Conformality in many-flavour lattice QCD at strong coupling

arXiv:1208.2148

Philippe de Forcrand (ETH & CERN) with Seyong Kim (Sejong Univ.) and Wolfgang Unger (ETH)

INT Seattle Aug. 15, 2012

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Question: What happens to QCD when N_f increases?

Intro

Classification of QCD-like SU(3) theories with N_f fundamental quarks

Philippe de Forcrand, ETH & CERN

"Walking": $N_f = N_f^* - \varepsilon$, just below the conformal window

- $\varepsilon \rightarrow 0$, ie. $N_f \rightarrow N_f^*$: double zero of β -fct \rightarrow Miransky scaling etc..
- scalar Techni-meson: possibility for light composite Higgs!
- pheno OK (FCNCs): walking \rightarrow push up the scale of new (ETC) physics

Must distinguish between walking and conformal \rightarrow triple difficulty:• probe extreme infrared• take continuum limit• keep quarks massless

- "time-invariance" violated :-) DeGrand, Shamir & Svetitsky, sextet QCD: IRFP \rightarrow no IRFP \rightarrow IRFP 0803.1707 0812.1427 1110.6845
- need to probe infrared → extremely coarse lattices → discretization errors ?
 small discretization error can mask physical running behaviour → improved actions ?

Strong coupling limit: $\beta = 0$

Mean Field: chiral symmetry is **always broken** in the strong-coupling limit of staggered fermions at T = 0 for all values of $N_{\rm f}$ and $N_{\rm c}$

• chiral condensate well known to be independent of $N_{\rm f}$ and $N_{\rm c}$, i.e. in *d* spatial dimensions: [Kluberg-Stern *et al.*, 1983] $\langle \bar{\psi}\psi \rangle$ (T = 0) = $\frac{((1+d^2)^{1/2}-1)/2}{d}$

- we also found, following [Damgaard *et al.*, 1985]: chiral restoration temperature is $T_c = \frac{d}{4} + \frac{d}{8} \frac{N_c}{N_f} + O(\frac{1}{N_c^2})$
- mean field expected to work well for large number of d.o.f. per site, e.g. exact results in the Gross-Neveu model for $N_{\rm f} \rightarrow \infty$

Conventional wisdom: [Poul Damgaard *et al.*, hep-lat/9701008]: "we see no reasons or numerical indications whatsoever for sensitivity to N_f on the extreme strong-coupling side"

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_f/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large N_f ?

$$S_{\text{eff}} = -N_f \operatorname{Tr} \log(m_q - \not{D}) = N_f \sum_k \frac{1}{km_q^k} \operatorname{Tr} \not{D}^k + \text{const.}$$

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$?

• Answer from Monte Carlo: <u>Surprise!</u> strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

• $N_{\rm f}^c \simeq 52$ continuum flavors for $m_q = 0$, $N_{\rm f}^c$ increases with m_q (heavy fermions \rightarrow less ordering)

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$?

• Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

• $N_{\rm f}^c \simeq 52$ continuum flavors for $m_q = 0$, $N_{\rm f}^c$ increases with m_q (heavy fermions \rightarrow less ordering), almost no finite size effects

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$?

• Answer from Monte Carlo: <u>Surprise!</u> strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

• $\beta = 5$ similar but $N_{\rm f}^c$ smaller

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$?

• Answer from Monte Carlo: <u>Surprise!</u> strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

• $\beta = 5$ similar but $N_{\rm f}^c$ smaller, stronger finite size effects

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect \Rightarrow suggests chiral symmetry restoration for sufficiently large $N_{\rm f}$?

• Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

• Explanation for failure of mean field: terms of $\mathcal{O}(\frac{N_f}{N_c}, \frac{N_f}{d^2})$ are neglected (hopping of two mesons, baryon loops)

The Chirally Restored Phase for large β

- $\bullet\,$ smooth variation with $\beta\,\,\rightarrow\,\,\textit{N}_{\rm f}\text{-driven}$ transition extends to weak coupling
- $N^c_{
 m f}\simeq {\cal O}(10)$ at weaker coupling
- connection with N_f-driven transition to conformal window?

Characterizing the chirally restored phase

Chirally symmetric yet "confining" (eta=0)

Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

Characterizing the chirally restored phase

Chirally symmetric yet "confining" (eta=0)

Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

- Numerical simulations: $N_f = 56$ & 96, $\beta = 0$, $m_q = 0$, max. $12^3 \times 24$
- $\langle Plaq \rangle \approx 0.35$ & 0.52, similar to weak-coupling; $\beta = 0$ not special
- Observables: torelon mass (gluon flux tube)
 - Dirac eigenvalue spectrum
 - meson masses

Characterizing the chirally restored phase: I. Torelon masses

Characterizing the chirally restored phase: I. Torelon masses

Characterizing the chirally restored phase: I. Torelon masses

Philippe de Forcrand, ETH & CERN

Many flavor staggered fermions

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

- integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$
- $\bullet\,$ measures the fraction of eigenvalues smaller than λ
- derivative gives $\rho(\lambda)$

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare $N_{\rm f} = 0$ (quenched configurations) and $N_{\rm f} = 56$ (chirally symmetric phase)

- similar for large eigenvalues (UV)
- the $N_{\rm f}=56$ curve shows a gap for small eigenvalues (IR), consistent with chiral symmetry restoration: $\rho(0)=0$

Philippe de Forcrand, ETH & CERN

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare different volumes for $N_{\rm f} = 56$:

- large eigenvalues (UV) are L-independent,
- the IR spectral gap shrinks as L increases

Integrated eigenvalue density, m_g=0, N_f=56

Philippe de Forcrand, ETH & CERN

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare different volumes for $N_{\rm f} = 56$:

- IR spectrum invariant after rescaling by L: spectral gap $\propto 1/L$
- IR physics only depends on L, while the UV physics depends on a
- no other scale in the system \Rightarrow Dirac spectrum consistent with IR-conformal theory!

Integrated eigenvalue density, rescaling the infrared, m_q =0, N_f =56

Philippe de Forcrand, ETH & CERN

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_{0}^{\lambda} \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0, 1]$

Compare different volumes for $N_{\rm f} = 56$:

- IR spectrum invariant after rescaling by L: spectral gap $\propto 1/L$
- IR physics only depends on L, while the UV physics depends on a
- no other scale in the system \Rightarrow Dirac spectrum consistent with IR-conformal theory!
- Tiny deviations from 1/L scaling \rightarrow anomalous mass dimension γ^* (\sim 0.26 and 0.38)

Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $N_{\rm f}=56$ and $N_{\rm f}=96$ at zero quark mass

- hadron masses measured for $m_q = 0$ are non-zero
- but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios ~ independent of L ?:

Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $\textit{N}_{\rm f}=56$ and $\textit{N}_{\rm f}=96$ at zero quark mass

- hadron masses measured for $m_q = 0$ are non-zero
- but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios ~ independent of L ?:

$$M_H \propto (1/L)^{rac{1}{1+\gamma^*}} ~(\gamma^* \sim 1.0 \& 0.4)$$

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda \ll L$
- at strong-coupling the hierarchy is $a \simeq 1/\Lambda \ll L$
- range of conformal invariance (LA) maximized at $\beta = 0$ for given lattice size L/aweak coupling: strong coupling:

$$a \quad 1/\Lambda \qquad L=aN$$
 $a \approx 1/\Lambda \qquad L=aN$

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda \ll L$
- at strong-coupling the hierarchy is $a\simeq 1/\Lambda\ll L$
- range of conformal invariance (LA) maximized at $\beta = 0$ for given lattice size L/aweak coupling: strong coupling:

strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge theory

Conjectured phase diagram

Conjectured phase diagram

Conjectured phase diagram

Conjectured phase diagram

Either way, single phase transition (chiral symmetry): if all first-order \rightarrow "jumping" dynamics (Sannino) no walking!

Philippe de Forcrand, ETH & CERN

Many flavor staggered fermions

Conclusions

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is $N_{\rm f}$ -driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^c = 52(4)$ continuum flavors
- finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for $\beta = 0$, "large- N_f QCD" is IR-conformal with [perhaps] non-trivial IRFP

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- large $N_{\rm f}, m_q = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Conclusions

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is $N_{\rm f}$ -driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^c = 52(4)$ continuum flavors
- finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for $\beta = 0$, "large- N_f QCD" is IR-conformal with [perhaps] non-trivial IRFP

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- large $N_{\rm f}, m_q = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Questions:

- larger L at $\beta = 0 \rightarrow$ trivial or non-trivial ?
- $\bullet\,$ follow transition line to weak coupling $\,\,\rightarrow\,$ first-order ?
- other ETC theories (esp. adjoint fermions) ?
- non-zero m_q , non-zero T ?

Mass deformation: can one determine γ^* ?

• systematic error from finite-size effects, fitting range and analytic ansatz $(\gamma^* < 0)$

For a given N_f , does g^* depend on β ?

Rummukainen et al, arXiv:1111.4104: SU(2) with $N_f = 10 \rightarrow \text{Banks-Zaks perturbative IRFP}$

Does $g^2(eta,a/L)$ go to $(g^2)^*$ when $a/L
ightarrow 0 \quad orall eta$?