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From Lattice to Continuum?

L → ∞

UV rotational invariance recovery:

IR rotational invariance recovery:

a → 0
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POWER DIVERGENCE

Operators with different angular momentum can not 
mix in the continuum.

Not true for lattice 
operators

Less symmetries, less 
constraints.

LQCD on HYPER-CUBIC lattices

Full rotational group Infinite number of irreps

Cubic group Only 10 irreps

A PROBLEM
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Two examples

To be built on 
the lattice

Continuum states 
up to             . O (an)

C (t) =
�
0
��O† (t)O (0)

�� 0
�

Excited states spectroscopy1

Spin identification?

Higher moments of hadron structure functions2
�xn�q,µ2 =

�
dxxnq

�
x;µ2

�

�p, s |Oµ1µ2...µn | p, s�|µ2 = 2 �xn�q,µ2 p{µ1pµ2 ...pµn}
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A successful empirical scenario∗

  J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards, and C. E. Thomas, 
Phys.Rev.Lett., 103, 262001 (2009); Phys. Rev. D82, 034508 (2010),

∗

How to build Oi ?
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ψ (x) → �ψ (x)

U (x) → �U (x)
Smear out the fields:

Subduce it from a continuum angular momentum J :

Overlap function

Cij (t) =
�

n
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2En
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FIG. 2: Normalised corrrelation matrix (Cij/
�

CiiCjj) on

timeslice 5 in the T−−
1 irrep (743, 163). Operators are ordered

such that those subduced from spin 1 appear first followed by

spin 3 then spin 4.

value of t0 was emphasised in Ref. [5]. In this paper we

will follow the “reconstruction” scheme outlined therein

in the selection of t0. In short, the masses, mn, extracted

from fits to the principal correlators and the Zn
i extracted

from the eigenvectors on a single timeslice are used in

equation 3 to “reconstruct” the correlator matrix. This

reconstructed matrix is compared to the original data

for all t > t0 with the degree of agreement indicating the

acceptability of the spectral description. The description

generally improves as one increases t0 until at some point

the increase in statistical noise prevents further improve-

ment. In particular see figure 6 in Ref. [5] where the

effect of choosing t0 too small is clearly seen. Forcing

the dim(C)-state orthogonality, vm† C(t0) vn = δn,m, in
a situation where accurate description of C(t0) requires

more than dim(C) states leads to a poor description of

the correlator matrix at times t > t0. The reconstruction
procedure gives a guide to the minimal t0 for which the

correlator matrix is well described by the variational so-

lution. The sensitivity of extracted spectral quantities to

the value of t0 used will be discussed in detail in section

VIIA, but in short it is usually necessary for us to use

t0 � 7.

The reconfit2 code used for variational analysis is

available within the adat suite [36].

VI. DETERMINING THE SPIN OF A STATE

In principle the most rigourous method to determine

the spin of a state is to perform the extraction of the

spectrum for each lattice irrep at successively finer lat-

tice spacings, and then to extrapolate the energies in

each irrep to the continuum limit. There one expects

to see degeneracies emerge according to the pattern of

subduction, free of splittings arising from the discreti-

FIG. 3: Overlaps, Z, of a selection of operators onto states

labelled by m/mΩ in each lattice irrep, Λ−−
(743, 163). Z’s

are normalised so that the largest value across all states is

equal to 1. Lighter area at the head of each bar represents

the one sigma statistical uncertainly.

sation effects. Thus, for example, a spin-3 state would

appear as degenerate energies within the A2, T1 and T2

irreps. This procedure has been successfully applied to

identify a number of low-lying states in the calculation

of the glueball spectrum within pure SU(3) Yang-Mills

theory[37].

There are two reasons why this technique is not cur-

rently practical for the QCD meson spectrum. Firstly,

the procedure relies on a series of calculations on pro-

gressively finer lattices, and hence at increasing computa-

tional cost. Secondly, the continuum spectrum, classified

according to the continuum quantum numbers, exhibits

a high degree of degeneracy; when classified according

to the symmetries of the cube, the degree of degener-

acy is vastly magnified. Identification of degeneracies

between irreps would require a statistical precision far

beyond even that of the high-quality data presented here,

as seen in Figure 10 and subsequent figures.

To alleviate these difficulties it would be useful to have

a spin-identification method that is effective when us-

ing data obtained at only a single lattice spacing. Ob-

viously this lattice spacing should be fine enough that
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The results for the overlap functions:

  J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards, and C. E. Thomas, 
Phys.Rev.Lett., 103, 262001 (2009).

∗

∗
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THE LESSONS
Smearing the fields
Angular momentum “memory” function

WHY?

HOW?
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A TOY MODEL:

φ (x+ na)

φ (x+ na)

φ (x)

na

a

Na =
1

Λ

θ̂L,M (x; a,N) =
3

4πN3

|n|≤N�

n

φ (x)φ (x+ na) YL,M (n̂)
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Relevant scales:

a � 1

Λ
� 1

ΛHadron

(
1

p
)
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The number of derivatives

   number of free    
indices

L�

z

θ̂L,M (x; a,N) =
3

4πN3

|n|≤N�

n

φ (x)φ (x+ na) YL,M (n̂)

θ̂L,M (x; a,N) =
3

4πN3

|n|≤N�

n

�

k

1

k!
φ (x) (an ·∇)k φ (x) YL,M (n̂)

A derivative expansion

θ̂L,0 (x; a,N) =
�

L�,d

C(d)
L0;L�0 (N)

Λd
O

(d)

zL� (x)
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Violates rotational 
invariance.

Operators with 
L=1, M=0

Example

What is the operator basis               ?O
(d)

zL� (x)

O
(1)
z (x) = φ (x)∇zφ (x)

O
(3)
z (x) = φ (x)∇2∇zφ (x)

O
(5)
z (x) = φ (x)

�
∇2

�2 ∇zφ (x)

O
(5,RV )
z (x) = φ (x)

�

j

∇4
j∇zφ (x)
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Mixing in the classical operator

C(5;RV )
30;10 (N)

Λ5
O

(5;RV )
z (x; a) +

C(3)
30;30 (N)

Λ3
O

(3)
zzz (x; a) +

C(5)
30;30 (N)

Λ5
O

(5)
zzz (x; a)+

C(5)
30;50 (N)

Λ5
O

(5)
zzzzz (x; a) +O

�
∇7

z

Λ7

�

θ̂3,0 (x; a,N) =
C(1)

30;10 (N)

Λ
O

(1)
z (x; a) +

C(3)
30;10 (N)

Λ3
O

(3)
z (x; a) +

C(5)
30;10 (N)

Λ5
O

(5)
z (x; a)+

Example

Operator is on a grid!Not a surprise!

Coefficients of               operator  L = 3
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Na =
1

Λ

a

(2N)(
a

2
) =

1

Λ

a

2

(4N)(
a

4
) =

1

Λ

a

4

Reduce the pixelation of the lattice

θ̂3,0 (x; a,N)?
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A good operator if

So it recovers a            operator!L = 3

N → ∞as .

C(d)
30;L�0 (N) is finite for

for

L� = 3

C(d)
30;L�0 (N) → 0 L� �= 3

C(d;RV )
30;L�0 (N) → 0
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FIG. 2. The tree-level values of the coefficients C(d)
30;L�0 appearing in eq. (4) as a function of the

largest n-shell included in the summation in eq. (1).

The numerical values of the coefficients in eq. (4), at the classical level, as a function
of the maximum shell included in the sum in eq. (2) are shown in fig. 2 and fig. 3. From
these plots it is clear that while the coefficients C(3)

30;30 and C(5)
30;30 reach a finite value for

large N, the coefficients of lower and higher angular momentum operators, as well as the
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Coefficients as a function of N?
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Analytically

C(d)
30;L0 = O

�
1

N2

�
with L �= 3 and d = L,L+ 1, ...

C(d;RV )
30;L0 = O

�
1

N2

�
with d = L,L+ 1, ...

C(d)
30;30 =

15

4

�
7

π

d2 − 1

(d+ 4)!
+O

�
1

N2

�
with d = 3, 5, ...

UNIVERSAL                       CORRECTIONS!
1

N2
= a2Λ2
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For large    N

Λ3θ̂3,0 (x; a,N) = α1
Λ2

N2
O

(1)
z (x) + α2

1

N2
O

(3)
z (x) + α3

1

Λ2N2
O

(5)
z (x)+

α4
1

Λ2N2
O

(5;RV )
z (x) + α5 O

(3)
zzz (x) + α6

1

Λ2
O

(5)
zzz (x)+

α7
1

Λ2N2
O

(5)
zzzzz (x) +O

�
∇7

z

Λ4

�

         N = 1
α1

1

a2
O

(1)
z + α2 O

(3)
z + α3 a2O(5)

z + α4 a2O(5;RV )
z +

α5 O
(3)
zzz + α6 a2O(5)

zzz + α7 a2O(5)
zzzzz +O

�
a4∇7

z

�
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NO LARGE CONTAMINATION!

Why
1

N2 ?

What about quantum fluctuations?

dΩ ∼ 1

N2

Classical operator

No short distance fluctuations
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A perturbative analysis:

3λ

4πN3

|n|≤N�

n

� π
a

−π
a

d4k

(2π)4
eik·na

�
4
a2

�
µ
sin2

�
kµa
2

�2
+m2

�2 YLM (Ωn)

λφ4

Leading order L = 0 operator
Sub-leading O

�
λ

N2

�

Sub-leading to all orders O

�
λn

N2

�












θ̂L,M (x; a,N)
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The operator in QCD

Differences:
Spin/Flavor
Link

θ̂L,M (x; a,N) =
3

4πN3

|n|≤N�

n

ψ (x)U (x,x+ na)ψ (x+ na) YL,M (n̂)

        
U (x,x+ na) = 1 + ig

� x+na

x
A (z) · dz+O

�
g2
�

                      

Tree-level operator A             operator with             corrections1/N2J = L

Quantum operator
Extended links

Tadpoles












Two complications:
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Tadpoles
Tadpoles of the continuum operator

∆x

Vanishes!       ∼ αs/ |∆x|2

They are harmless in the continuum!
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Tadpoles
Tadpoles of the lattice operator

Non-vanishing!∼ αsa
2
�π
a

�2

Perturbative LQCD is poorly convergent!

  G. P. Lepage and P. B. Mackenzie, Phys. Rev., D48, 2250 (1993)∗

U (x, x+ aµ̂) → 1

u0
U (x, x+ aµ̂) with u0 ≡

�
1

3
Tr (Uplaq)

�1/4

What to do? Tadpole improvement ∗
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N−1�

m=1

(N −m)
αs

m2
= O (Nαs)

Even worse for                           θ̂L,M (x; a,N) !

          O (Nαs)
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LESSON

A CLOSER LOOK

Example





(2, 2, 1)

(3, 0, 0)
n2 = 9 :

3 tadpoles of the first kind

5 tadpoles of the first kind

UAi
1
(x, x+ an) → 1

uAi
1

UAi
1
(x, x+ an)

Break-down of rotational invariance at O (Nαs)!

Tadpole improvement is crucial.

Different A1
�s
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Extended links on the grid

Continuum operator: Radial path vs. other paths?

V λ
g =

3

4πN3

|n|≤N�

n

ganλ 1

(p− p�) · na

�
ei(k+p�)·na − eip

�·na
�
δ4 (p− p� − k) YL,M (n̂)

THE PATH?
k

p p�

Explicitly 
rotational invariant 

gauge link
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Lattice operator: 

Closest to the radial path

k

p p� = V λ
g (k) +O(g k2a2)

Both RI and RI 
violating terms
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Operator renormalization at one-loop order:

RI corrections for Wilson fermions:

RV corrections:




 ∼ αs/N

∼ αs/N
2

∼ αsContinuum operator  (               ):L = 0, 1

zero external momentum
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Operator renormalization at one-loop order:

                      

zero external momentum

∼ αs/N

�
L = 0
L = 1

∼ αs,αs logN∼ αsmq

∼ αs

RI corrections for Wilson fermions:

RV corrections:






Continuum operator  (               ):L = 0, 1
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Operator renormalization at one-loop order:

                      

zero external momentum

∼ αs/N

�
L = 0
L = 1

∼ αs,αs logN∼ αsmq

∼ αs

RI corrections for Wilson fermions:

RV corrections:






Continuum operator  (               ):L = 0, 1
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All RI violating corrections a → 0→ 0 as

           RI violationO(αs)

UV modes of the gauge fields!

Smear them over aNg =
1

Λg

WHY?
SOLUTION

RI violating corrections: ∼ αsa
2Λ2

g ∼ αs

N2
g
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Practical implication?
Matrix elements of an              operator:L = 3

Λ ∼ 2 GeVSet

a ∼ 0.1 fm

a ∼ 0.05 fm

a ∼ 0.01 fm

N = 1

N = 2

N = 10
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IR rotational symmetry restoration

P =
2πn

L

Implication for RI restoration?∗

T. Luu and M. J. Savage, Phys.R ev., D83, 114508 (2011)∗

The number of point-shells increases A1
�s ↑L ↑

Example
Two-particle scattering in the FV in A+

1 E → δ0, δ4, δ6, ...

n2 = 9 → A+(1)
1 , A+(2)

1






E(1) = 1
2µ

�
9(2π)2

L2 − c1
tan(δ0)

L2 + ...
�

E(2) = 1
2µ

�
9(2π)2

L2 − c2
tan(δ4)

L2 + ...
�L → ∞
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CONCLUSION
• The smeared operator on the lattice approaches the continuum operator 

in a smooth way with the corrections that scale at most by      . Tadpole 
improvement and gauge field smearing are essential for this RI 
recovery in the lattice gauge theories.

• No power divergences! The spectrum of excited states/higher moments 
of Hadron structure functions are calculable from LQCD.

a2

EXTENSION
• To investigate this universal scaling of the operator non-perturbatively.

• Other smearing profiles?

• Operator improvement.

• Restoration of SO(4) from hyper-cubic symmetry?
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Thank you!
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