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Why should we care?
✦ Other particle/antiparticle mixings occur

K0 ↔ K0

B0 ↔ B0

✦ Expect baryon number number to be broken
- Baryon-antibaryon asymmetry

∆B = 1 (Proton Decay)
∆B = 2 (NN Oscillations)

✦ Natural in GUT theories with Majorana neutrinos
- Usual sphaleron process:

ν = ν ⇒ ∆L = 2 B − L = 0 ⇒ ∆B = 2

Mohapatra,
Marshak

1980

∆(B − L) = 0



Basic Idea
✦ BSM physics leads to off-diagonal mixing

✦ Transition Probability

V = 0 ⇒ Free System

Pn→n̄(t) =
δm2

δm2 + V 2
sin2

��
δm2 + V 2 t
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H =

�
En δm

δm En̄
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=
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E + V δm

δm E − V

�

τnn =
1

δm



Restricting GUTs

✦ Estimates for ruling out large classes of GUTs

τnn > 1010 − 1011 sec

TeV-scale seesaw mechanism
for neutrino masses in
SU(2)L × SU(2)R × SU(4)c

1010 − 1011 sec

Examples:

109 − 1012 sec
SO(10) seesaw mechanism
with adequate baryogenisis

Extra-dimensional particles 
above 45 TeV

> 108 sec

Babu,
Bhupal Dev,
Mohapatra

(2009)

Babu,
Mohapatra

(2012)

Nussinov,
Shrock
(2002)



Experimental prospects

✦ Two Types of experimental searches

✦ Neutron-antineutron annihilation signals

nn → 5πPrimary channel (“Zero background” 
signal)

Many 
neutrons

Many 
neutrons +
antineutron

Annihilation



Experimental progress
1.  Neutron-antineutron annihilation in nuclei 

-Nuclear suppression: τNucl = (3× 1022)
τ2nn
sec

Super-K bounds (2011) τnn > 3.5× 108 sec

Friedman,
Gal
2008

Straight-forward question: 
Why have we not annihilated yet?

Crude Answer: Limited time 
neutron is “free” in nuclei

P ∼ 1

τNucl
∼ 1

∆t

�
∆t

τnn

�2
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Experimental progress
2.  Free, Cold neutron annihilation with target  

ILL bound (1993) τnn > 0.86× 108 sec

Designed to:

1.  Maximize number of neutrons

3.  Maximize time of flight
4.  Minimize External Magnetic Field

2.  Minimize energy of neutrons

Minimize external 
potential

Most model-independent 
measurement 



Experimental prospects

✦ Cost Estimates (Project X meeting, June 2012) 

τnn � 3× 109 sec: ∼ $10 million

� $200 millionτnn � 1× 1011 sec:

Bottom line: Lattice allows for rigorous, 
first-principle understanding of QCD input   



Origin of Oscillations

✦ Running of 
BSM interaction 
to nuclear scale

?

?

?

?

?

?
BSM

Weak W Z

Nuclear N P

cBSM (µ)

cQCD(µ)

1

τnn
= δm = cBSM (µ)cQCD(µ)�n|O|n�



✦ What is neutron-antineutron matrix element?

Where Lattice Can Help
✦ Is BSM running non-perturbative?

✦ Is QCD running non-perturbative?

✦ What is effect in nuclei?

- Model-dependent (assume pert. models for now)

- Should be calculated (pert. running reasonable)

- Inherently non-perturbative question

- Very interesting, VERY hard question
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Six-quark Operators
Rao, Shrock (1982) 

1.

2.

3.

uTCu or

Three pairs of quarks:

or

Γa
ijklmn = �mij�nkl + �nij�mkl

Γs
ijklmn = �mik�njl + �nik�mjl + �mjk�nil + �njk�mil

uTCd or dTCd

uT
LCdL uT

RCdR
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Six-quark Operators
If invariant under

Rao, Shrock (1982) 
SU(3)c ⊗ SU(2)L ⊗ U(1)Y :

Restricts operators to:

-All combination of right-handed singlets
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✦ Matrix elements cannot be calculated perturbatively

Six-quark Operators
If invariant under

Rao, Shrock (1982) 

(Six Operators)
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Current Understanding of 
Matrix Elements

(Rao, Shrock 1982) MIT bag Model:
-Model dependent estimation

-No QCD input
-Results roughly consistent with DA

Lattice Motivation:
-Numerical QCD calculation

-Pinpoint target sensitivity for experiment
-Quantification of uncertainties

-Large enhancements/suppressions?



Lattice Calculation
Correlation Functions via path integral:

CO = �O� =
�

d[U ] O det(Dlat(U))e−SG(U)

CNN (t) = �N(t)N(0)� → |�N |n�|2e−mnt

CNN (t) = �N(t)N(0)� → |�N |n�|2e−mnt

R =
CNON (t1, t2)

CNN (t1 + t2)

�
CNN (t1)CNN (t2)CNN (t1 + t2)

CNN (t1)CNN (t2)CNN (t1 + t2)

� 1
2

→ �n|O|n�

CNON (t1, t2) = �N(t1)O(0)N(t2)� → �N |n��N |n�e−mn(t1+t2)�n|O|n�



Lattice Contractions
Propagator Contractions:

[qα
�

i� (y) q
α
i (x) = Sα�α

i�i (y, x) S† = γ5Sγ5

τ = 0 τ = t

CNN (t)

CNN (t)



Lattice Contractions

1 Propagator Two measurement
ALL time insertion

No
Dis.

Diagrams

τ = 0τ = −t1 τ = t2

CNON (t1, t2)



Lattice Contractions

1 Propagator Two measurement
ALL time insertion

No
Dis.

Diagrams

Often
Dis.

Diagrams

2 Propagators One measurements
One time insertion

τ = 0

τ = 0

τ = −t1

τ = −t1

τ = t2

τ = t2

CNON (t1, t2)

Typical
3-point



Neutron Blocks
Construct sink-contracted neutron blocks:

α, i

β, j

γ, k
x

�

x�

eip(x−x�)

12× 12×Nt Object N3
s times smaller than prop

Project onto
lattice irrep

G+
1



Neutron Blocks
Construct sink-contracted neutron blocks:

α, i

β, j

γ, k
x

�

x�

eip(x−x�)

12× 12×Nt Object N3
s times smaller than prop

Project onto
lattice irrep

G+
1

xx

α�, i�

β�, j�

γ�, k�

δ�, l�

η�,m�

σ�, n�

O
α,β,γ,δ,η,σ
ijklmn

−t1 t2

12
Indep.
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Executive Summary
✦ Advantages of Neutron-Antineutron calculations

✦ Disadvantages of Neutron-Antineutron calculations

For same cost:
More Statistics

All Operator Insertions

More Propagator
Multiplications

Potentially Worse
Signal

No Quark Loop or Disconnected Diagrams



Lattice Details
− 323 × 256 anisotrpoic clover-Wilson lattices

− at ∼ 0.04 fm, as ∼ 0.125 fm

− L ∼ 4 fm

− mπ ∼ 390 MeV

− 159 configurations (every 4th trajectory)

− 7268 propagators (Gaussian smeared sources)



Nucleon Effective Mass

CNN (t+ 1)

CNN (t)
→ mn

10 20 30 40 50 60 70

0.18

0.20

0.22

0.24

MN = 1.148(±0.0088)(+0.0048)(−0.0068) GeV

Eff. Mass

t2



N-NBar Matrix Element

R → �n|O|n�
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N-NBar Matrix Element
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Possible Systematics Studies
Hosts of systematics can plague nucleon three-point functions

Status and prospects for the calculation of hadron structure from lattice QCD Dru B. Renner

Figure 8: World’s dynamical results for gA. The lattice results are from [32, 33] (BGR), [25] (RBC NF =
2+1), [19, 20] (RBC NF = 2), [34] (LHPC), [35] (ETMC) and [24] (QCDSF). The experimental result is the
PDG 2008 value [28]. The discrepancy between the lattice calculations and the experimental measurement
and the scatter among the lattice calculations are both smaller than for 〈x〉u−d shown in Fig. 4.

Fig. 9 by examining the lighter pion mass calculations of both QCDSF and ETMC. It is possible
that the volumes for these calculations at m! = 310 MeV or 260 MeV may still be too small to
see the asymptotic volume dependence. We can also consult chiral perturbation theory, which does
allow for this sort of behavior; however, given that gA is essentially flat for the largest volumes, one
might reasonably question the use of chiral perturbation theory at these pion masses.

In order to attempt to estimate the infinite volume limits for the lattice calculations presented
here, I simply require m!L > 6. This may turn out to be an excessive requirement for low m! ,
which would actually be good news regarding finite size effects, but it is clearly required for heavier
pion masses. The lattice results satisfying this are shown in Fig. 10. As is clear from the figure,
this restriction is very severe, however, the resulting lattice calculations show a strong level of
agreement amongst themselves. The results are still lower than the experimental measurement, but,
unlike for 〈x〉u−d , only a mild curvature is required to reconcile the current calculations with the
physical limit. In particular, notice that, with one exception, there is no systematic shift between the
various collaborations. As mentioned earlier, the renormalization of gA is generically easier than
that of 〈x〉u−d , and this lends a bit more support to the hypothesis that differences in renormalization
may be driving part of the variation of 〈x〉u−d in Fig. 6. The one small exception is the result of
QCDSF which is just slightly low compared to all the other calculations. However, this may be
consistent with a small discrepancy in f! , which renormalizes with the same factor as gA, that is
also present for QCDSF [36].

14

Renner,
arXiv:1002.0925

1) Volume Effects
2) Excited State Effects
3) Renormalization

5) Statistics
4) Signal-to-noise

Neutron-antineutron calculations
are a fantastic testing ground!!
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Variety of Three-point analyses
Examined here:

1) Single source-operator separation
2) 2D Correlated Fit (source-op & op-sink)
3) Folded Single source-operator separation
4) Folded 2D Correlated Fit (source-op & op-sink)
5) Summation Method

To be explored:
1) Three-point matrix-Prony
2) Other Suggestions?



One Separation Fit
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2D Correlated Fit
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Folded One Separation Fit
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Folded 2D Correlated Fit
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Summation Method

S(ts)

ts [fm]

a = 0.079 fm
a = 0.063 fm
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Capitani et al., 2012, arXiv:1205.0180



Summation Method
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Preliminary Results

�n|P1|n�

�n|P2|n�

�n|P4|n�

�n|P5|n�
×10−5 GeV6 ×10−5 GeV6

Lattice (Bare) MIT Bag Model

−6.56

1.64

−6.36

9.64

−0.15± 0.10+0.03
−0.02

0.51± 0.47+0.12
−0.07

−0.03± 0.18+0.03
−0.03

−0.02± 0.11+0.05
−0.03

Still multiple important lattice systematics 



Systematic Effects
✦ Unphysical Pion Mass

- No chiral extrapolation (yet...)

- Near physical point enhancements?

τ = 0τ = −t1 τ = t2nn̄:



Systematic Effects
✦ Unphysical Pion Mass

- No chiral extrapolation (yet...)

- Near physical point enhancements?

τ = 0τ = −t1 τ = t2

τ = 0τ = t2

nn̄:

nn scattering:
τ = t2



Other Systematic Effects
✦ Renormalization/discretization effects

- Most violent case should not occur
No lower dimensional              operator∆B = 2

- Perturbative and non-perturbative 
renomalization needed

Six-quarks would imply:

�N |O|N� = Z6
R�N |O|N�bare



Future Outlook
✦ Independent analysis checks

Currently in progress:

✦ L = 32, 240 MeV pions

✦ L = 20, 390 MeV pions

Near Future:

✦ More Statistics

✦ Chiral Extrapolation

✦ Lattice Renormalization



Future Outlook
Feasible in the next few years:

✦ Physical Point Calculation

✦ Chiral Fermion Calculation

✦ Construct Variational Basis

✦ Low-mode/all-mode averaging

✦ Separate wall sources?



Final word
Exciting times for 

Neutron-antineutron oscillations!

Physically:

-Can unveil new physics or provide stringent constraints 

-Proposed experiments can finally probe region of interest 

Lattice:
-Can rigorously pinpoint bounds from various GUT theories

-At the same time, calculations can fully address 
systematic effects for nucleon three-point functions
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