Microphysics for SN: Nuclear Equation of State, Neutrino Opacity with Medium Correction

Gang Shen INT, University of Washington

With:

Joe Carlson, Vincenzo Cirigliano, Stefano Gandolfi (LANL) Chuck Horowitz (Indiana), Evan O'Connor (Caltech) Sanjay Reddy (INT/UW), Luke Roberts (UCSC)

INT program "Core-Collapse Supernovae: Models and Observable Signals", July 10, 2012

Outline

- Nuclear EOS
 - Overview
 - Current EOS tables
 - Further development
- Neutrino opacity: unified approach
 - Mean field effect: Charged current reactions
 - RPA correlation
 - Beyond RPA: 2-ph response
- Summary

SN EOS (T>0)

Inputs

Mass tables

Medium corrections

Correlations: NN, ...

Neutron star

- Low density (<~ 10^12 g/cm3)
 - Single-nucleus vs multi-nuclei
 - Multi-nuclei with nucleons: NSE vs Virial+NSE
- PNS "crust" (<~ 0.5 n₀)

 Mean field (MF) models: Skyrme vs RMF
 Liquid drop vs Thomas-Fermi vs Hartree
 efficiency & necessity

 Uniform matter (<~ 2n₀)

 MF: efficient/not systematic

 Constraints on MF
 Saturation property of symmetric matter
 Stable nuclei (symmetric)
 Isovector observables
 IVGDR
 Neutron skin of nuclei
 Neutron matter
- High density >~ 2 n_0
 - Skyrme vs RMF vs ??? (meson, quark,...)
 - Best parameterize uncertainties

Only a few realistic EoS used in astrophysical simulations

- most well known and widely used EoS:
 - ^o J.M. Lattimer, F.D. Swesty LS 180, 220, 375 non relativistic Skyrme model
 - H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi STOS relativistic MF model
 + 2nd one with hyperon (Mmax: ~1.7 solar mass)
- more recently developed EoSs:

NSE + uniform matter at high density (RMF)

• M. Hempel, J. Schaffner-Bielich, 2010

Virial EOS (gas) + Hartree nonuniform (solid) + uniform (liquid) (RMF)

- ° G. Shen, C.J. Horowitz, S. Teige NL3, 2011
- ° G. Shen, C.J. Horowitz, E. O'Connor FSU, 2011

http://cecelia.physics.indiana.edu/gang_shen_eos/

Ensemble of nucleons and nuclei

• Grand partition function in virial expansion

$$\frac{\log Q}{V} = \frac{P}{T} = \frac{2}{\lambda_n^3} [z_n + z_p + (z_p^2 + z_n^2)b_n + 2z_p z_n b_{pn}] > \text{nucleon-nucleon} \\ + \frac{1}{\lambda_n^3} [z_\alpha + z_\alpha^2 b_\alpha + 2z_\alpha (z_n + z_p)b_{\alpha n}] > \text{nucleon-alpha} \\ + \sum_i \frac{1}{\lambda_i^3} z_i \Omega_i > \text{nuclei}$$

- I. Nucleon and alpha: mod. ind.
- 2. Heavy species: 8980 nuclei
 - Chemical equilibrium -----
 - Coulomb correction ------

Horowitz, Schwenk '05

FRDM mass table: Moller et al '97. $\Delta_{\rm rms} \sim 0.6$ MeV $\mu_i = Z\mu_p + N\mu_n \ z_i = z_p^Z z_n^N e^{(E_i - E_i^C)/T}.$ $E_i^C = \frac{3}{5} \frac{Z_i^2 \alpha}{r_A} \Big[-\frac{3}{2} \frac{r_A}{r_i} + \frac{1}{2} (\frac{r_A}{r_i})^3 \Big]$ Nuclear partition function Ω_i ---- eg, Fowler, Engelbrecht, Woosley, '78

Nuclei spacing

$$\frac{4}{3}\pi r_i^3(\sum_j Z_j n_j) = Z_i$$

3. Solving:
$$z_n, z_p, r_i$$
: $n_B = n_n + n_p + 4n_\alpha + \sum_i A_i n_i$ = Baryon
 $Y_P = (n_p + 2n_\alpha + \sum_i Z_i n_i)/n_B$ = Charge
4. Mass fraction: $X_a = A_a n_a/n_B$

$$\frac{\text{Relativistic Mean Field Theory}}{\text{attractive repulsive Iso-vector}}$$

$$\mathscr{L}_{\text{int}} = \bar{\psi} \left[g_{\text{s}} \phi - \left(g_{\text{v}} V_{\mu} + \frac{g_{\rho}}{2} \tau \cdot \mathbf{b}_{\mu} + \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right) \gamma^{\mu} \right] \psi$$

$$- \frac{\kappa}{3!} (g_{\text{s}} \phi)^{3} - \frac{\lambda}{4!} (g_{\text{s}} \phi)^{4} + \frac{\zeta}{4!} g_{\text{v}}^{4} (V_{\mu} V^{\mu})^{2} + \Lambda_{\text{v}} g_{\rho}^{2} \mathbf{b}_{\mu} \cdot \mathbf{b}^{\mu} g_{\text{v}}^{2} V_{\nu} V^{\nu}$$

- Ψ : Nucleon fields
- Meson/photon fields: classical expectation value **>** mean field
- 7 adjustable parameters

EoMs in real space:

Nucleon:

Hartree Mean fields:

$$\left[\boldsymbol{\alpha} \cdot \boldsymbol{p} + V(\boldsymbol{r}) + \boldsymbol{\beta} \left(\boldsymbol{M} + \boldsymbol{S}(\boldsymbol{r}) \right) \right] \boldsymbol{\psi}_{i} = \boldsymbol{\varepsilon}_{i} \boldsymbol{\psi}_{i} \quad V(\mathbf{r}) = \beta \{ g_{\omega} \boldsymbol{\psi}_{\mu} + g_{\rho} \vec{\tau} \cdot \vec{\rho_{\mu}} + e \frac{(1+\tau_{3})}{2} \boldsymbol{A}_{\mu} + \boldsymbol{\Sigma}^{R} \},$$

$$S(\mathbf{r}) = \Gamma_{\sigma} \sigma,$$

Mesons and Photons:

$$\begin{cases} \left(-\Delta + \partial_{\sigma} U(\sigma)\right)\sigma(\mathbf{r}) = -g_{\sigma}\rho_{s}(\mathbf{r}) \\ \left(-\Delta + m_{\omega}^{2}\right)\omega_{0}(\mathbf{r}) = g_{\omega}\rho_{v}(\mathbf{r}) \\ \left(-\Delta + m_{\rho}^{2}\right)\rho_{0}(\mathbf{r}) = g_{\rho}\rho_{3}(\mathbf{r}) \\ -\Delta A_{0}(\mathbf{r}) = e(\rho_{c}(\mathbf{r}) - \rho_{e}) \end{cases}$$

Finite temperature n_{i:} Fermi-Dirac stat.

$$\int \rho_{s}(\mathbf{r}) = \sum_{i=1}^{A} \overline{\psi}_{i}(\mathbf{r})\psi_{i}(\mathbf{r})n_{i}, \ \rho_{3}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{+}(\mathbf{r})\tau_{3}\psi_{i}(\mathbf{r})n_{i}$$
$$\rho_{v}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{+}(\mathbf{r})\psi_{i}(\mathbf{r})n_{i}, \ \rho_{c}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{+}(\mathbf{r})\frac{1-\tau_{3}}{2}\psi_{i}(\mathbf{r})n_{i}$$

Matching EOS from low to high densities

<u>3-D Parameter spaces (T, ρ , Y_p) for gas-solid-liquid</u>

	Virial Gas	Hartree	Uniform matter
Temperature [MeV]	0.1~20	0.1~12	0.1~80
Density [fm ⁻³]	E-8~ E-	E-4~ E-	IE-8~I.6
Proton fraction	0.05~0.56	0.05~0.56	0~0.56
# points in phase space	73,840	17,021	90,478
CPU time (hr)	10,000	100,000	100

• Matching them and interpolate to get thermodynamically consistent Table.

Constraints on mean fields

- Saturation of symmetric nuclear matter B/A, K, J
- Doubly magic nuclei: B/A, R_{ch}
- Giant/Collective resonances
 - Isoscalr Giant Monopole Resonance
 - Isovector Giant Dipole Resonance
- Neutron skin of nuclei
- Benchmark neutron matter: Chiral EFT, QMC
- NS observations

GMR, GDR in Pb208, Zr90

Nucleus	Observable	Experiment	NL3	FSU	IU-FSU
²⁰⁸ Pb	GMR (MeV)	14.17 ± 0.28	14.32	14.04	14.17
90 Zr	GMR (MeV)	17.89 ± 0.20	18.62	17.98	17.87
²⁰⁸ Pb	IVGDR (MeV) <	13.30 ± 0.10	12.70	13.07	13.24

Isospin ind. observables

Isospin dep. observables

Fattoyev, Horowitz, Piekarewicz, Shen (2010)

Energy of Neutron matter

Hebeler, Schwenk, 2010 Gandolfi, Carlson, Reddy 2011

Neutron skin and NS radius

- Neutrino opacity: unified approach
 - Mean field effect: Charged current reactions
 - RPA correlation
 - Beyond RPA: 2-ph response

Neutrino opacity

Cirigliano, Reddy, Roberts, Shen, 2012 (in prep.)

Neutrino cross section via response function

Neutral and charged current reactions contribute.

$$\frac{d^3\sigma}{d^2\Omega_3 dE_3} = -\frac{G_F^2}{32\pi^2} \frac{E_3}{E_1} \left[1 - \exp\left(-\frac{(q_0 + \hat{\mu})}{T}\right) \right]^{-1} \left(1 - f_3(E_3)\right) \operatorname{Im} \left(L^{\alpha\beta} \Pi^R_{\alpha\beta}\right),$$

[Reddy, Prakash, Lattimer 1998, Horowitz, Perez-Garcia 2003]

Nucleon

Retarded polarization
$$\operatorname{Im}\Pi_{\alpha\beta}^{\mathrm{R}} = \operatorname{tanh}((q_0 + \hat{\mu})/2\mathrm{T})\operatorname{Im}\Pi_{\alpha\beta}$$

Causal polarization $\Pi_{\alpha\beta} = -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr}\{T[G_2(p)J_{\alpha}G_4(p+q)J_{\beta}]\}$

Lepton tensor $L^{\alpha\beta} = 8[2k^{\alpha}k^{\beta} + (k \cdot q)g^{\alpha\beta} - (k^{\alpha}q^{\beta} + q^{\alpha}k^{\beta}) \mp i\epsilon^{\alpha\beta\mu\nu}k_{\mu}q_{\nu}]$

Non-relativistic limit (simplification for discussion)

Neutrinos couple to (isospin) density and (isospin) spin density [Reddy, Prakash, Lattimer 1998]

$$j^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}(C_{V} - C_{A}\gamma_{5})(\tau_{j})\psi(x)$$

$$\frac{1}{V}\frac{d^{2}\sigma}{d\cos\theta dE_{3}} = \frac{G_{F}^{2}}{4\pi^{2}}E_{3}^{2}(1 - f_{3}(E_{3}))$$

$$\times [C_{V}^{2}(1 + \cos\theta)S_{\rho}(q_{0}, q) + C_{A}^{2}(3 - \cos\theta)S_{\sigma}(q_{0}, q)]$$

Density and spin density (NC)

$$S_{\rho}(q_{0},q) = \int dt \ e^{iq_{0}t} \ \langle \rho(q,t) \ \rho(-q,0) \rangle \Rightarrow \rho = \psi^{\dagger}\psi = \sum_{i=1,N} e^{i\vec{q}\cdot\vec{r}_{i}}$$

$$= \sum_{f} \ \langle 0|\rho(q)|f\rangle\langle f|\rho(-q)|0\rangle \ \delta(q_{0} - (E_{f} - E_{0}))$$

$$S_{\sigma}(\omega,\mathbf{q}) \ = \ \frac{4}{3n} \frac{1}{2\pi} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle \mathbf{s}(t,\mathbf{q}) \cdot \mathbf{s}(0,-\mathbf{q}) \rangle \quad \mathbf{s}(t,q) = V^{-1} \sum_{i=1}^{N} e^{-iq\cdot r_{i}(t)} \sigma_{i}$$

$$= \ \frac{4}{3n} \sum_{f} \langle 0|s(\mathbf{q})|f\rangle \cdot \langle f|s(-\mathbf{q})|0\rangle \delta(\omega - (E_{f} - E_{0}))$$

Roberts (2012) Martinez-Pinedo et al. (2012) [Roberts, Reddy (2012)]

Random Phase Approximation (RPA)

• An approximate method to include nuclear medium correlations in the response function: I-ph response.

- \Rightarrow Dyson Equation RPA response $\Pi^{RPA} = \Pi^0 + \Pi^{RPA} V_{ph} \Pi^0$
- Provides a fair qualitative description of response in nuclei.
 Mean field models with consistent residual p-h interactions.
- RPA preserves static sum rule and energy-weight sum rules.

Residual p-h interaction in RPA

Relativistic field models

[Reddy, Prakash, Lattimer, Pons 1999]

- Vph is consistent with underlying nuclear mean field EOS.
- Exception: axial vector Vph is not constrained by EOS: from study of response in finite nuclei.
- Non-relativistic Skyrme models
 - Vph from EOS, or Fermi liquid parameter calculated in a microscopic theory.
 - Residual interactions in density and isospin density fluctuations are consistent with EOS.
 - Exception: spin-flip residual interactions are obtained from study of response in finite nuclei.
- Both axial vector or spin-flip residual interactions are more important in each model.
- Multi-component (n,p,e) matter: RPA mix various polarizations nn, pp, ee, …

Charged current reactions in RPA

- Repulsive residual p-h interaction: favor two imbalanced fermi sea and act as restoring force.
- Collective modes

 (peaks): usually outside
 I-ph kinematic regime.
- $\operatorname{Im}\Pi^-: \bar{\nu}_e + p \to n + e^+$ T = 8 MeV $n_{\rm p} = 0.02 \, {\rm fm}^{-3}$ $Y_e = 0.027 \ (\mu_{eq} = 0)$ $\mathrm{Im}\Pi^{RPA}$ Im∏ $Im\Pi^+$ -20 $\mathrm{Im}\Pi^{RPA}$ -40-0.2 -0.40.0 0.2 0.4 q_0 (fm⁻¹) q=0.4 fm⁻¹ $d\omega(\text{Im}\Pi^+ - \text{Im}\Pi^-) = -\pi(n_2 - n_4)$ $\int d\omega \omega (\operatorname{Im}\Pi^+ + \operatorname{Im}\Pi^-) = \langle \psi_0 | [\hat{O}^+, [H, \hat{O}]] | \psi_0 \rangle + h.c.$

 $\mathrm{Im}\Pi^+: \ \nu_e + n \to p + e^-$

- Ikeda sum rule Ikeda 1964
- f-sum rule
 Thouless 1961

Fermi/GT operators

2-ph response: beyond RPA

[Roberts, Shen, Reddy , 2012 (in prep)]

• Ansatz for spin-isospin charge-exchange response function

$$S_{\sigma\tau^{-}}(q_{0},q) = \frac{1}{1 - \exp(-\beta(q_{0} + \mu_{n} - \mu_{p}))} \operatorname{Im}\left[\frac{\tilde{\Pi}(q_{0},q)}{1 - V_{\sigma\tau}\tilde{\Pi}(q_{0},q)}\right]$$

- 2PH response is included via relaxation time approximation: $\Gamma=\tau_{\sigma}^{-1} \text{ , calculated in Chiral EFT} \text{ [Bacca et al, 2009, 2011]}$

$$\operatorname{Im}\tilde{\Pi}(q_0,q) = \frac{1}{\pi} \int \frac{d^3p}{(2\pi)^3} \frac{f_p(\epsilon_{p+q}) - f_n(\epsilon_p)}{\epsilon_{p+q} - \epsilon_p + \hat{\mu}} \,\mathcal{I}(\Gamma)$$
$$\mathcal{I}(\Gamma) = \frac{\Gamma}{(q_0 + \Delta U - (\epsilon_{p+q} - \epsilon_p))^2 + \Gamma^2}$$

• P-h interaction $V_{\sigma\tau}$ from GT transition of finite nuclei: 220 MeVfm³.

- RPA suppresses response and shifts its strength via collective mode. Multi-particle dynamics enhances it.
- Net effect mild suppression. Follow SN trajectory to study details.

Sum rules and multi-particle response

 q=0 limit, spin response comes solely from multi-particle dynamics. Density response vanishes.

$$S_{\sigma}(\omega, \mathbf{q}) = \frac{4}{3n} \frac{1}{2\pi} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle \mathbf{s}(t, \mathbf{q}) \cdot \mathbf{s}(0, -\mathbf{q}) \rangle$$

• Response function is constrained by sum rules

Spin susceptibility $S_{-1} = \int_{0}^{\infty} \frac{S_{A}(\omega,0)}{\omega} d\omega, \ \chi = 2nS_{-1} \quad \chi_{FG} = mk_{F}/\pi^{2}$ Pair correlation function $S_{0} = \int_{-\infty}^{\infty} S_{A}(\omega,\mathbf{q})d\omega = 1 + \frac{4}{3N} \sum_{i\neq j}^{N} \langle e^{-i\mathbf{q}\cdot(\mathbf{r}_{i}-\mathbf{r}_{j})}\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}\rangle,$ Energy-weighted sum rule $S_{+1} = \int_{-\infty}^{\infty} S_{A}(\omega,\mathbf{q})\omega d\omega = -\frac{4}{3N} \langle [H, s(\mathbf{q})] \cdot s(-\mathbf{q}) \rangle,$

[Shen, Gandolfi, Reddy, Carlson, 2012]

- Low ω : from Landau Fermi liquid theory
- Corrections at intermediate ω
- High ω : reduced to 2-particle response solved exactly from twobody Schrődinger eq.

Neutrino pair production

$$- \cdot e^+ + e^- \rightleftharpoons \nu + \overline{\nu}$$

$$\gamma * \rightleftharpoons \nu \bar{
u}$$

 $ightarrow
u \overline{
u}$ Braate

$$-. \qquad \gamma * + e \rightleftharpoons e + \nu \bar{\nu}$$

$-. \qquad NN \rightleftharpoons NN\nu\bar{\nu}$

Braaten & Seckel '91, Ratkovic et al '03

Schinder et al '87, Dutta et al '04

Buras et al. 2003

Dicus '72; Bruenn '85

- Friman & Maxwell 1979, OPE Born
- Hannestad & Raffelt 1998, OPE Born fitting formula
- Hanhart, Philips, Reddy 1999, T-matrix reduction compared to OPE
- Lykasov et al 2008, Bacca et al 2009, 2011: 2-body response in chiral EFT reduction of response
- Shen, Gandolfi, Reddy, Carlson (2012): QMC sum rules low energy enhancement

Application

- Late time supernova neutrino signal
 - Essential physics suite
 - Nuclear symmetry energy and ν convection
 - Observables

Roberts, Shen, Cirigliano, Pons, Reddy, Woosley, 2011

Late time supernova ν signal (PNS)

• Neutrino transport drives the evolution of a PNS (hot, lepton rich, SN remnant) \rightarrow NS (cold, deleptonized, compact)

- Study the sensitivity of cooling time-scale and neutrino signal to EoS, opacities, convection
- Id PNS model: TOV equations + diffusion transport + convection

- Use two different high density EoS with associated opacities (without and with RPA correlations)
- EoS differ in the behavior of the symmetry energy

• Large regions are convectively unstable, according to Ledoux criterion (competition of leptonic and entropy gradients)

$$-\left(\frac{\partial P}{\partial s}\right)_{n,Y_L}\frac{ds}{dr} - \left(\frac{\partial P}{\partial Y_L}\right)_{n,s}\frac{dY_L}{dr} > 0$$

• Density dependence of nuclear symmetry is key to understand composition driven convective instability:

$$\left(\frac{\partial P}{\partial Y_L}\right)_{n_B} \simeq n_B^{4/3} Y_e^{1/3} - 4n_B^2 E_{\rm sym}'(1-2Y_e)$$

• Larger E'_{sym} stabilizes/shuts off convection at earlier time

Observable signatures of convective transport

Count rate in Super-K for galactic supernova at 10 kpc.

• Convection produces most dramatic features (larger luminosity and shorter cooling time scale).

• RPA opacities imply larger luminosity between 3-10 secs.

Summary

- Constraints on nuclear EOS
 - Symmetric matter: saturation, stable nuclei
 - Neutron rich matter: isovector response, neutron skin, benchmark from EFT, QMC
 - Above 2n₀: NS observations
- Neutrino opacity
 - Kinematics
 - Mean field effects
 - NN correlations in RPA
 - NN correlations beyond RPA: 2PH
- Neutrino pair production
- Applications

Thank you !