{2\pi}{L} n_i, \quad n_i \in \mathbb{Z}, \quad i = 1, 2, 3$$

$$\int \frac{d^3 \vec{q}}{(2\pi)^3} g(|\vec{q}\,|^2) \to \frac{1}{L^3} \sum_{\vec{n}} g(|\vec{q}\,|^2), \quad \vec{q} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3$$

$$G \to \tilde{G} = \frac{1}{L^3} \sum_{\vec{n}} \frac{f(|\vec{q}|)}{E^2 - (\pi + \pi + \pi)^2}$$

- E > m₁ + m₂: G̃ has poles at free energies in the box, E = ω₁ + ω₂
- E < m₁ + m₂: G̃ → G exponentially with L (regular summation theorem).

Here & following: formalism can be mapped to Lüscher's Z_{lm}.

Notation (III)

• Poles of \tilde{T} give the eigenvalues of the Hamiltonian (tower of *lattice levels* E(L)):

Introduction Results

$$\tilde{T} = (1 - V \tilde{G})^{-1} V \rightarrow V^{-1} - \tilde{G} \stackrel{!}{=} 0 \rightarrow V^{-1} = \tilde{G}$$

• The interaction V determines the T-matrix in the infinite volume limit:

$$T = (V^{-1} - G)^{-1} = (\tilde{G} - G)^{-1}$$

• Re-derivation of Lüscher's equation (T determines the phase shift δ):

$$p \cot \delta(p) = -8\pi\sqrt{s} \left(\tilde{G}(E) - \operatorname{Re} G(E) \right)$$

• V and dependence on renormalization have disappeared (!)

L-dependence of lattice levels

- *L*-dependence serves to extract phase shifts (Lüscher).
- ... for a narrow window in $E < \Gamma_{\sigma(600)}$.
- ... at the cost of several required lattice volumes.
- → Stabilize the phase extraction using model-independent information from Chiral Perturbation Theory.
- → Continuity assumption on the amplitude in combination with error analysis.

Lüscher's equation L-dependence and effective field theory

L-dependence of lattice levels

- *L*-dependence serves to extract phase shifts (Lüscher).
- ... for a narrow window in $E < \Gamma_{\sigma(600)}$.
- ... at the cost of several required lattice volumes.
- → Stabilize the phase extraction using model-independent information from Chiral Perturbation Theory.

Synthetic lattice data from Unitarized ChPT [M.D., Ulf-G. Meißner, JHEP 1201 (2012), using Inverse Amplitude Method (Pelaez *et al.*)]

Introduction Results

Figure: Fit of the Low Energy Constants; solution \longrightarrow generates pseudo lattice data.

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,

Unitarized Chiral Perturbation Theory in a finite volume: the $\kappa(800)$

Figure: Pseudo lattice-data and (s^0, s^1, s^2) fit to those data with uncertainties (bands).

Figure: Solid line: Actual phase shift. Error bands of the (s^0, s^1) , (s^0, s^1, s^2) , and (s^0, s^1, s^2, s^3) fits.

Fit potential [$V_2 \equiv V_{LO}$ known/fixed from $f_{\pi}, f_K, f_{\eta}; s \equiv E^2$]

$$V^{\text{fit}} = \left(\frac{V_2 - V_4^{\text{fit}}}{V_2^2}\right)^{-1}, \quad V_4^{\text{fit}} = a + b(s - s_0) + c(s - s_0)^2 + d(s - s_0)^3 + \cdots$$

[Actual errors twice as large from Gaussian distribution of centroids of data].

INT 12-2b 2012

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,...

The $\kappa(800)$ pole

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,.

The *P*-wave resonances $K^*(892)$ and $\rho(770)$

MISKP 10/31

nfinite volume limit from L-dependence Noving frames, twisted boundary conditions,...

Residues

• Lattice momenta in overall center-of-mass frame:

$$\vec{q}_{\pi} = rac{2\pi}{L} \, \vec{n}, \quad \vec{n} \in \mathbb{Z}^3$$

Moving frames, twisted boundary conditions...

• In meson-meson c.m. frame moving at \vec{P} :

$$\vec{q}_{\pi}^* = \Lambda_P(\vec{q}_{\pi})$$

- Trick: Instead of changing *L*, obtain more eigenenergies from the same lattice by extracting lattice levels in a moving frame (Gottlieb-Rummukainen, 1995).
- Advantage: Computationally less demanding than varying L.
- Works bei
 - Davoudi & Savage (2011), Fu (2012), Leskovec & Prelovsek (2012), Dudek & Edwards & Thomas (2012), Hansen & Sharpe (2012), Briceño and Davoudi (2012),...

• Infinite volume limit: Rotational symmetry

• Wigner-Eckart theorem:

S→S	0	0	0
0	$P_{\text{-}1} \to P_{\text{-}1}$	0	0
0	0	$P_0\toP_0$	0
0	0	0	$P_1 \to P_1$

• Infinite volume limit: Rotational symmetry

$$\int \frac{d^3 \vec{q}}{(2\pi)^3} g(|\vec{q}|) Y_{\ell m}(\theta,\phi) Y^*_{\ell' m'}(\theta,\phi) \sim \delta_{\ell \ell'} \delta_{m m'}.$$

• Wigner-Eckart theorem:

• Finite volume: Rotational symmetry \rightarrow Cubic symmetry

$$\frac{1}{L^3} \sum_{\vec{n}} g(|\vec{q}|) Y_{\ell m}(\theta, \phi) Y^*_{\ell' m'}(\theta, \phi) \sim A_{\ell \ell' m m'}.$$

• S - G-wave mixing, but S - P waves still orthogonal:

S→S	0	0	0
0	$P_{\text{-}1}\toP_{\text{-}1}$	0	0
0	0	$P_0\toP_0$	0
0	0	0	$P_1\toP_1$

Introduction	Infinite volume limit from <i>L</i> -dependence
Results	Moving frames, twisted boundary conditions,
Breaking of cubic symmetry through	boost

Example: Lattice points \vec{q}^* boosted with $P = (0, 0, 0) \rightarrow \frac{2\pi}{L} (0, 0, 2)$:

 \bullet Finite volume & boost: Cubic symmetry \rightarrow subgroups of cubic symmetry

Introduction Results

• For boost
$$P = \frac{2\pi}{L}$$
 (0,1,1):

S→S	0	$S \rightarrow P_0$	0
0	$P_{\text{-}1}\toP_{\text{-}1}$	0	$P_{\text{-}1} \to P_1$
$P_0 \rightarrow S$	0	$P_0\toP_0$	0
0	$P_1\toP_{\text{-}1}$	0	$P_1 \to P_1$

• Finite volume & boost: Cubic symmetry \rightarrow subgroups of cubic symmetry

Introduction Results

More complicated boosts:

Energy eigenvalues for different boosts: κ/K^* -system

Disentanglement of partial waves Example: S- and P-waves for the $\kappa(800)/K^*(892)$ system

Knowledge of P-wave (from separate analysis of lattice data) allows to disentangle the S-wave:

$$p \cot \delta_S = -8\pi E \frac{p \cot \delta_P \hat{G}_{SS} - 8\pi E (\hat{G}_{SP}^2 - \hat{G}_{SS} \hat{G}_{PP})}{p \cot \delta_P + 8\pi E \hat{G}_{PP}}$$

•
$$\delta_S \equiv \delta^0_{1/2}(\pi K \to \pi K)$$

- Red solid: Actual *S*-wave phase shift.
- Dash-dotted: Reconstructed S-wave phase shift, PW-mixing ignored.
- Dashed: Reconstructed *S*-wave phase shift, PW-mixing disentangled.

18/31

• small p-wave: Level shift
$$\Delta E \simeq -\frac{6\pi E_S \delta_P}{L^3 p \omega_1 \omega_2}$$

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,...

Mixing of partial waves in boosted multiple channels: $\sigma(600)$

Solid: Levels from A_1^+ . Non-solid: Neglecting the *D*-wave.

- $\pi\pi$ & $\bar{K}K$ in S-wave, $\pi\pi$ in D-wave.
- Organization in Matrices (A_1^+) , e.g. $\vec{P} = (2\pi/L)(0,0,1), (2\pi/L)(1,1,1),$ and $(2\pi/L)(0,0,2)$:

Phase extraction (κ): Expand and fit V_S, V_P simultaneously to different representations instead of
1. P-wave from B₁, B₂, E
2. S-wave from P and A₁ (reduction of error).

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,...

Phase shifts from a moving frame: the $\sigma(600)$

Comparison: Variation of L vs moving frames

INT 12-2b 2012

Moving frames, twisted boundary conditions....

Twisting the boundary conditions (B.C.) [Suganuma et. al. (2006), Bernard/Lage/Meißner/Rusetsky (2011), M.D./Meißner/Oset/Rusetsky (2011)]

- Periodic B C : $\Psi(\vec{x} + \hat{\mathbf{e}}_i L) = \Psi(\vec{x})$
- Periodic in 2 dim :

- Twisted B.C.: $\Psi(\vec{x} + \hat{\mathbf{e}}_i L) = e^{i\theta_i} \Psi(\vec{x})$
- Periodic/antiperiodic:

Example: the $f_0(980)$

- S-wave, coupled-channels $\pi\pi$, KK.
- Twisted B.C. for the *s*-quark: $u(\vec{x} + \hat{\mathbf{e}}_i L) = u(\vec{x})$ $d(\vec{x} + \hat{\mathbf{e}}_i L) = d(\vec{x})$ $s\left(\vec{x} + \hat{\mathbf{e}}_i L\right) = e^{i\theta_i} s(\vec{x})$
- Three unknown potentials

•
$$V(\pi\pi \to \pi\pi)$$

• $V(\pi\pi \to \bar{K}K)$
• $V(\bar{K}K \to \bar{K}K)$

INT 12-26 2012

[figs: thanks to M.Mai]

 $\theta_2 = \pi$

Infinite volume limit from L-dependence Moving frames, twisted boundary conditions,...

Disentangling coupled channels (the strict but impossible scenario) Three measurements at the same E requires tuning of L

• $L_x = L, L_y = L, L_z = x L$, where x = 0.6 (solid lines), x = 1.0 (dashed lines), x = 1.4(dash-dotted lines)

Infinite volume limit from *L*-dependence Moving frames, twisted boundary conditions,...

Reconstruction of the infinite volume limit (twisted boundary conditions) [M.D./Meißner/Oset/Rusetsky, EPJA 47 (2011)]

• Expand the two-channel potential: $V_{ij} = a_{ij} + b_{ij}(s - 4M_K^2)$, $i, j: \pi\pi, \bar{K}K$.

Left: pseudo-data (periodic & anti-periodic B.C.). Center: Extracted phase with uncertainty. Right: Extracted $f_0(980)$ pole with uncertainty.

Infinite volume limit from *L*-dependence Moving frames, twisted boundary conditions,...

Resonances vs. inelastic thresholds $[f_0(980)]$

 \rightarrow No qualitative change in levels when removing resonance.

 \rightarrow Ignoring the channel opening, always a resonance is seen (whether it is there or not).

 Results
 Moving frames, twisted boundary conditions...

 The $N^*(1535)/N^*(1650)$ and hidden strangeness

 LO+Res.: [M.D., K. Nakayama, EPJA 43 (2010)], NLO: [P.C. Bruns, M. Mai, U.-G. Meißner, PLB 697 (2011)].

Introduction

- LO+Res.: N*(1535) as KΛ, KΣ quasi-bound state; genuine N*(1650).
- NLO: $N^*(1535)$ & 1650 as $K\Lambda$, $K\Sigma$ quasi-bound states.
- Hidden strangeness through antiperiodic boundary condition for the strange quark.
- Level spectrum dominated by thresholds in both scenarios.

Three-body effects: the $a_1(1260)$ [see also E. Oset, L. Roca, PRD 85 (2012)] new lattice data: S. Prelovsek, C.B. Lang, D. Mohler, M. Vidmar, PoS LATTICE2011 (2011) 137

Boosted $\pi\pi$ self energy:

$$\begin{split} \tilde{\Pi}_{\lambda\lambda} &= J \frac{4\pi}{3} \frac{1}{L^3} \sum_{\vec{n}} (q^*)^2 Y_{1\lambda}(\theta_{q^*}, \phi_{q^*}) \\ &\times Y^*_{1\lambda'}(\theta_{q^*}, \phi_{q^*}) f(q^*) \end{split}$$

 3×3 self energy:

$$\tilde{\Pi} \ = \ \begin{pmatrix} \tilde{\Pi}_{1,1} & \tilde{\Pi}_{1,0} & \tilde{\Pi}_{1,-1} \\ \tilde{\Pi}_{0,1} & \tilde{\Pi}_{0,0} & \tilde{\Pi}_{0,-1} \\ \tilde{\Pi}_{-1,1} & \tilde{\Pi}_{-1,0} & \tilde{\Pi}_{-1,-1} \end{pmatrix},$$

Dressed propagator

$$\tilde{S}^{D}_{\pi\rho} = \frac{1}{2\omega_{1}} \left((S^{B}_{\pi\rho} \,\mathbb{1})^{-1} - \tilde{\Pi} \right)^{-1}$$

Sum over boosts \vec{P} :

$$\tilde{G}_{\pi\rho} = \frac{1}{L^3} \sum_{\vec{P}} \tilde{S}^D_{\pi\rho} \; .$$

 $\pi \rho$ scattering equation:

$$\tilde{T}_{\pi\rho} = (\mathbb{1} - \hat{V}_{\pi\rho} \, \tilde{G}_{\pi\rho})^{-1} \, \hat{V}_{\pi\rho}, \quad \hat{V}_{\pi\rho} = V_{\pi\rho} \mathbb{1}$$

Lattice levels:

$$\det(\mathbb{1} - \hat{V}_{\pi\rho} \,\tilde{G}_{\pi\rho}) = 0 \;.$$

(+ pion exchange, required from 3-body unitarity; certain 3-body singularities cancel [K. Polejaeva and A. Rusetsky, 1203.1241]).

INT 12-2b 2012

Outlook $\pi N \& \pi \pi N$: Coupled-channels, PW mixing, and three-body states [M.D. et al., in preparation]

- Three particles in a finite volume: [K. Polejaeva and A. Rusetsky, arXiv:1203.1241]
- Coupled-channel, pseudo two-particle formalism:

		J = 1/2		J = 3/2		J = 5/2	
i_c	$J^P =$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$
1	πN	S11	P11	P13	D13	D15	F15
2	$\rho N(S=1/2)$	S11	P11	P13	D13	D15	F15
3	$\rho N_{(S=3/2, J-\ell =1/2)}$	—	P11	P13	D13	D15	F15
4	$\rho N_{(S=3/2, J-\ell =3/2)}$	D11	—	F13	S13	G15	P15
5	ηN	S11	P11	P13	D13	D15	F15
6	$\pi\Delta(J-\ell =1/2)$	—	P11	P13	D13	D15	F15
7	$\pi\Delta(J-\ell =3/2)$	D11	—	F13	S13	G15	P15
8	σN	P11	S11	D13	P13	F15	D15
9	$K\Lambda$	S11	P11	P13	D13	D15	F15
10	$K\Sigma$	S11	P11	P13	D13	D15	F15

Figure: Intermediate $\pi\pi N$ states and their couplings. Above: $\pi\Delta$. Below: $\sigma N, \ \rho N$. The self energy insertions are resummed.

- space of lattice point ⊗ space of partial waves ⊗ space of third components ⊗ channel space
- Applications: Roper,... in the finite volume.

Moving frames, twisted boundary conditions....

Results Analytic structure of the scattering amplitude: P11 in meson-baryon

Introduction

[D. Rönchen, M.D. et al., in preparation, S. Ceci, M.D. et al., PRC 84 (2011)]

Challenges for meson-baryon

For anything beyond the $\Delta(1232)$:

- $\pi\pi N$ known to be essential in πN .
- Coupled channels essential $[N^*(1535),...]$.
- MB:SG-wave, PF-wave, DG AND mixing of D-waves, D13 & D15. Additional mixing through different $\pi\pi N$ channels.
- Moving frames: All partial waves mix instantly; higher partial waves not necessarily small (F37,...).
- Parameterization of the transition kernels (*MB*) & (*MMB*):

Introduction Results

- GWU/SAID expansion in polynomials.
- Dynamical coupled-channel approaches.

The $\Lambda(1405)$ [M. D./Haidenbauer/Meißner/Rusetsky, EPJA 47 (2011)]

(Non-factorizing/off-shell) Lippman-Schwinger equation in the finite volume,

Introduction Results

$$T^{(\mathrm{P})}(q'',q') = V(q'',q') + \frac{2\pi^2}{L^3} \sum_{i=0}^{\infty} \vartheta^{(\mathrm{P})}(i) \frac{V(q'',q_i) T^{(\mathrm{P})}(q_i,q')}{\sqrt{s} - E_a(q_i) - E_b(q_i)}, \quad q_i = \frac{2\pi}{L} \sqrt{i} .$$

- Access to sub-*KN*-threshold dynamics:
- Discrepancies of lowest levels: levels sensitive to different $\Lambda(1405)$ dynamics.
- One- or two-pole structure:
 - Will NOT lead to additional level.
 - but shifted threshold levels.

Summary

- $m_{\text{quark, lattice}} \rightarrow m_{\text{quark, physical}}$ in modern lattice simulations.
 - \rightarrow Resonances can decay on the lattice.
 - \rightarrow Finite volume effects dominate the resonance spectrum.
 - \rightarrow Resonances cannot be identified with individual levels.
 - \rightarrow inelastic S-wave thresholds have the same signature as resonances.
- Chiral Effective Field Theory allows to include model independent properties of the amplitude & to stabilize extraction of phases and resonances.
- Analysis tools:
 - \rightarrow Variation of the box size L vs. moving frames (partial wave mixing).
 - \rightarrow Multi-channel analysis, extension to three particles.
 - \rightarrow Twisted boundary conditions for the strange quark.
- Continuity assumptions on the amplitude allows for global level fit, should come with error analysis.
- Coupled-channels and three-particle states: more assumptions necessary if lattice data scarce (just like in analysis of experimental data).

Chiral effective field theory ... for the (pseudo)potential V.

INT 12-2b 2012

Chiral effective field theory ... for the (pseudo)potential V.

• Idea: Chiral expansion of potential V; LO fixed term stabilizes extraction, LECs or other suitable expansion fitted to lattice levels.

$\frac{L_1}{0.873^{+0.017}_{-0.028}}$	$\begin{array}{c} L_2 \\ 0.627^{+0.028}_{-0.014} \end{array}$	L_3 -3.5 [fixed]	${}^{L_4}_{-0.710^{+0.022}_{-0.026}}$
$ \begin{array}{c} L_5 \\ 2.937^{+0.048}_{-0.094} \end{array} $	$ L_6 + L_8 \\ 1.386^{+0.026}_{-0.050} $	$ L_7 \\ 0.749^{+0.106}_{-0.074} $	q_{\max} [MeV] 981 [fixed]

Table: Fitted values for the L_i [×10⁻³] and q_{max} [MeV].

Table: Pole positions z_0 [MeV] and residues $a_{-1}[M_{\pi}]$ in different channels. *I*, *L*, *S*: isospin, angular momentum, strangeness.

I	L	S	Resonance	sheet	z_0 [MeV]	$a_{-1} [M_{\pi}]$	$a_{-1} [M_{\pi}]$
0	0	0	$\sigma(600)$	pu	434 + i261	$-31 - i 19 (\bar{K}K)$	$-30+i86(\pi\pi)$
0	0	0	$f_0(980)$	pu	1003 + i15	$16 - i79(\bar{K}K)$	$-12+i4(\pi\pi)$
1/2	0	-1	$\kappa(800)$	pu	815 + i226	$-36+i39(\eta K)$	$-30+i57(\pi K)$
1	0	0	$a_0(980)$	pu	1019 - i4	$-10 - i107(\bar{K}K)$	$21 - i 31 (\pi \eta)$
0	1	0	$\phi(1020)$	p	976 + i0	$-2+i0(\bar{K}K)$	—
1/2	1	$^{-1}$	$K^{*}(892)$	pu	889 + i25	$-10+i 0.1 (\eta K)$	$14 + i 4 (\pi K)$
1	1	0	$\rho(770)$	pu	755 + i95	$-11+i2(\bar{K}K)$	$33+i17(\pi\pi)$

Inverse amplitude method Oller/Oset/Peláez, PRD 59 (1999)

- Unitarity: $T = [\operatorname{Re} T^{-1} i\sigma]^{-1}$; σ : diagonal phase space matrix.
- Use up to $\mathcal{O}(p^4)$ terms to approximate the inverse amplitude $\operatorname{Re} T^{-1}$.
- Not a full one-loop calculation.
- Final result for the *T*-matrix:

$$T = V_2 \left(V_2 - V_4 - V_2 G V_2 \right)^{-1} V_2$$
(1)

 $V_2\colon$ Leading order; $V_4\colon$ NLO-order polynomial terms; $G\colon$ propagator matrix in coupled channels.

• A genuine resonance (unitary):

$$T = \frac{ap^2}{q^2 - M^2 + 2M\,i\,\Gamma}, \quad 2m\Gamma = -a\,p^2\,\mathrm{Im}\,G\;.$$
(2)

To order $\mathcal{O}(k^2)$ and $\mathcal{O}(k^4)$ $[k\equiv p,q]:$

$$V_2 = -a \frac{p^2}{M^2}$$
, Re $V_4 = -\frac{ap^2 q^2}{M^4} = \frac{V_2 q^2}{M^2}$.

Insert this in Eq. (1) \rightarrow Eq. (2).

Case of a low $\kappa(800)$ pole Refit to Roy-Steiner solution of [Descotes/Moussallam, EPJC48 (2006)].

area (s^0, s^1) fit 350 area $(s^{0}, s^{1}, s^{2}, s^{3})$ fit area (s⁰, s¹, s²) fit 300 area (s^0, s^1, s^2) fit, $\Delta E=5MeV$ [m E [MeV] D 250 200 Actual pole position Fit (s^0, s^1, s^2, s^3) in V_4^{fit} Fit (s^0, s^1, s^2) in V_4^{fit} Fit (s^0, s^1) in V_4^{fit} 150 Fit (s^0) in V_4^{fit} 550 600 650 700 750 800 850 900 950 Re E [MeV]

Figure: Case of a low $\kappa(800)$ pole. Pole positions of the κ (central values) together with uncertainty areas, from fits to pseudo lattice-data.

A model for the meson-baryon dynamics Comprehensive analysis of $\gamma N/\pi N \rightarrow \pi N$, ηN , KY [Jülich, Georgia, Washington]

INT 12-2b 2012

36/31

A model for the meson-baryon dynamics Comprehensive analysis of $\gamma N/\pi N \rightarrow \pi N$, ηN , KY [Jülich, Georgia, Washington]

INT 12-2b 2012

Finite Volume Meth

A model for the meson-baryon dynamics Comprehensive analysis of $\gamma N/\pi N \rightarrow \pi N$, ηN , KY [Jülich, Georgia, Washington]

