

Diffuse Supernova Neutrinos

Irene Tamborra

von Humboldt Research Fellow at the MPI for Physics, Munich

INT 12-2a, Nuclear and Neutrino Physics in Stellar Core Collapse University of Washington, Seattle July 6, 2012

- ★ Cosmological supernova rate
- ★ Neutrino oscillations in supernovae
- ★ Reference neutrino signal
- ★ Diffuse supernova neutrino background (DSNB)
- ★ Conclusions

This talk is based on work in collaboration with Cecilia Lunardini, JCAP 07 (2012) 012.

Why the DSNB?

Galactic supernova maybe rare but supernova explosions are quite common. On average there is one supernova explosion every second somewhere in the universe and these produce a diffuse supernova neutrino background (DSNB).

 \star Detectable $\bar{\nu}_e$ flux at the Earth mostly from redshift $z \sim 1$

- \star Test of supernova astrophysics
- ★ New frontiers for neutrino astronomy

DSNB Detection Perspectives

The DSNB has not been observed yet, the most stringent limit is from Super-Kamiokande (SK):

$$
\phi_{\bar{\nu}_e} \leq 2.8 - 3.0 \, \, \mathrm{cm}^{-2} \mathrm{s}^{-1}
$$

computed for energies above 17.3 MeV.

For details see: C. Lunardini, arXiv: 1007.3252.

DSNB Detection

Neutron tagging in Gd-enriched WC detector (Super-K with 100 tons Gd to trap neutrons) nen tagging in Gd-enriched WC detector (G

*See talks by Vagins at Hanse 2011 and by Beacom at Neutrino 2012.

Ingredients

Cosmological Supernova Rate

Cosmological Supernova Rate (SNR)

$$
R_{\rm SN}(z,M) = \frac{\int_{8M_{\odot}}^{125M_{\odot}} dM \eta(M)}{\int_{0.5M_{\odot}}^{125M_{\odot}} dM M \eta(M)} \dot{\rho}_{\star}(z)
$$
initial mass function star formation rate
(mass distribution of stars at birth)

The initial mass function $\eta(M) \propto M^{-2.35}$. Therefore the flux is dominated by low mass stars.

The DSNB is dominated by the contribution of the closest ($z \leq 1$) and least massive ($M \simeq 8 M_{\odot})$ stars and it depends only weakly on $M_{\rm max}$ and $z_{\rm max} \simeq 5$.

Cosmological Supernova Rate (SNR)

The redshift correction of energy is responsible for accumulating neutrinos of higher redshift at lower energies. Therefore the diffuse flux is dominated by the low z contribution ($z \leq 1$) in the energy window relevant for experiments (11 <E< 40 MeV).

See for details Ando, Sato, PLB 559 (2003) 113; Lunardini, arXiv: 1007.3252.

SNR: Predictions From Star Formation Rate 0*.*5*M*[⊙] *dM M*η(*M*) <u>Recent and Senarce of Senarce Senarce Street and Senarce parameters</u> in the senarce parameters in the senarce par
In the parameters of the parameters in the senarce parameters in the senarce parameters in the senarce para

 $z < 1$
 $1 < z < 4.5'$ The SNR is proportional to the star formation rate (SFR), mass that forms stars per unit time per unit volume:

*^M*max

$$
\dot{\rho}_{\star} \propto \begin{cases} (1+z)^{\delta} & z < 1\\ (1+z)^{\alpha} & 1 < z < 4.5\\ (1+z)^{\gamma} & 4.5 < z \end{cases}
$$

The cosmic star formation history as a \overline{g} **dependence on the** *M* among results from different groups.

 $\frac{1}{2}$

G'G6)'G%N2"*%*(33-1'%3/(23%

 $\frac{1}{\sqrt{2}}$

 \mathbb{Z}^2

2'36D/3%N2"*%G-u'2'\$/%B2"6;3+%

/')#\$-t6'3+%(\$G%J(1'D'\$B/#3%

 \mathbb{R}^2

 \overline{X} (D3") \overline{X} (D

See for details Horiuchi, Beacom, arXiv: 1006.5751; Hopkins, Beacom, arXiv: astro-ph/0601463.

SNR: Measured Supernova Rate

The SNR is also given by direct SN observations.

Surprisingly, the normalization **from direct SN observations is lower than that from SFR data by a factor ~ 2** and by a smaller factor at higher z.

Why? There are missing SNe they are faint, obscured, or dark. $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}$

The existing measurements of the SNR and their uncertainties are dominated
by pormalization errors by normalization errors. $; "3"$

See Horiuchi et al., arXiv: 1102.1977; Botticella et al., arXiv: 1111.1692.

Neutrino Mixing

Neutrino Masses and Neutrino Flavors \sim \sim \sim \sim \sim \sim <u>Gama e Sakata </u>

 M ska μ (CKM) usata per i quark, si μ resa necessaria per spiegare le oscil- μ e resa necessaria per spiegare le oscil-

, (1.2)

Neutrino flavor eigenstates are linear combinations of mass eigenstates by means of three mixing angles and one CP-phase and the state of the state o

Maskawa (CKM) usata per i quark, si `e resa necessaria per spiegare le oscil-

ν1*,* ν2*,* ν³ attraverso una matrice unitaria *U*:

$$
\begin{pmatrix}\n\nu_e \\
\nu_\mu \\
\nu_\tau\n\end{pmatrix} = U(\theta_{12}, \theta_{13}, \theta_{23}, \delta) \begin{pmatrix}\n\nu_1 \\
\nu_2 \\
\nu_3\n\end{pmatrix}
$$

Neutrino mass eigenstates differ by two mass differences. The sign of the biggest one is a still unknown from all biggest of the *unknown* from all biggest of the *unknown* from all biggest of the *unknown* from all bigge still unknown [normal hierarchy: $+\Delta m^2$, inverted hierarchy: $-\Delta m^2$]. For example, in inverted hierarchy: **United parametrizata nel modo seguente: United Secuentes**: **Parametrizata nel modo seguente: Parametrizata nel modo seguente: Parametrizata nel modo seguente: Parametrizata nel** Per gli antineutrini vale un'equazione analoga alla precedente, con la sosti-Per gli antineutrini vale un'equazione analoga alla precedente, con la sosti-

1

1

(but <[∼] ¹σ) differences between NH and IH curves can be seen for sin² ^θ²³ and, to some extent, for ^δ. <u>System and the global structure</u> **Neutrino Masses and Mixing Angles**

parameters δm² and sin² θ12, and only minor variations for the the parameters ∆m² and sin² θ13. More pronounced

 $*$ G.L. Fogli et al., arXiv: 1205.5254. red (dashed) curves refer to NH and IH, respectively.

Neutrino Masses and Mixing Angles

 T

Table I reports the bounds shown in Fig. 3 in numerical form. Except for α in β

with significant accuracy. If we define the average 10 fractional accuracy as 1/6th of the ±30

²)/2, with +∆m² for NH and −∆m² for IH.

Neutrino Oscillations in Supernovae

\cdots \cdots \cdots \cdots \cdots **Neutrino Interactions**

Neutrinos interact with matter and among themselves...

Equations of Motion

The equations of motion for neutrinos and antineutrinos describing the time evolution in a homogeneous medium for each energy mode E and angle ϑ are

$$
i\,\dot\varrho_{E,\vartheta}=[\mathsf H_{E,\vartheta},\varrho_{E,\vartheta}]\quad\text{ and }\quad i\,\dot{\bar\varrho}_{E,\vartheta}=[\bar{\mathsf H}_{E,\vartheta},\bar\varrho_{E,\vartheta}]
$$

with the neutrino Hamiltonian defined as

$$
H_{E,\vartheta} = \frac{UM^2U^{\dagger}}{2E} + \sqrt{2}G_F N_l + 2\pi\sqrt{2}G_F \int dE \int d\cos\vartheta' \left(\varrho_{E,\vartheta'} - \bar{\varrho}_{E,\vartheta'}\right) (1 - \cos\vartheta\cos\vartheta')
$$

vacuum term
(with opposite sign $N_{\ell} = \text{diag}(n_e - n_{\bar{e}}, n_{\mu} - n_{\bar{\mu}}, n_{\tau} - n_{\bar{\tau}})$ $\nu - \nu$ interaction term
for antineutrinos)

The Hamiltonian for antineutrinos has the vacuum term with opposite sign.

Neutrino Interactions with Matter (MSW)

When the vacuum term is in resonance with the matter term maximal flavor conversions occur (MSW effect).

Level-Crossing diagrams in a supernova Level-Crossing Diagram in a SN Envelope Crossing Diagram in a SN Envelope Level-Crossing Diagram in a SN Envelope Crossing Diagram in a SN Envelope

 Δm^2 resonance for neutrinos δm^2 resonance for neutrinos

 \mathcal{L} Δm^2 resonance for antineutrinos δ*m*² resonance for neutrinos

* For details see: A. Dighe and A. Yu. Smirnov, arXiv: hep-ph/9907423

Neutrino-neutrino Interactions

The $\nu-\nu$ term is non linear and it depends on the relative angle between colliding neutrinos

$$
\left[\mathsf{H}_{E,\vartheta} = \frac{\mathsf{U}\mathsf{M}^2\mathsf{U}^\dagger}{2E} + \sqrt{2}G_\mathrm{F} \; \mathsf{N}_l + 2\pi\sqrt{2}G_\mathrm{F} \int dE' \int d\cos\vartheta' \; \left(\varrho_{E'\!\!,\vartheta'} - \bar{\varrho}_{E'\!\!,\vartheta'}\right) \left(1 - \cos\vartheta\cos\vartheta'\right) \right]
$$

We assume the "bulb model"*: the neutrino-sphere emits neutrinos of all flavors from each point in the forward solid angle uniformly and isotropically.

Duan et al., PRD74,105014(2006)

ng to appreciat **the role** (2π)³ (P*q*" [−] ^P*q*")(1 [−] cos ^θ*pq*) Only lately, we are learning to appreciate the role of the angle among colliding neutrinos.

Multipoliticangle effective interaction depends on the interaction of * For details see: H. Duan et al., arXiv: astro-ph/0606616. For realistic angular distributions see S. Sarikas, G.G. Raffelt, L. Huedepohl, H.-T. Janka, arXiv: 1109.3601

Collective Spectral Splits

The appearance and the number of splits are strictly dependent on: and appearance and the

- \star the ratio among the fluxes of different flavors \blacksquare The ratio arriving the nuxes of unicient havors
- \star the geometry of the neutrino angular emission
- \star the neutrino mass hierarchy. \sim and nodalities made indication \mathbf{y} . \star the neutrino mass hierarchy. it is less sharp with respect to the single-angle case in $\mathbf{F}_{\mathbf{r}}$

within the cone of sight of the neutrino-sphere, with α ∈ α α β ∈ β α β β β β β β

* For details see: G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra arXiv: 0707.1998, 0808.0807 G.G. Raffelt and A. Yu. Smirnov, arXiv: 0705.1830, 0709.4641, H. Duan et al., arXiv: 0706.4293 The spectra in Figure 8 are largely independent from the specific mixing values of \mathcal{L}

$3ν = 2ν ⊕ 1ν$ approximation

Typical supernova neutrino energies are below threshold for μ and τ production via CC. ν_{μ} and ν_{τ} behave in a similar way and are often denoted by ν_{x} . Generally, one may use an effective 2-flavor approximation as far as $\delta m^2/\Delta m^2 \rightarrow 0$.*

The effects on collective oscillations induced by the third flavor are of the nature of a subtle correction, negligible for our purposes. In what follows, we will treat collective oscillations in the two flavor approximation and the only way the "spectator" ν_x will affect the final spectra will be by MSW transitions.

B. Dasgupta, A. Dighe, arXiv: 0712.3798 [hep-ph]

Oscillated Fluxes at the Earth

 $\frac{1}{\sqrt{2}}$ remains almost under the same resonance affects the same resonance affects the same resonance affects the same resonance $\frac{1}{\sqrt{2}}$ **FOR THE V₁₃ THE V30 FORCE THE FLUXES (***FC***).** The fluxes (*FC*) reaching the collective and collective and *FC* For large θ_{13} the oscillated fluxes are:

MSW oscillations for NH and IH and for large B13 are \sim

$$
F_{\nu_e}^{\text{NH}} = \sin^2 \theta_{12} [1 - P_c(F_{\nu_e}^c, F_{\bar{\nu}_e}^c, E)] (F_{\nu_e}^0 - F_{\nu_y}^0) + F_{\nu_y}^0
$$

\n
$$
F_{\bar{\nu}_e}^{\text{NH}} = \cos^2 \theta_{12} \bar{P}_c (F_{\nu_e}^c, F_{\bar{\nu}_e}^c, E) (F_{\bar{\nu}_e}^0 - F_{\nu_y}^0) + F_{\nu_y}^0 ,
$$

\n
$$
F_{\nu_e}^{\text{IH}} = \sin^2 \theta_{12} P_c (F_{\nu_e}^c, F_{\bar{\nu}_e}^c, E) (F_{\nu_e}^0 - F_{\nu_y}^0) + F_{\nu_y}^0 ,
$$

\n
$$
F_{\bar{\nu}_e}^{\text{IH}} = \cos^2 \theta_{12} [1 - \bar{P}_c (F_{\nu_e}^c, F_{\bar{\nu}_e}^c, E)] (F_{\bar{\nu}_e}^0 - F_{\nu_y}^0) + F_{\nu_y}^0
$$

^ν*^e* [−]*F*⁰

Since self-induced flavor conversions and MSW resonances occur in well separated regions in most of the cases, we choose to factorize both the effects and treat them steparately, that appears in the fluxes \bar{P} and \bar{P} and \bar{P} are so called "spectral spectral separately.

Reference Neutrino Signal

Reference Neutrino Signal

We adopt SN simulations* consistently developed over 10s for three different SN masses. bounce time [30, 48]. In blue (red, black respectively) are plotted the quantities related to ν*µ,*^τ and * Fisher et al. (Basel group), arXiv: 0908.1871 [astro-ph.HE]

Oscillations During the Accretion Phase

Accretion Phase

Matter density during the accretion phase vs. neutrino density for a 10.8 M_{\odot} SN (Basel model) \Box iviatter density during the a

During the **accretion phase** the matter density is always larger than the neutrino one.

Then, one could expect multi-angle matter suppression of collective flavor conversions at small radii. Does this happen?

[See talk by G. Raffelt]

* For details see: S. Chakraborty et al., arXiv: 1104.4031, arXiv: 1105.1130, S. Sarikas, G.G. Raffelt, arXiv: 1109.3601

Accretion Phase: Flavor Evolution Our results agree with the numerical solutions of Ref. [3] for all models. Whenever the $n = 1$ numerical solutions find σ

 κ = 0 for two snapshots together with the k isocontours. We also show the κ is the snapshots the κ

The ratio R, being very large behind the shock front,

10"²

 $\mathcal{F}_{\mathcal{F}}$ and the trajectory of SN (thick red line) at t $\mathcal{F}_{\mathcal{F}}$

 $\mathbf I$ trajectory can enter the instability region \mathbb{R}^n profile λ ∼ 0.43 µ with half-isotropic emission at ^R = 10 km and ^µ^r = 7×10⁴ km[−]¹ ^R⁴/2r⁴. $\mathbf{I}_{\mathbf{z}}$ we show keep show \mathbf{z}

mains to be seen if the seen if the seen if the see

Matter suppression of collective effects during the accretion -only MSW-

The high electron density suppresses collective flavor oscillations (no splits) during the accretion phase for the three considered progenitors ($P_c \simeq 1$). Only MSW occurs. ratio can go down to ^R [∼] rie riigit electron density Let us discuss in more detail what occurs at differ-The high electron density suppresses collective flavor oscillations (no pprocess concentration communistic presence etion phase for the three considered progenitors ($P_c \simeq 1$). Only **i** ulation exists in provided HANSE 2011 12:20 PM 2011 12:20 PM 2012 1 The high electric

The angular distribution is crucial for the flavor-oscillation suppression! times $\mathbf{0}$. The matter term is strongly dominated the matter term is strongly dominated to $\mathbf{0}$.

* For details see: S. Chakraborty et al., arXiv: 1104.4031, arXiv: 1105.1130, S. Sarikas et al., arXiv: 1110.5572 conditions oscillations are always blocked. Then, at intaking into account the effects of the effects of the SN matter profile \mathcal{L}_max

Oscillations During the Cooling Phase

Cooling Phase: Flavor Evolution

During the **cooling phase** multiple spectral splits are expected. We numerically solve the evolution equations for discrete time slices. The spectral splits are smeared and their size is reduced due to similarity of the un-oscillated flavor spectra and due to multi-angle effects.

Only partial conversion is realized. For NH, $P_c \geq 0.6$ for high energies and $P_c \leq 0.3$ for low energies with transition energy increasing with time for energies from 15 to 35 MeV. A similar behavior is observed for antineutrinos for $E > 5$ MeV.

 $P_{c} \sim 0.1 - 0.3$ for E < 15-20 MeV to Form $P_{c} \sim 0.1 - 0.3$ $P_c > 0.6$ at higher energies. For antineutrinos $\bar{P}_c > 0.7$ at all times and at all energies.

* For details see: Fogli, Lisi, Marrone, Tamborra, arXiv: 0907.51515; Mirizzi and Tomàs, arXiv: 1012.1339.

Diffuse Supernova Neutrino Background

0**Time-integrated Neutrino Fluxes ()** ¹⁰*.*⁸ *^M*[⊙]

The MSW effect is large and it generates hotter fluxes. Collective effects produce a slight hardening or softening of the fluxes depending on the mass hierarchy. No signature of the spectral splits.

For details see: C. Lunardini and I. Tamborra, arXiv: 1205.6292.

Diffuse Supernova Neutrino Background

A maximum variation of 10-20% (at $E \simeq 20 \text{ MeV}$) is related to the mass hierarchy.

For details see: C. Lunardini and I. Tamborra, arXiv: 1205.6292.

Estimate of the Different Contributions

Compared to static spectra (a), the effect of time-dependence of the spectra over 10 s is responsible for a variation of 6% (b). The MSW effects (c) are the largest source of variation of the DSNB with respect to the case without oscillations and it is $50-60%$. Neutrino-neutrino interactions (d) are responsible for a variation of 5-10%. The stellar population (e) is responsible for a variation of 5-10% due to the more luminous fluxes of the massive stars.

$$
\Phi_{\text{tot}}^{\nu_e, \text{NH}} = 0.31 \text{ cm}^{-2} \text{s}^{-1} \text{ and } \Phi_{\text{tot}}^{\nu_e, \text{IH}} = 0.27 \text{ cm}^{-2} \text{s}^{-1}
$$
\n
$$
\Phi_{\text{tot}}^{\bar{\nu}_e, \text{NH}} = 0.26 \text{ cm}^{-2} \text{s}^{-1} \text{ and } \Phi_{\text{tot}}^{\bar{\nu}_e, \text{IH}} = 0.32 \text{ cm}^{-2} \text{s}^{-1}
$$

The maximum impact given by the mass hierarchy is 20% is 20% is 20% in (e). It is 20%

completeness, we provide the numerical values for the DSNB for the case (e):

For details see: C. Lunardini and I. Tamborra, arXiv: 1205.6292.

Conclusions

★ The inclusion of time-dependent neutrino spectra is responsible for colder neutrino spectra in the DSNB (error $~5\%$).

 \star The largest effect of flavor oscillations is due to MSW resonances (~50-60%), neutrino-neutrino interactions contribute at 5-10%. No energy-dependent signature of collective oscillations.

 \star The dependence on the mass hierarchy is \sim 10-20% and it is stronger for antineutrinos.

★ Combining results for different progenitor stars (instead of using $10.8M_{\odot}$ spectra for all stars), increases the DSNB by 5-10%.

★ The DSNB is mainly affected by MSW effects and it can be used to extract astrophysical quantities.

★ The forthcoming detection of the DSNB will be an excellent benchmark to test models of neutrino spectra/emission and SNR.

