Conformality in many-flavour lattice QCD at strong coupling

arXiv:1208.2148

Philippe de Forcrand (ETH & CERN) with Seyong Kim (Sejong Univ.) and Wolfgang Unger (ETH)

> INT Seattle Aug. 15, 2012

E

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Question: What happens to QCD when N_f increases?

[Intro](#page-1-0)

Classification of QCD-like $SU(3)$ theories with N_f fundamental quarks

"Walking": $N_f = N_f^* - \varepsilon$, just below the conformal window

- $\varepsilon \to 0$, ie. $N_f \to N_f^*$: double zero of β -fct \to Miransky scaling etc..
- scalar Techni-meson: possibility for light composite Higgs!
- • pheno OK (FCNCs): walking \rightarrow push up the scale of new (ETC) physics

Philippe de Forcrand, ETH & CERN () [Many flavor staggered fermions](#page-0-0) Aug. 2012 / Many flavor staggered fermions Aug. 2012

- "time-invariance" violated :-) DeGrand, Shamir & Svetitsky, sextet QCD: IRFP → no IRFP → IRFP 0803.1707 0812.1427 1110.6845
- need to probe infrared → **extremely coarse lattices** → discretization errors ? small discretization error can mask physical running behaviour \rightarrow improved actions ?

Strong coupling limit: $\beta = 0$

Mean Field: chiral symmetry is **always broken** in the strong-coupling limit of staggered fermions at $T = 0$ for all values of N_f and N_c

• chiral condensate well known to be independent of N_f and N_c , i.e. in d spatial dimensions: [Kluberg-Stern et al., 1983] $\ket{\bar{\psi}\psi}$ ($\bm{T} = 0$) = $\frac{\left((1+d^2)^{1/2}-1)/2\right)^{1/2}}{d}$ d

- we also found, following [Damgaard et al., 1985]: chiral restoration temperature is $\mathcal{T}_c = \frac{d}{4} + \frac{d}{8} \frac{N_c}{N_f} + \mathcal{O}(\frac{1}{N_f^2})$ f
- mean field expected to work well for large number of d.o.f. per site, e.g. exact results in the Gross-Neveu model for $N_f \rightarrow \infty$

Conventional wisdom: [Poul Damgaard et al., hep-lat/9701008]: "we see no reasons or numerical indications whatsoever for sensitivity to N_f on the extreme strong-coupling side"

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

$$
S_{\text{eff}} = -N_f \text{Tr} \log(m_q - \not{D}) = N_f \sum_k \frac{1}{km_q^k} \text{Tr} \not{D}^k + \text{const.}
$$

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

 $N_{\rm f}^{\rm c}\simeq$ 52 continuum flavors for $m_q=0$, $N_{\rm f}^{\rm c}$ increases with m_q (heavy fermions \rightarrow less ordering)

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

Answer from Monte Carlo: Surprise! strong first order N_{f-}driven **bulk transition** for strong-coupling limit of staggered fermions found

 $N_{\rm f}^{\rm c}\simeq$ 52 continuum flavors for $m_q=0$, $N_{\rm f}^{\rm c}$ increases with m_q (heavy fermions \rightarrow less ordering), almost no finite size effects

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

 $\beta = 5$ similar but N_f^c smaller

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

 $\beta = 5$ similar but $N_{\rm f}^c$ smaller, stronger finite size effects

On the other hand: loop expansion of the determinant shows that dynamical fermions induce a plaquette coupling $\propto\,N_{\rm f}/m_q^4$, as studied numerically by [A. Hasenfratz, T. DeGrand PRD49 (1994)]: fermions have ordering effect suggests **chiral symmetry restoration** for sufficiently large N_f ?

Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found

Explanation for **failure of mean field:** terms of $\mathcal{O}(\frac{N_{\rm f}}{N_{\rm c}}, \frac{N_{\rm f}}{d^2})$ are neglected (hopping of two mesons, baryon loops)

The Chirally Restored Phase for large *β*

- **•** smooth variation with $\beta \rightarrow N_f$ -driven transition extends to weak coupling
- $\mathcal{N}_{\mathrm{f}}^c \simeq \mathcal{O}(10)$ at weaker coupling
- **•** connection with Nf-driven transition to **conformal window?**

Characterizing the chirally restored phase

Chirally symmetric yet "confining" (*β* = 0)

Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

Characterizing the chirally restored phase

Chirally symmetric yet "confining" (*β* = 0)

Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

- Numerical simulations: $N_f = 56$ & 96, $\beta = 0$, $m_a = 0$, max. $12^3 \times 24$
- \langle Plag) \approx 0.35 & 0.52, similar to weak-coupling; $\beta = 0$ not special
- Observables: torelon mass (gluon flux tube)
	- Dirac eigenvalue spectrum
	- meson masses

Characterizing the chirally restored phase: I. Torelon masses

Characterizing the chirally restored phase: I. Torelon masses

Characterizing the chirally restored phase: I. Torelon masses

Dirac eigenvalue spectrum, measured at **zero quark mass**, *β* = 0:

- **integrated eigenvalue density:** $\int_0^{\lambda} \rho(\bar{\lambda})d\bar{\lambda} = \frac{rank(\lambda)}{rank(Dirac matrix)} \in [0,1]$
- measures the fraction of eigenvalues smaller than *λ*
- **e** derivative gives $\rho(\lambda)$

Dirac eigenvalue spectrum, measured at **zero quark mass**, *β* = 0:

integrated eigenvalue density: $\int_0^{\lambda} \rho(\bar{\lambda})d\bar{\lambda} = \frac{rank(\lambda)}{rank(Dirac matrix)} \in [0,1]$

Compare $N_f = 0$ (quenched configurations) and $N_f = 56$ (chirally symmetric phase)

- \bullet similar for large eigenvalues (UV)
- \bullet the $N_f = 56$ curve shows a gap for small eigenvalues (IR), consistent with chiral symmetry restoration: $\rho(0) = 0$

Philippe de Forcrand, ETH & CERN (2012) [Many flavor staggered fermions](#page-0-0) Aug. 2012

Dirac eigenvalue spectrum, measured at **zero quark mass**, *β* = 0:

integrated eigenvalue density: $\int_0^{\lambda} \rho(\bar{\lambda})d\bar{\lambda} = \frac{rank(\lambda)}{rank(Dirac matrix)} \in [0,1]$

Compare different volumes for $N_f = 56$:

- **·** large eigenvalues (UV) are L-independent,
- \bullet the IR spectral gap shrinks as L increases

Integrated eigenvalue density, $m_q=0$, N_f=56

Philippe de Forcrand, ETH & CERN (2012) [Many flavor staggered fermions](#page-0-0) Aug. 2012

Dirac eigenvalue spectrum, measured at **zero quark mass**, *β* = 0:

integrated eigenvalue density: $\int_0^{\lambda} \rho(\bar{\lambda})d\bar{\lambda} = \frac{rank(\lambda)}{rank(Dirac matrix)} \in [0,1]$

Compare different volumes for $N_f = 56$:

- IR spectrum invariant after rescaling by L: spectral gap ∝ 1*/*L
- \bullet IR physics only depends on L, while the UV physics depends on a
- **■** no other scale in the system \Rightarrow Dirac spectrum consistent with **IR-conformal theory!**

Integrated eigenvalue density, rescaling the infrared, $m_q=0$, $N_f=56$

Dirac eigenvalue spectrum, measured at **zero quark mass**, *β* = 0:

integrated eigenvalue density: $\int_0^{\lambda} \rho(\bar{\lambda})d\bar{\lambda} = \frac{rank(\lambda)}{rank(Dirac matrix)} \in [0,1]$

Compare different volumes for $N_f = 56$:

- IR spectrum invariant after rescaling by L: spectral gap ∝ 1*/*L
- \bullet IR physics only depends on L, while the UV physics depends on a
- **■** no other scale in the system \Rightarrow Dirac spectrum consistent with **IR-conformal theory!**
- Tiny deviations from 1*/*L scaling → anomalous mass dimension *γ* [∗] (∼ 0.26 and 0.38)

Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $N_f = 56$ and $N_f = 96$ at **zero quark mass**

- hadron masses measured for $m_q = 0$ are non-zero
- \bullet but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios ∼ **independent of** L **?**:

Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $N_f = 56$ and $N_f = 96$ at **zero quark mass**

- hadron masses measured for $m_q = 0$ are non-zero
- \bullet but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- **•** mass ratios ∼ **independent of** L?:

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of **continuum limit** is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $\mathsf{a} \ll 1/\Lambda \ll \mathsf{L}$
- at strong-coupling the hierarchy is $a \simeq 1/\Lambda \ll L$
- range of conformal invariance (LΛ) maximized at *β* = 0 for given lattice size L*/*a weak coupling: strong coupling:

Conjecture: $\beta = 0$ IR-conformal phase is analytically connected with the weakcoupling, continuum IR-conformal phase

Study of **continuum limit** is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $\mathsf{a} \ll 1/\Lambda \ll \mathsf{L}$
- at strong-coupling the hierarchy is $a \simeq 1/\Lambda \ll L$
- range of conformal invariance (LΛ) maximized at *β* = 0 for given lattice size L*/*a weak coupling: strong coupling:

strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge theory

Conjectured phase diagram

Conjectured phase diagram

Conjectured phase diagram

Conjectured phase diagram

Either way, single phase transition (chiral symmetry): if all first-order \rightarrow "jumping" dynamics (Sannino) no walking!

Philippe de Forcrand, ETH & CERN (2012) [Many flavor staggered fermions](#page-0-0) Aug. 2012

Conclusions

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is N_f-driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^{\rm c}=52(4)$ *continuum* flavors
- finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for *β* =0, **"large-**N^f **QCD" is IR-conformal with [perhaps] non-trivial IRFP**

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- **•** large N_f , $m_q = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Conclusions

Shown: for $\beta = 0$, a strong first order **bulk transition** exists which is N_f-driven to a chirally symmetric phase

- in the chiral limit: $N_{\rm f}^{\rm c}=52(4)$ *continuum* flavors
- \bullet finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for *β* =0, **"large-**N^f **QCD" is IR-conformal with [perhaps] non-trivial IRFP**

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- **•** large N_f , $m_q = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Questions:

- larger *L* at $\beta = 0 \rightarrow$ trivial or non-trivial ?
- follow transition line to weak coupling \rightarrow first-order ?
- \bullet other ETC theories (esp. adjoint fermions) ?
- • non-zero m_q , non-zero T ?

Mass deformation: can one determine *γ* [∗] **?**

systematic error from finite-size effects, fitting range and analytic ansatz (*γ* [∗] *<* 0)

For a given N_f , does g^* depend on β ?

Rummukainen et al, arXiv:1111.4104: $SU(2)$ with $N_f = 10 \rightarrow$ Banks-Zaks perturbative IRFP

Does $g^2(\beta, a/L)$ go to $(g^2)^*$ when $a/L \rightarrow 0 \quad \forall \beta$?