

Axisymmetric simulations of core-collapse supernovae with spectral neutrino transfer

Yudai SUWA (YITP, Kyoto University)

Collaboration with

T. Takiwaki, K. Kotake (NAOJ)、M. Liebendörfer (U. Basel)、T. Fischer (GSI)、K. Sato (NINS)

[Vol. 62,

Core-collapse supernovae

- * One of the most energetic explosion in the universe
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M \odot c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- Formation of neutron Star / Black hole
- * Formation of gamma-ray bursts?
- All known interactions are important

•Macrophysics	•Microphysics
▶Gravity	▶Weak
core collapse	neutrino physics
▶Elecromagnetic	Strong
pulsar, magnetar,	equation of state of dense matter
magnetorotational explosion	

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- Dimensionality of hydrodynamics
- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- * Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12 Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

2012/7/6

1D simulations: fail to explode

By including all available physics to simulations, we concluded that the explosion cannot be obtained in 1D!

(The exception is an 8.8 M_☉ star; Kitaura+06)

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Neutrino-driven explosion

Recently, we have successful exploding models driven by neutrino heating

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Problems of 2D simulations

* small explosion energy (~10⁴⁹-10⁵⁰ erg)

* continuous accretion <=> The remnant is NOT a NS

2012/7/6

A possibility: the collective oscillation of neutrinos

- Because of the mass of neutrinos, the flavor oscillates in propagation
- * The spectrum can be different at the emission and absorption site.
- * Especially, $\nu \mu / \tau \rightarrow \nu_e$ is important
 - Reaction rate: $\sigma \propto E^2$
 - Average energy: $\nu \mu / \tau > \nu e$

Numerical simulation

 $\frac{df}{cdt}$

Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)

* Hydrodynamics + Neutrino transfer

$$+ \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d \ln \rho}{c d t} + \frac{3v}{c r} \right) - \frac{v}{c r} \right] D \frac{\partial f}{\partial E}$$
$$= j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right]$$

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino
- * progenitor: 13 Mo (Nomoto & Hashimoto 88)
- * Collective oscillation parameters: R_{ν} , $< \varepsilon_{\nu} > L_{\nu} = 2.62 \times 10^{52} \left(\frac{\langle \epsilon_{\nu} \rangle}{15 \text{ MeV}} \right)^4 \left(\frac{R_{\nu}}{30 \text{ km}} \right)^2 \text{ erg s}^{-1}$

Collective oscillation

2012/7/6

Explosion energy and remnant mass

YS, Kotake, Takiwaki, Liebendörfer, Sato, ApJ, 738, 165 (2011)

- * It is possible to produce strong explosion (E_{exp}>10⁵¹erg!) by collective oscillation/spectral swapping.
 - 2D effects leads to even higher explosion energy.
 - The remnant mass is reasonable (~1 M_☉) as well.

2D effect

YS, Kotake, Takiwaki, Liebendörfer, Sato, ApJ, 738, 165 (2011)

2012/7/6

Important note

- * The matter density would suppress the collective oscillation
- * However, after the onset of the explosion the swapped spectrum might enhance the heating rate and amplify the explosion stronger
- * Numerical simulations that include the neutrino collective oscillations in a self-consistent way are required to pin down this problem!

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Important note-2

20neutrino mean energy [MeV] 18 16 14 12 10 8 -0.02 0 0.02 0.1 0.3 0.4 0.2 0.5 0.6 0.7 time after bounce [s]123456789

Janka (2012) arXiv:1206.2503, from B. Müller's simulation

- In the current state-ofthe-art simulation
 suggests that the average energies of v
 _e and v x
 are similar
- In this case the spectral swapping between these two flavors do not affect the heating rate
- How about unknown interaction inclusion?

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- Dimensionality of hydrodynamics
- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation

* Nuclear equation of state

Initial condition

- progenitor structure (mixing, wind...)
- rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Duan+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Finite temperature EOSs

* Lattimer & Swesty (LS) (1991)

- based on compressible liquid drop model
- variants with K=180, 220, and 375 MeV
- * H.Shen et al. (1998, 2011)
 - relativistic mean field theory (TM1)
 - including hyperon component (~2011)

- * Hillebrandt & Wolff (1985)
 - Hartree-Fock calculation
- * G.Shen et al. (2010, 2011)
 - relativistic mean field theory (NL3, FSUGold)
- * Hempel et al. (2012)
 - relativistic mean field theory (TM1, TMA, FSUGold)

	incompressibility	symmetry energy	slope of symmetry energy
	K [MeV]	J (S) [MeV]	L [MeV]
LS	180, 220, 375	29.3	
HShen	281	36.9	111
HW	263	32.9	
GShen	271.5 (NL3)	37.29 (NL3)	118.2 (NL3)
	230.0 (FSU)	32.59 (FSU)	60.5 (FSU)
Hempel	318 (TMA)	30.7 (TMA)	90 (TMA)
	230 (FSU)	32.6 (FSU)	60 (FSU)

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

 $E(x,\beta) = -E_0 + \frac{1}{18}Kx^2 + \frac{1}{162}K'x^3 + \dots$

 $+\beta^2\left(J+\frac{1}{3}Lx+\ldots\right)+\ldots\,,$

Equation of state

The "standard" equations of state (EOS) in supernova community

400

350

+LS375

- Lattimer & Swesty EOS (liquid drop)
- Shen EOS (relativistic mean field)

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Studies on EOS dependence

Numerical simulation

- * EOS: LS180, (LS220,) LS375, and Shen
- * Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- Hydrodynamics + Neutrino transfer

$$\frac{df}{cdt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) - \frac{v}{cr} \right] D \frac{\partial f}{\partial E} \\ = j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right]$$

Note: Of course the other parameters differ as well.

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino
- * progenitor: 15 Mo (Woosley & Weaver 95)

Results in 1D simulation

Evolution of shock radius

YS, Takiwaki, Kotake, Fischer, Liebendörfer, Sato arXiv:1206.6101

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Entropy evolution

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

2012/7/6

Shock radius

LS180 and LS375 succeed the explosion Shen EOS fails

2012/7/6

Core-Collapse Supernovae: Models and Observable Signals @ U. of Washington

Mass in gain region

Dispersion of the moment

cf.
$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla (\cdot \rho \boldsymbol{u} \boldsymbol{u} + P) = 0$$

Dispersion of the moment

10 9 LS180 8 1000 7 Radius [km] 6 5 4 100 3 2 1 10 0.2 0.1 0.5 0.6 0.7 0 0.3 0.4 Time [s] 10 9 Shen 8 1000 7 Radius [km] $\frac{\left\{\frac{1}{2}\int_0^{\pi} \left[\mathcal{M}(r,\theta) - \overline{\mathcal{M}}(r)\right]^2 \sin\theta d\theta\right\}^{1/2}}{\left[\mathcal{M}(r,\theta) - \overline{\mathcal{M}}(r)\right]^2 \sin\theta d\theta}$ 6 5 4 100 $\overline{\mathcal{M}}(r)$ 3 $\mathcal{M}(r,\theta) \equiv \rho(r,\theta)v_r^2(r,\theta) + P(r,\theta),$ 2 1 $\overline{\mathcal{M}}(r) \equiv \frac{1}{2} \int_{0}^{\pi} \mathcal{M}(r,\theta) \sin \theta d\theta.$ 10 0.5 0.1 0.2 0.3 0.6 0.7 0 0.4 Time [s] ignals @ U. of Washington 25/26

YS, Takiwaki, Kotake, Fischer, Liebendörfer, Sato arXiv:1206.6101

Summary and discussion

- We perform 1D and 2D simulations in a parametric manner focusing on the impact of the collective oscillation, which changes the neutrino spectrum
 - The spectral swapping could amplify the explosion
 - 2D effects lead to stronger explosion
 - The possibility of spectral swapping is still under debate
- We perform axisymmetric simulations of a corecollapse supernova driven by the neutrino heating and investigate the dependence on the equation of state
 - Lattimer & Swesty EOS: explosion
 - * Shen EOS: failure

* In order to make the complete understanding of EOS impacts, a more systematic study is strongly required!

Appendix: 3D simulation with neutrino transfer

Takiwaki, Kotake, YS, ApJ, **749**, 98 (2012)

320(r)x64(θ)x128(ϕ) x20(E_{ν})

