

INT program on core-collapse supernovae Seattle, July 3, 2012

Bundesministerium für Bildung und Forschung

Main points

Advances in nuclear forces and nuclear matter theory

Impact on neutron stars:

provides strong constraints for the equation of state

neutron star radius 9.9-13.8 km for M=1.4 M_{sun} (±15%)

K. Hebeler, J.M. Lattimer, C.J. Pethick, AS, PRL **105**, 161102 (2010) and in prep. I. Tews, T. Krüger, K. Hebeler, AS, arXiv:1206.0025.

Impact on neutrino-matter interactions

S. Bacca, K. Hally, C.J. Pethick, AS, PRC **80**, 032802(R) (2009) and S. Bacca, K. Hally, M. Liebendörfer, A. Perego, C.J. Pethick, AS, arXiv:1112.5185.

new ^{51,52}Ca TITAN measurements

⁵²Ca is 1.75 MeV more bound compared to atomic mass evaluation A. Gallant et al., PRL in press, arXiv:1204.1987.

behavior of two-neutron separation energy S_{2n} and odd-even staggering Δ_n agrees with NN+3N predictions

Impact of 3N forces on nuclear matter

chiral 3N forces fit to light nuclei predict nuclear matter saturation with theoretical uncertainties

Hebeler et al. (2011), Bogner et al. (2005)

Impact of 3N forces on neutron matter

Impact of 3N forces on neutron matter

neutron matter uncertainties dominated by 3N forces (c₃ coupling) Hebeler, AS (2010)

Impact of 3N forces on neutron matter

neutron matter uncertainties dominated by 3N forces (c₃ coupling) Hebeler, AS (2010)

other microscopic calculations within band (but without uncertainties)

Neutron skin of ²⁰⁸Pb

probes neutron matter energy/pressure, neutron matter band predicts neutron skin of ²⁰⁸Pb: 0.17±0.03 fm Hebeler et al. (2010)

Neutron skin of ²⁰⁸Pb

probes neutron matter energy/pressure, neutron matter band predicts neutron skin of ²⁰⁸Pb: 0.17±0.03 fm Hebeler et al. (2010)

week ending 5 AUGUST 2011

16 MARCH 2013

in excellent agreement with extraction from complete E1 response 0.156+0.025-0.021 fm PRL 107, 062502 (2011) PHYSICAL REVIEW LETTERS

Complete Electric Dipole Response and the Neutron Skin in ²⁰⁸Pb

A benchmark experiment on ²⁰⁸Pb shows that polarized proton inelastic scattering at very forward angles including 0° is a powerful tool for high-resolution studies of electric dipole (*E*1) and spin magnetic dipole (*M*1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted *E*1 polarizability leads to a neutron skin thickness $r_{skin} = 0.156^{+0.025}_{-0.021}$ fm in ²⁰⁸Pb derived within

PREX: neutron skin from parity-violating electron-scattering at JLAB electron exchanges Z-boson, couples preferentially to neutrons

PRL 108, 112502 (2012)

goal II: ±0.06 fm

Measurement of the Neutron Radius of ²⁰⁸Pb through Parity Violation in Electron Scattering

We report the first measurement of the parity-violating asymmetry $A_{\rm PV}$ in the elastic scattering of polarized electrons from ²⁰⁸Pb. $A_{\rm PV}$ is sensitive to the radius of the neutron distribution (R_n) . The result $A_{\rm PV} = 0.656 \pm 0.060(\text{stat}) \pm 0.014(\text{syst})$ ppm corresponds to a difference between the radii of the neutron and proton distributions $R_n - R_p = 0.33^{+0.16}_{-0.18}$ fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

PHYSICAL REVIEW LETTERS

ဖွာ

Symmetry energy and pressure of neutron matter

neutron matter band predicts symmetry energy $S_{\rm v}$ and its density dependence L

comparison to experimental and observational constraints Lattimer, Lim (2012)

neutron matter constraints H: Hebeler et al. (2010) and in prep.

G: Gandolfi et al. (2011) predicts correlation but not range of S_v and L

Symmetry energy and pressure of neutron matter

neutron matter band predicts symmetry energy $S_{\rm v}$ and its density dependence L

comparison to experimental and observational constraints Lattimer, Lim (2012)

neutron matter constraints H: Hebeler et al. (2010) and in prep.

G: Gandolfi et al. (2011) predicts correlation but not range of S_v and L

lower limit on crust-core transition density

Complete N³LO calculation of neutron matter

Krüger, Tews, Hebeler, AS, arXiv:1206.0025.

Complete N³LO calculation of neutron matter

first complete N³LO result

no RG evolution necessary, includes uncertainties from bare NN, 3N, 4N

n [fm⁻³]

Krüger, Tews, Hebeler, AS, arXiv:1206.0025.

Complete N³LO calculation of neutron matter

first complete N³LO result

no RG evolution necessary, includes uncertainties from bare NN, 3N, 4N

N³LO correlation broader because more density dependences

Discovery of the heaviest neutron star

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

direct measurement of neutron star mass from increase in signal travel time near companion

J1614-2230 most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 M_{sun})

heaviest neutron star with 1.97 \pm 0.04 M_{sun}

Impact on neutron stars Hebeler et al. (2010) and in prep.

Equation of state/pressure for neutron-star matter (includes small Y_{e.p})

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

Impact on neutron stars Hebeler et al. (2010) and in prep.

Equation of state/pressure for neutron-star matter (includes small Y_{e.p})

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

extend uncertainty band to higher densities using piecewise polytropes allow for soft regions

Pressure of neutron star matter

constrain polytropes by causality and require to support $1.97 M_{sun}$ star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

Pressure of neutron star matter

constrain polytropes by causality and require to support $1.97 M_{sun}$ star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

central densities for 1.4 M_{sun} star: 1.7-4.4 ρ_0

Pressure of neutron star matter

constrain polytropes by causality and require to support 1.97 M_{sun} star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

darker blue band for 2.4 $\rm M_{sun}$ star

Neutron star radius constraints

uncertainty from many-body forces and general extrapolation

constrains neutron star radius: 9.9-13.8 km for M=1.4 M_{sun} (±15% !)

consistent with extraction from X-ray burst sources Steiner et al. (2010) provides important constraints for EOS for core-collapse supernovae

Neutron star radius constraints

uncertainty from many-body forces and general extrapolation

constrains neutron star radius: 9.9-13.8 km for M=1.4 M_{sun} (±15% !)

consistent with extraction from X-ray burst sources Steiner et al. (2010) provides important constraints for EOS for core-collapse supernovae

Neutrino rates – Motivation

- Neutrino rates important for neutron star crust and core cooling, supernova explosions, neutrino spectra,...
- processes involving two nucleons play a special role Friman,... Suzuki, Raffelt,...
- neutrino-pair bremsstrahlung and absorption $NN \leftrightarrow NN\nu\overline{\nu}$ standard cooling of low-mass neutron stars
- key for production of muon and tau neutrinos in supernovae and for equilibrating neutrino number densities
- at subnuclear densities $\rho < 10^{14} \,\mathrm{g \, cm^{-3}}$ no systematic calculations beyond one-pion exchange (OPE) approximation for nuclear interactions
- can calculate systematically using chiral effective field theory, electroweak interactions, many-body theory

- Many-body theory: single- and two-nucleon processes elastic scattering from nucleons (space-like $\omega < q$)
- initial and final state interactions, inelastic scattering $\nu nn \leftrightarrow \nu nn$ collisional damping - Landau-Pomeranchuk-Migdal effect neutrino-pair bremsstrahlung/absorption $nn \leftrightarrow nn\nu\overline{\nu}$ (time-like $\omega > q$)
- need collisions between nucleons for the latter processes
- noncentral contributions, due to tensor forces from pion exchanges and spin-orbit forces, are essential for the two-neutron response
- follows from direct calculations Friman, Maxwell (1979) and from conservation laws Olsson, Pethick (2002)
- developed a unified treatment that consistently includes one- and twonucleon response in a strongly-interacting many-body system (Boltzmann eqn for collisions, spin-dependent mean-field effects,...)

Neutrino processes and dynamical structure factors

neutrinos interact weakly \rightarrow rates for neutrino scattering, emission and absorption determined by dynamical structure factors of nucleon matter

generally axial/spin response most important, ~ factor 3

neutrino rates $\Gamma(\omega, \mathbf{q}) = 2\pi n G_{\rm F}^2 C_{\rm A}^2 (3 - \cos \theta) S_{\rm A}(\omega, \mathbf{q})$ with spin dynamical structure factor $S_{\rm A}(\omega, \mathbf{q}) = \frac{1}{\pi n} \frac{1}{1 - e^{-\omega/T}} \operatorname{Im} \chi_{\sigma}(\omega, \mathbf{q})$

 $\pi n \ 1 - e^{-\omega/T} \xrightarrow{=--\infty} 0 \ (--, -1)$

energy, momentum transfers ω , q small compared with Fermi momentum

for low temperatures ~ Fermi temperature or less \rightarrow Landau Fermi liquid theory is a reasonable first approximation problem is to calculate structure factors of nucleon matter

not included: reduction of axial coupling g_a for nucleon quasiparticles by 5-10% in neutron matter Cowell, Pandharipande (2003)

beyond quasiparticle contributions (incoherent parts)

Unified approach to structure factors

solve linearized quasiparticle transport equation for the spin response

$$\left(\omega - \varepsilon_{\mathbf{p}+\mathbf{q}/2} + \varepsilon_{\mathbf{p}-\mathbf{q}/2}\right)\delta\mathbf{s}_{\mathbf{p}} + \left(n_{\mathbf{p}+\mathbf{q}/2} - n_{\mathbf{p}-\mathbf{q}/2}\right)\delta\mathbf{h}_{\mathbf{p}} = i\,I_{\sigma}[\mathbf{s}_{\mathbf{p}'}]$$

includes one-pair states through perturbation of the quasiparticle energy, spin-dependent mean-field

$$\delta \mathbf{h}_{\mathbf{p}} = \mathbf{U}_{\sigma} + 2 \int \frac{d\mathbf{p}'}{(2\pi)^3} \, g_{\mathbf{p}\mathbf{p}'} \, \delta \mathbf{s}_{\mathbf{p}'}$$

two-nucleon contributions through collision term $I_{\sigma}[\mathbf{s}_{\mathbf{p}'}] = -\frac{\delta \mathbf{s}_{\mathbf{p}} - \delta \mathbf{s}_{\mathbf{p}}|_{le}}{\tau_{\sigma}}$ in relaxation time approximation

spin relaxation rate $\frac{1}{\tau_{\sigma}} = C_{\sigma} \left[T^2 + (\omega/2\pi)^2 \right]$

from quasiparticle scattering amplitude averaged over the Fermi surface

solution to qp transport equation includes multiple-scattering effects, Landau-Pomeranchuk-Migdal effect

Spin dynamical structure factor

solution to quasiparticle transport equation $\operatorname{Im}\chi_{\sigma} = N(0) \frac{\operatorname{Im}X_{\sigma}}{|1 + G_0 \widetilde{X}_{\sigma}|^2}$

isotropic Landau interaction G₀ dominates in neutron matter

in relaxation time approximation $\widetilde{X}_{\sigma} = 1 - \frac{\omega}{2v_{\rm F}q} \ln\left(\frac{\omega + i/\tau_{\sigma} + v_{\rm F}q}{\omega + i/\tau_{\sigma} - v_{\rm F}q}\right)$ non-interacting 1.5 $\frac{1/\tau_{\sigma}=0, G_{0}=0.8}{v_{F}q\tau_{\sigma}=5, G_{0}=0.8}$ $\frac{v_{F}q\tau_{\sigma}=2, G_{0}=0.8}{v_{F}q\tau_{\sigma}=2, G_{0}=0.8}$ $v_F q \tau_\sigma = 5, G_0 = 0$ Im χ_{σ} / N(0) 0.5 0.5 1.5 2 $\omega/(v_Fq)$

Neutrino rates from chiral EFT S. Bacca et al. (2009)

neutrino rates in 2N processes determined by spin relaxation time = rate of change of nucleon spin through collisions with other nucleons

shorter-range interactions significantly reduce neutrino rates (compared to OPE) in neutron matter for all relevant densities

first calculation of neutrino processes in dense matter from chiral EFT

Relevant conditions in core-collapse supernovae

crucial densities below nuclear matter density $\sim 10^{13}$ - 10^{14} g/cm³ (high densities: neutrinos trap; low densities: few interactions)

Neutrino rates from chiral EFT S. Bacca et al., arXiv:1112.5185

neutrons only, arbitrary degeneracy

similar reduction along SN conditions

towards chiral EFT rates in supernova simulations with A. Bartl et al.

Energy transfer in neutrino scattering from nucleons

mean-square neutrino energy transfer in $\nu nn \leftrightarrow \nu nn$

$$(\Delta E)^2 = \frac{\int d\mathbf{p}'_{\nu} (E_{\nu} - E'_{\nu})^2 \Gamma(E_{\nu} - E'_{\nu}, p_{\nu} - p'_{\nu})}{\int d\mathbf{p}'_{\nu} \Gamma(E_{\nu} - E'_{\nu}, p_{\nu} - p'_{\nu})}$$

leads to heating, NN analogue of inelastic excitations of nuclei (but post-collapse)

energy transfer significant, dominates over recoil effects

not included in simulations

Main points and summary

Chiral EFT interactions provide strong constraints for EOS, 3N forces are a frontier for neutron-rich nuclei/matter

dominant uncertainty of neutron (star) matter below nuclear densities also key to explain neutron-rich nuclei

neutron star radius 9.9-13.8 km for M=1.4 M_{sun} (±15%)

towards chiral EFT rates in supernova simulations, will provide simple structure factors to use