Direct Identification of Core-Collapse SN Progenitors

Schuyler D. Van Dyk (IPAC/Caltech)

Core-Collapse SNe: Classification

Thermonuclear SNe

Core Collapse SNe

Core-Collapse SNe: Classification

(Van Dyk & Matheson 2012)

Mass of ⁵⁶Ni depends on mass of core

Core-Collapse SNe: Rates

Smith et al. (2011)

Direct Identification of SN Progenitors

SN 1978K (IIn) SN 1987A (II pec) SN 1993J (IIb) SN 1999ev (II-P) SN 2003gd (II-P) SN 2004A (II-P) SN 2004et (II-P) SN 2005cs (II-P) SN 2005gl (IIn) SN 2008ax (IIb)

SN 2008bk (II-P) SN 2008cn (II-P ?) SN 2009hd (II-L ?) SN 2009kr (II-L) SN 2009md (II-P) SN 2010jl (IIn) ? SN 2011dh (IIb) SN 2012A (II-P) SN 2012aw (II-P)

The most common core-collapse SNe

Inserra et al. (2011)

L_{bol} - v_{exp} relation for SNe II-P

Defined at age ~ 50 d (on the plateau)

 $V_{p} \sim L_{p}^{0.33}$

(Hamuy & Pinto 2001)

SN 1987A: Sk -69° 202

(David Malin AAT image)

SN 1987A is a *peculiar* SN II-P The star was a B3I !!! (Isserstedt 1975, Rousseau et al. 1978)

SN II-P 2008bk

The "second best" progenitor detection ever

Gemini + archival VLT ISAAC & HAWK-I (MARCS stellar atmospheres)

Van Dyk et al. (2012) also, Mattila et al. (2008)

SN II-P 2008bk

Low luminosity --- low ⁵⁶Ni mass, NSE reached in thin O/Si-rich layer around core Explosion of super-AGB star at low(er) metallicity ???

What *is* the mass range for the RSG progenitors of SNe II-P ???

What *is* the mass range for the RSG progenitors of SNe II-P ???

SN II-P 2012aw in M95

Van Dyk et al. (2012, in revision)

Hubble Legacy Archive F555W and F814W image mosaics from 1994

SN II-P 2012aw in M95

Van Dyk et al. (2012, in revision)

Ekström et al. (2012) rotating models at solar metallicity

⁵⁶Ni yield vs. progenitor mass

SN II-P spectropolarimetry

Smartt et al. (2009) Grey curve is ratio of M(O) in the CO core to M(core)

Leonard et al. (2012)

High-luminosity SNe II-P

SN 2008cn in NGC 4603 (Elias-Rosa et al. 2009) most distant direct identification, at 33 Mpc

Yellow supergiant (!) with $M_{ini} = 15 \pm 2 M_{\odot}$

SN 2009kr in NGC 1832 (Elias-Rosa et al. 2010)

Yellow supergiant (!) with $M_{ini} = 18 - 24 M_{\odot}$

(also Fraser et al. 2010; $M_{ini} = 15^{+5} -_4 M_{\odot}$)

Evolution of Massive Stars

What do theoretical stellar evolutionary tracks predict/explain?

Departure from standardized Mass loss formulation

Pulsationally-driven superwinds from RSGs, solar Z (Yoon & Cantiello 2010)

SN 2009kr in NGC 1832 (Elias-Rosa et al. 2010)

SN 2009hd in M66 (Elias-Rosa et al. 2011)

At $M_V(max) = -17.2 \text{ mag}$, SN 2009hd is probably a SN II-L

SN 2009hd in M66 (Elias-Rosa et al. 2011)

SN 1993J in M81 A_v=0.75 mag, d = 3.6 Mpc

C A SN G F I'' D B

Aldering, Humphreys, & Richmond (1994) Ground-based archival plates/images

Van Dyk et al. (2002) HST WFPC2 from 2001

Early K-type supergiant with $M_V^o \approx -7.0$ mag and $M_{ini} \approx 13 - 22$ M_{\odot}

SN 1993J in M81

Maund et al. (2004); also Maund & Smartt (2009)

Chevalier & Soderberg (2010): SNe IIb from *extended* (R ≈ 10¹³ cm) progenitors, e.g, SN 1993J, and from *compact* (R ≈10¹¹ cm) progenitors, e.g., SN 2008ax

SN 2011dh in M51 A_v=0.12 mag, d = 7.7 Mpc

Maund et al. (2011) claim that the F-type supergiant is the progenitor however, SN 2011dh had a *compact* progenitor (Arcavi et al. 2011)

SN lb 2009jf in NGC 7479 (Van Dyk et al., in prep.) A_V = 0.53 mag, d = 33.9 Mpc

HST/WFPC2 F569W from 1995

HST/ACS F555W

Comparison of the bolometric light curve for SN 2009jf with the models by Dessart et al. (2011)

The light curve is consistent with the close binary model with a primary of $M_{ini} = 18 M_{\odot}$ and $M_{fin} = 3.79 M_{\odot}$ WN star

Secondary has Mini = 17--23 M_☉ (Yoon, Woosley, & Langer 2010) <mark>SN Ib</mark>

SN Ib 2009jf in NGC 7479 (Van Dyk et al., in prep.)

SN "Ibn" Progenitor

SN 2006jc in UGC 4904 (Pastorello et al. 2007; Foley et al. 2007)

Preceded by an LBV-like eruption 2 years prior to explosion!

SN Ic 2004gt in NGC 4038 (Gal-Yam et al. 2005; Maund et al. 2005)

Not very restrictive limits, based on detection limits/star cluster properties

SN Ic 2007gr in NGC 1058 d=9.3 Mpc, $A_{V,tot} \approx 0.3$ mag

Not very restrictive limits, based on properties of star cluster (Crockett et al. 2008)

may not be in the cluster after all

HST WFPC2 F555W from 2008

IAU 279, Death of Massive Stars, Nikko, Japan

e.g., SN Ic 2000ew in NGC 3810 (Van Dyk, Li, & Filippenko 2003a)

Also, SN 2003jg in NGC 2997, SN 2004cc in NGC 4568, SN 2005V in NGC 2146, etc. (Elias-Rosa et al. in prep.) --- *These are all highly extinguished*

SN Ic 2003jg in NGC 2997 <u>A_{v,tot} ≈ 4 mag</u>

Subsections of NGC 2997 before (*left - HST*/WFPC2) and after (*right - HST*/ACS-HRC) the SN 2003jg explosion, in F814W. The position of the SN is indicated by a circle

WC star detectability

SN 2005gl in NGC 266 (d = 66 Mpc) (Gal-Yam et al. 2007; Gal-Yam & Leonard 2009)

HST WFPC₂ F₅₄₇M M_v ≈ -10.3 mag (!!) Keck-II NIRC2 AO

HST WFPC2 F547M

SN 2010jl in UGC 5189A (d = 50 Mpc) (Smith et al. 2011)

Conclusions

- Progression of progenitor initial mass related to stripping of H envelope (... binarity?)
- SNe II-P have M_{lower} = 8--9 M_{\odot} : low-luminosity (lower ⁵⁶Ni mass produced, super-AGB?)
- Not clear yet what is M_{upper} (largest initial mass) for SN II-P RSG progenitors
- High-luminosity SNe II-P may arise from YSGs with $M_{ini} \approx 15 M_{\odot}$ (??)
 - Current evolutionary tracks do not adequately predict observed pre-SN stars
- SNe II-L may also arise from YSGs, with M_{ini} ≈ 20 M_☉ (??)
 Envelope has been stripped --- dense circumstellar matter, leading to radio/X-ray em
- Some SNe IIn arise from LBVs (see also Kiewe et al. 2011): very high-mass stars
- SNe IIb may have high-mass extended or compact progenitors (stripped components in interacting binaries)
- SNe Ib *may* have similar high-mass compact (WR) progenitors in binaries
- SNe Ic: high-mass, single WC stars ... or binaries ????