Neutron-Antineutron Oscillations on the Lattice

Michael I. Buchoff Lawrence Livermore National Laboratory

In collaboration with Chris Schroeder and Joe Wasem LLNL-PRES-561415

Why should we care?

✦ Other particle/antiparticle mixings occur $K^0 \leftrightarrow \overline{K^0}$ $B^0 \leftrightarrow \overline{B^0}$

✦ Expect baryon number number to be broken - Baryon-antibaryon asymmetry $\Delta B = 1$ (Proton Decay) $\Delta B = 2$ (*NN* Oscillations)

✦ Natural in GUT theories with Majorana neutrinos - Usual sphaleron process: $\nu = \overline{\nu} \Rightarrow \Delta L = 2$ $B - L = 0 \Rightarrow \Delta B = 2$ Mohapatra, Marshak 1980 $\Delta(B-L)=0$

Basic Idea

✦ BSM physics leads to off-diagonal mixing

$$
H = \begin{pmatrix} E_n & \delta m \\ \delta m & E_{\bar{n}} \end{pmatrix} = \begin{pmatrix} E + V & \delta m \\ \delta m & E - V \end{pmatrix}
$$

$$
V = 0 \implies \text{Free System}
$$

 $\tau_{n\overline{n}}=$

1

 δm

✦ Transition Probability

$$
P_{n\to\bar{n}}(t) = \frac{\delta m^2}{\delta m^2 + V^2} \sin^2 \left[\sqrt{\delta m^2 + V^2} \ t\right]
$$

Restricting GUTs

Examples:

TeV-scale seesaw mechanism for neutrino masses in $SU(2)_L \times SU(2)_R \times SU(4)_c$

 $10^{9} - 10^{12}$ seesaw mechanism
10⁹ $- 10^{12}$ sec with adequate baryogenisis

Extra-dimensional particles above 45 TeV

 $10^{10} - 10^{11}$ sec

Babu, Bhupal Dev, Mohapatra (2009)

Babu, Mohapatra (2012)

 $>10^8$ sec

Nussinov, Shrock (2002)

✦ Estimates for ruling out large classes of GUTs $\tau_{n\overline{n}} > 10^{10} - 10^{11}$ sec

Experimental prospects

Many neutrons

Annihilation

✦ Neutron-antineutron annihilation signals

Primary channel $n\overline{n} \rightarrow 5\pi$ ("Zero background" signal)

✦ Two Types of experimental searches

Experimental progress

1. Neutron-antineutron annihilation in nuclei

Straight-forward question: Why have we not annihilated yet?

Crude Answer: Limited time neutron is "free" in nuclei

1 τ*Nucl* ∼

1 ∆*t* ! ∆*t* τ*nn* $\sqrt{2}$

-Nuclear suppression: $\tau_{\text{Nucl}} = (3 \times 10^{22})$ $\tau^2_{n\overline{n}}$ sec Friedman, Gal 2008

Super-K bounds (2011) $\tau_{n\overline{n}} > 3.5 \times 10^8$ sec

Experimental progress

1. Neutron-antineutron annihilation in nuclei

Straight-forward question: Why have we not annihilated yet?

Crude Answer: Limited time neutron is "free" in nuclei

1 τ*Nucl* ∼

1 ∆*t* ! ∆*t* τ*nn* $\sqrt{2}$

Friedman,

Gal

2008

-Nuclear suppression: τ_1

$$
Nucl = (3 \times 10^{22}) \frac{\tau_{n\overline{n}}^2}{\text{sec estimate}}
$$

Super-K bounds (2011) $\tau_{n\overline{n}} > 3.5 \times 10^8$ sec

Experimental progress

2. Free, Cold neutron annihilation with target Designed to:

1. Maximize number of neutrons 3. Maximize time of flight 4. Minimize External Magnetic Field 2. Minimize energy of neutrons

Minimize external potential

ILL bound (1993) $\tau_{n\overline{n}} > 0.86 \times 10^8$ sec

Most model-independent measurement

Experimental prospects

✦ Cost Estimates (Project X meeting, June 2012) $\tau_{n\overline{n}} \gtrsim 3 \times 10^9$ sec: ~ \$10 million $\tau_{n\overline{n}} \gtrsim 1 \times 10^{11}$ sec: $\gtrsim 200 million

Bottom line: Lattice allows for rigorous, first-principle understanding of QCD input

Where Lattice Can Help

- ✦ Is BSM running non-perturbative?
	- Model-dependent (assume pert. models for now)
- ✦ Is QCD running non-perturbative? - Should be calculated (pert. running reasonable)
- ✦ What is neutron-antineutron matrix element?
	- Inherently non-perturbative question
- ✦ What is effect in nuclei?
	- Very interesting, VERY hard question

Where Lattice Can Help

- ✦ Is BSM running non-perturbative?
	- Model-dependent (assume pert. models for now)
- What is neutron-antineutron matrix element? ✦ Is QCD running non-perturbative? - Should be calculated (pert. running reasonable)
	- Inherently non-perturbative question
- ✦ What is effect in nuclei?
	- Very interesting, VERY hard question

Six-quark Operators Rao, Shrock (1982)

Three pairs of quarks:

 u^T Cu

2.

3.

or $u_I^T C d_L$ ${}_{L}^{T}C d_{L}$ or u_{R}^{T}

 $_{R}^{T}Cd_{R}$

or $u^T C d$ or $d^T C d$

 $\Gamma^a_{ijklmn} = \epsilon_{mij}\epsilon_{nkl} + \epsilon_{nij}\epsilon_{mkl}$ $\Gamma^{s}_{ijklmn} = \epsilon_{mik}\epsilon_{njl} + \epsilon_{nik}\epsilon_{mjl} + \epsilon_{mjk}\epsilon_{nil} + \epsilon_{njk}\epsilon_{mil}$

Six-quark Operators Rao, Shrock (1982)

 $\chi_i = L, R$

1. $\mathcal{O}_{\chi_1 \chi_2 \chi_3}^1 = (u_{i\chi_1}^T C u_{j\chi_1}) (d_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$ \mathbf{Q}_1 , $\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (u_{i\chi_1}^T C d_{j\chi_1}) (u_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$ \mathbf{G}^3 , $\mathcal{O}^3_{\chi_1\chi_2\chi_3} = (u_{i\chi_1}^T C d_{j\chi_1}) (u_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma^a_{ijklmn}$ $\Gamma_{ijklmn}^s = \epsilon_{mik}\epsilon_{njl} + \epsilon_{nik}\epsilon_{mjl} + \epsilon_{mjk}\epsilon_{nil} + \epsilon_{njk}\epsilon_{mil}$

 $\Gamma^a_{ijklmn} = \epsilon_{mij}\epsilon_{nkl} + \epsilon_{nij}\epsilon_{mkl}$

Six-quark Operators Rao, Shrock (1982) $\mathcal{O}_{\chi_1LR}^1=\mathcal{O}_{\chi_1RL}^1$

1. $\mathcal{O}_{\chi_1 \chi_2 \chi_3}^1 = (u_{i\chi_1}^T C u_{j\chi_1}) (d_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$ \mathbf{Q}_1 , $\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (u_{i\chi_1}^T C d_{j\chi_1}) (u_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$

3.
$$
\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (u_{i\chi_1}^T C d_{j\chi_1})(u_{k\chi_2}^T C d_{l\chi_2})(d_{m\chi_3}^T C d_{n\chi_3})\Gamma_{ijklmn}^a
$$

 $\chi_i = L, R$ $\mathcal{O}_{LR\chi_3}^{2,3} = \mathcal{O}_{RL\chi_3}^{2,3}$

 $\Gamma_{ijklmn}^s = \epsilon_{mik}\epsilon_{njl} + \epsilon_{nik}\epsilon_{mjl} + \epsilon_{mjk}\epsilon_{nil} + \epsilon_{njk}\epsilon_{mil}$

 $\Gamma^a_{ijklmn} = \epsilon_{mij}\epsilon_{nkl} + \epsilon_{nij}\epsilon_{mkl}$

18 Independent Operators

Six-quark Operators Rao, Shrock (1982) $\mathcal{O}_{\chi_1LR}^1=\mathcal{O}_{\chi_1RL}^1$

1. $\mathcal{O}_{\chi_1 \chi_2 \chi_3}^1 = (u_{i\chi_1}^T C u_{j\chi_1}) (d_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$ 2. 3. *^O*³ $\mathcal{O}_{\chi_1 \chi_2 \chi_3}^2 = (u_{i\chi_1}^T C d_{j\chi_1}) (u_{k\chi_2}^T C d_{l\chi_2}) (d_{m\chi_3}^T C d_{n\chi_3}) \Gamma_{ijklmn}^s$

$$
\mathcal{O}_{\chi_1 \chi_2 \chi_3}^3 = (u_{i\chi_1}^T C d_{j\chi_1})(u_{k\chi_2}^T C d_{l\chi_2})(d_{m\chi_3}^T C d_{n\chi_3})\Gamma_{ijklmn}^a
$$

$$
\Gamma_{ijklmn}^s = \epsilon_{mik}\epsilon_{njl} + \epsilon_{nik}\epsilon_{mjl} + \epsilon_{mjk}\epsilon_{nil} + \epsilon_{njk}\epsilon_{mil}
$$

 $\Gamma^a_{ijklmn} = \epsilon_{mij}\epsilon_{nkl} + \epsilon_{nij}\epsilon_{mkl}$ Caswell, Milutinovic, Sejanovic (1983)

 $\chi_i = L, R$ $\mathcal{O}_{LR\chi_3}^{2,3} = \mathcal{O}_{RL\chi_3}^{2,3}$

18 Independent Operators 14 Indep. Operators

Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982) Restricts operators to:

-All combination of right-handed singlets

 $\mathcal{P}_1 = (u_{iR}^T C u_{jR})(d_{kR}^T C d_{lR})(d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^s = \mathcal{O}_{RRR}^1$

 $\mathcal{P}_2 = (u_{iR}^T C d_{jR})(u_{kR}^T C d_{lR})(d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^s = \mathcal{O}_{RRR}^2$

 $\mathcal{P}_3 = (u_{iR}^T C d_{jR})(u_{kR}^T C d_{lR})(d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^a = \mathcal{O}_{RRR}^3$

- Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982) Restricts operators to:
	- -All combination of right-handed singlets
	- -Flavor anti-symmetric combinations of left-handed doublets

$$
\mathcal{P}_4 = ([q_{iL}^T]^w C [q_{jL}]^x) (u_{kR}^T C d_{lR}) (d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^a \epsilon^{wx} = 2\mathcal{O}_{LRR}^3
$$

- Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982) Restricts operators to:
	- -All combination of right-handed singlets
	- -Flavor anti-symmetric combinations of left-handed doublets

$$
\mathcal{P}_4 = ([q_{iL}^T]^w C [q_{jL}]^x) (u_{kR}^T C d_{lR}) (d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^a \epsilon^{wx} = 2\mathcal{O}_{LRR}^3
$$

 $\mathcal{P}_5=([q_{iL}^T]^wC[q_{jL}]^x)([q_{kL}^T]^yC[q_{lR})]^z)(d_{mR}^T Cd_{nR})\Gamma_{ijklmn}^a\epsilon^{wx}\epsilon^{yz}=4\mathcal{O}_{LLR}^3$

- Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982) Restricts operators to:
	- -All combination of right-handed singlets
	- -Flavor anti-symmetric combinations of left-handed doublets

$$
\mathcal{P}_4 = ([q_{iL}^T]^w C [q_{jL}]^x) (u_{kR}^T C d_{lR}) (d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^a \epsilon^{wx} = 2\mathcal{O}_{LRR}^3
$$

 $\mathcal{P}_5=([q_{iL}^T]^wC[q_{jL}]^x)([q_{kL}^T]^yC[q_{lR})]^z)(d_{mR}^T Cd_{nR})\Gamma_{ijklmn}^a\epsilon^{wx}\epsilon^{yz}=4\mathcal{O}_{LLR}^3$

 $\mathcal{P}_6 = ([q_{iL}^T]^w C[q_{jL}]^x) ([q_{kL}^T]^y C[q_{lR})]^z) (d_{mR}^T C d_{nR}) \Gamma_{ijklmn}^s (\epsilon^{wy} \epsilon^{xz} + \epsilon^{xy} \epsilon^{wz})$ $= 4(\mathcal{O}_{LLR}^1 - \mathcal{O}_{LLR}^2)$

Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982)

(Six Operators)

 $\mathcal{P}_1 = \mathcal{O}_{RRR}^1$ $\mathcal{P}_2 = \mathcal{O}_{RRR}^2$ $\mathcal{P}_3 = \mathcal{O}_{RRR}^3$ $\mathcal{P}_4=2\mathcal{O}_{LRR}^3$ $\mathcal{P}_5 = 4\mathcal{O}_{LLR}^3$ $\mathcal{P}_6 = 4(\mathcal{O}_{LLR}^1 - \mathcal{O}_{LLR}^2)$

✦ Matrix elements cannot be calculated perturbatively

Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982)

(Six Operators)

Caswell, Milutinovic, Sejanovic (1983) $P_6 = -3P_5$ (Four Operators) $P_2 - P_1 = 3P_3$

 $\mathcal{P}_1 = \mathcal{O}_{RRR}^1$ $\mathcal{P}_2 = \mathcal{O}_{RRR}^2$ $\mathcal{P}_3 = \mathcal{O}_{RRR}^3$ $\mathcal{P}_4=2\mathcal{O}_{LRR}^3$ $\mathcal{P}_5 = 4\mathcal{O}_{LLR}^3$ $\mathcal{P}_6 = 4(\mathcal{O}_{LLR}^1 - \mathcal{O}_{LLR}^2)$

✦ Matrix elements cannot be calculated perturbatively

Six-quark Operators If invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: Rao, Shrock (1982)

(Six Operators)

Caswell, Milutinovic, Sejanovic (1983) $P_6 = -3P_5$ (Four Operators) $P_2 - P_1 = 3P_3$

 \mathcal{P}_1 = \mathcal{O}_{RRR}^1 \mathcal{P}_2) = \mathcal{O}_{RRR}^2 $\mathcal{P}_3 = \mathcal{O}_{RRR}^3$ $\boxed{\mathcal{P}_4} = 2\mathcal{O}_{LRR}^3$ $\mathcal{P}_5 = 4\mathcal{O}_{LLR}^3$ $\mathcal{P}_6 = 4(\mathcal{O}_{LLR}^1 - \mathcal{O}_{LLR}^2)$

✦ Matrix elements cannot be calculated perturbatively

Current Understanding of Matrix Elements

MIT bag Model: (Rao, Shrock 1982) -Model dependent estimation -No QCD input -Results roughly consistent with DA

Lattice Motivation: -Numerical QCD calculation -Pinpoint target sensitivity for experiment -Quantification of uncertainties -Large enhancements/suppressions?

Lattice Calculation

Correlation Functions via path integral:

$$
C_{\mathcal{O}} = \langle \mathcal{O} \rangle = \int d[U] \mathcal{O} \ \det(D_{lat}(U)) e^{-S_G(U)}
$$

 $C_{NN}(t) = \langle \overline{N}(t)N(0) \rangle \rightarrow |\langle N|n \rangle|^2 e^{-m_n t}$ $C_{\overline{NN}}(t) = \langle N(t) \overline{N}(0) \rangle \rightarrow |\langle \overline{N} | \overline{n} \rangle|^2 e^{-m_n t}$ $C_{\overline{N}ON}(t_1,t_2) = \langle N(t_1)\mathcal{O}(0)\overline{N}(t_2)\rangle \rightarrow \langle \overline{N}|\overline{n}\rangle \langle N|n\rangle e^{-m_n(t_1+t_2)}\langle n|O|\overline{n}\rangle$

$$
\mathcal{R} = \frac{C_{\overline{N}ON}(t_1, t_2)}{C_{\overline{NN}}(t_1 + t_2)} \left[\frac{C_{NN}(t_1) C_{\overline{NN}}(t_2) C_{\overline{NN}}(t_1 + t_2)}{C_{\overline{NN}}(t_1) C_{NN}(t_2) C_{NN}(t_1 + t_2)} \right]^{\frac{1}{2}} \rightarrow \langle \overline{n} | \mathcal{O} | n \rangle
$$

Lattice Contractions

Propagator Contractions:

$$
\overline{q}_{i'}^{\alpha'}(y) q_i^{\alpha}(x) = S_{i'i}^{\alpha'\alpha}(y, x) \qquad S^{\dagger} = \gamma_5 S \gamma_5
$$

Lattice Contractions $\tau = t_2$ $\tau = -t_1$ $\tau=0$ No $C_{\overline{N}ON}(t_1,t_2)$ Dis. Diagrams Two measurement 1 Propagator ALL time insertion

Neutron Blocks

Construct sink-contracted neutron blocks:

Project onto lattice irrep G_1^+

$12 \times 12 \times N_t$ Object **I** $\blacktriangleright N_s^3$ times smaller than prop

Neutron Blocks

Construct sink-contracted neutron blocks:

Executive Summary

✦ Advantages of Neutron-Antineutron calculations For same cost:

✦ Disadvantages of Neutron-Antineutron calculations More Statistics All Operator Insertions No Quark Loop or Disconnected Diagrams

> More Propagator Multiplications

Potentially Worse Signal

Lattice Details

- $-32³ \times 256$ anisotrpoic clover-Wilson lattices
- $m_{\pi} \sim 390$ MeV
- $-a_t \sim 0.04$ fm, $a_s \sim 0.125$ fm
- $L \sim 4$ fm
- − 159 configurations (every 4th trajectory)
- − 7268 propagators (Gaussian smeared sources)

Nucleon Effective Mass

$M_N = 1.148(\pm 0.0088)(+0.0048)(-0.0068)$ GeV

 $\mathcal{R} \rightarrow \langle \overline{n}|\mathcal{O}|n\rangle$

 $\mathcal{R} \to \langle \overline{n} | \mathcal{O} | n \rangle$

Possible Systematics Studies

Hosts of systematics can plague nucleon three-point functions

1) Volume Effects 2) Excited State Effects 3) Renormalization 5) Statistics 4) Signal-to-noise

Figure 8: World's dynamical results for *gA*. The lattice results are from [32, 33] (BGR), [25] (RBC *N*^F = \blacksquare 2011 (Renner, \blacksquare \blacksquare $arXiv:1002.0925$ Renner,

arAIV:1002.0925 are a fantastic testing ground!! Neutron-antineutron calculations

Possible Systematics Studies

Hosts of systematics can plague nucleon three-point functions

1) Volume Effects 2) Excited State Effects

3) Renormalization 5) Statistics 4) Signal-to-noise

Figure 8: World's dynamical results for *gA*. The lattice results are from [32, 33] (BGR), [25] (RBC *N*^F = \blacksquare 2011 (Renner, \blacksquare \blacksquare $arXiv:1002.0925$ Renner,

arAIV:1002.0925 are a fantastic testing ground!! Neutron-antineutron calculations

Variety of Three-point analyses

Examined here:

1) Single source-operator separation 2) 2D Correlated Fit (source-op & op-sink) 3) Folded Single source-operator separation 4) Folded 2D Correlated Fit (source-op & op-sink) 5) Summation Method To be explored: 1) Three-point matrix-Prony 2) Other Suggestions?

One Separation Fit $t_1 = 30$

 $a^{6}\langle N|\mathcal{O}_{RRR}^{1}|\overline{N}\rangle = (2.80 \pm 1.52^{+0.81}_{-0.83}) \times 10^{-10}$ χ^2 /dof = 0.423

2D Correlated Fit

 $30 \le t_1 \le 40$ $10 \le t_2 \le 24$

 $a^{6}\langle N|{\cal O}^{1}_{RRR}|\overline{N}\rangle = (4.67 \pm 2.69^{+1.19}_{-0.49})\times 10^{-10}$ $\chi^2/\text{dof} = 0.168$

Folded One Separation Fit $t_1 = 38$

 $a^{6} \langle N| \mathcal{O}_{RRR}^{1}|\overline{N}\rangle = (2.52 \pm 1.38^{+0.85}_{-0.23}) \times 10^{-10}$ χ^2 /dof = 0.692

Folded 2D Correlated Fit

 $a^{6}\langle N|\mathcal{O}_{RRR}^{1}|\overline{N}\rangle = (1.64 \pm 1.53^{+0.39}_{-0.24})\times 10^{-10}$ $\chi^2/\text{dof} = 0.321$

Summation Method

$$
S(t_s) = \sum_{t=0}^{t_s} \mathcal{R}(t, t_s - t) \stackrel{t_s \gg 0}{\longrightarrow} c + t_s \langle N | \mathcal{O} | N \rangle
$$

Capitani et al., 2012, arXiv:1205.0180

Summation Method

All results for ORRR

All results for O_{RRR}^2

All results for OLRR

All results for OLLR

Still multiple important lattice systematics

Systematic Effects

+ Unphysical Pion Mass

- No chiral extrapolation (yet...)
- Near physical point enhancements?

Systematic Effects

✦ Unphysical Pion Mass

- No chiral extrapolation (yet...)
- Near physical point enhancements?

Other Systematic Effects

✦ Renormalization/discretization effects

- Most violent case should not occur No lower dimensional $\Delta B = 2$ operator
- Perturbative and non-perturbative renomalization needed Six-quarks would imply:

 $\langle N|{\cal O}|\overline{N}\rangle = Z^6_R \langle N|{\cal O}|\overline{N}\rangle_{\rm bare}$

Future Outlook

Currently in progress:

- ✦ Independent analysis checks
- $+ L = 20, 390 \text{ MeV}$ pions
- $+ L = 32, 240 \text{ MeV}$ pions
- ✦ Lattice Renormalization

Near Future:

- ✦ More Statistics
- ✦ Chiral Extrapolation

Future Outlook

Feasible in the next few years:

- ✦ Physical Point Calculation
- ✦ Chiral Fermion Calculation
- ✦ Construct Variational Basis
- ✦ Low-mode/all-mode averaging
- ✦ Separate wall sources?

Final word

Exciting times for Neutron-antineutron oscillations!

Physically:

-Can unveil new physics or provide stringent constraints -Proposed experiments can finally probe region of interest

Lattice:

-Can rigorously pinpoint bounds from various GUT theories

-At the same time, calculations can fully address systematic effects for nucleon three-point functions This research was supported by the LLNL LDRD "Unlocking the Universe with High Performance Computing" 10-ERD-033 and by the LLNL Multiprogrammatic and Institutional Computing program through the Tier 1 Grand Challenge award that has provided us with the large amounts of necessary computing