

Supernova Neutrino Detection with IceCube Overview and Outlook

Benedikt Riedel for the IceCube Collaboration Institute for Nuclear Theory - University of Washington Special Workshop: Probing the Supernova Mechanism by Observations July 20th, 2012

Overview of IceCube

Detection Method

Detector Performance

Physics Capabilities

Future Improvements

IceCube Detector

- 1km³ instrumental volume
- 86 Strings
 - 80 strings ~125 m apart
 - 60 Digital Optical Modules (DOM)/ string at 17 m vertical spacing
 - 6 special strings, 62 m apart, 7 m vertical spacing (high QE PMTs)
- 5160 DOMs in total
- DeepCore: 6 high-QE + 7 nearest standard strings

IceCube

IceCube Lab

IceCube Collaboration

The IceCube Collaboration

Iniversity of Alberta

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

Stockholm University Uppsala Universitet

University of the West Indies

- Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaide

University of Canterbury

International Funding Agencies

Clark Atlanta University

Ohio State University

Stony Brook University

University of Alabama

University of Delaware University of Kansas

University of Maryland

Georgia Institute of Technology

Pennsylvania State University

University of Alaska Anchorage University of California-Berkeley University of California-Irvine

University of Wisconsin-Madison University of Wisconsin-River Falls

Lawrence Berkeley National Laboratory

Southern University and A&M College

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Typical IceCube Events

Cascades:

~100 GeV - 100 TeV

Multiple DOMs form a distinctive pattern to make a detection

Tracks:

- ~TeV through-going muons
- Pointing resolution ~1°

Neutral current for all flavors

Composites:

- Starting tracks
- high-E v_{τ} (Double Bangs)

With an order of ~10⁶ lower energies this is not what we are looking for with supernovae!

59 String Configuration Up-going neutrino event DOM Colors represent arrival times Red - Early Green/Blue - Later DOM Size represents amount of deposited charge

Courtesy of A. Schuhkraft B. Riedel - Supernova Neutrino Detection with IceCube - Overview and Outlook - 07/20/2012

Thursday, July 19, 2012

MeV Neutrinos in IceCube

- For every MeV neutrino that interacts generally 0-1 photons are detected
 - Coincident hit probability on O(1%)
 - Need a large flux!
- Interaction Channels
 - Inverse β-decay is main interaction channel (~93-94%)
 - Nucleon and electron scattering processes account for the remainder (~6-7%)

MeV Positrons in IceCube

Supernova

- Uniform illumination in the ice
- ~0.5 to 1×10⁶ events in 10 seconds
- Significant increase in detector rate on top of background
- Capabilities
 - Low DOM noise ~500-600 Hz
 - High statistics due to large volume
 - Time resolution limited to 2 ms at present
 - No pointing
 - No individual events
 - No energy information

DISCLAIMER

THIS IS A TOY MODEL OF 100000 O(10 MeV) POSITRONS INJECTED AT THE SAME TIME

ABOUT A TENTH OF THE TOTAL NUMBER EXPECTED EVENTS

NO REAL PHYSICS!

Thanks to C. KopperB. Riedel - Supernova Neutrino Detection with IceCube - Overview and Outlook - 07/20/2012

Thursday, July 19, 2012

Thanks to C. KopperB. Riedel - Supernova Neutrino Detection with IceCube - Overview and Outlook - 07/20/2012

Primary Data Stream is waveforms

Supernova channel uses a scaler data format

Primary Data Stream is waveforms

B. Riedel - Supernova Neutrino Detection with IceCube - Overview and

Supernova channel uses a scaler data format

Primary Data Stream is waveforms

- On-board Software Counter
 - Count discriminator crossings (0.25 PE) in 1.6384 ms
 - Artificial deadtime of 250 µs for background reduction

B. Riedel - Supernova Neutrino Detection with IceCube - Over

Detector Performance

- Post deadtime average: 265 ± 26 Hz
- Lower temperature environment
 - 240 265 K (depth dependence)
- Stable rate
 - ~6% variation due to atmospheric changes

B. Riedel - Supernova Neutrino Detection w

Supernova in IceCube - Motivation

Supernova in IceCube - SNDAQ

- Rebinning individual
 1.6384 ms bins into
 global 2 ms
 - Time synchronizing
- Search for collective increase in noise $(\Delta \mu)$ and error $(\sigma \Delta \mu)$ in 0.5, 1.5, 4, and 10 s bins

Note: AMANDA case without muon subtraction, better separation in IceCube

Supernova in IceCube - SNDAQ -

- 60 s central window and ±300 s window for rate estimates
- Log-Likelihood analysis to find $\Delta \mu$ and $\sigma \Delta \mu$ from individual DOM rates (r_i) and their averages $(\langle r_i \rangle)$ and errors $(\langle \sigma_i \rangle)$

$$\sigma_{\Delta\mu}^{2} = \left(\sum_{i=1}^{N_{DOM}} \frac{\epsilon_{i}^{2}}{\langle \sigma_{i} \rangle^{2}}\right)^{-1}$$

$$\Delta\mu = \sigma_{\Delta\mu}^{2} \sum_{i=1}^{N_{DOM}} \frac{\epsilon_{i}(r_{i} - \langle r_{i} \rangle)}{\langle \sigma_{i} \rangle^{2}}$$

$$\epsilon = DOM \text{ efficiency parameter}$$

Signifiance ($\boldsymbol{\xi}$) = $\frac{\Delta \mu}{\sigma_{\Delta \mu}}$

Background - Atmospheric Muons

- Atmospheric Muons widen the significance distribution
 - Example Supernova events with large significance

600000 200 Significance events 5000000 100 4000000 No. of 6 5 3000000 significance 2000000 1000000 19000 20000 21000 10 0 No. of Muon Hits in 500 ms bins Significance

Cube - Overview and Outlook - 07/20/2012

Physics Capabilities - Big Picture

- High detection
 significance up to edge
 of Milky Way
 - Detection of "hidden" SN possible
- Significant detection up to the Small Magelanic
 Cloud possible - ~65 kpc
- SNEWS alerts being generated up to Large Magelanic Cloud - ~ 50 kpc

Physics Capabilities - Mass Hierarchy

- Absolute rate and shape difference for normal and inverted hierarchy
- Mass hierarchy at 5σ level is feasible given a well-known flux shape

Thursday, July 19, 2012

10

15

5

100

10

v Hierarchy Sensitivity [o]

Physics Capabilities - Exotic Signal

- Black Hole formation signal
- No actual explosion
- Strong hierarchy dependence
- High statistics

Future Improvements - Hit-Spooling

Hit-Spooling

- All DOM output written to disk
- DAQ independent software
 - Increase in uptime
 - Worse-case scenario backup

- Capabilities
 - Better timing resolution for some cases
 - Better detector monitoring
 - Background Monitoring and Reduction
 - Coincident Hit Method
 - See Ronald Brujin's talk
 - Average Energy?

- DOM-to-DOM correlation studies
- GEANT4-based particle propagation
- In-house direct OpenCL-based photon propagator
- Integrated into centrally maintained IceCube Software and Simulation Framework
- Able to handle supernova and background signals
 B. Riedel Supernova Neutrino Detection with IceCube Overview and Outlook 07/20/2012

Thursday, July 19, 2012

Direct Photon Propagation

DOM Simulation

New Supernova Simulation

Conclusion

- Detector is stable with 98% uptime
- Things to look forward to
 - Future improvements to detector stability and detector understanding
 - Improved simulation
 - Complete detector information available
 - Energy determination
 - Better background rejection
 - The next galactic Supernova!

Courtesy of Sven Lidstrom and Carlos Pobes

Thursday, July 19, 2012

BACKUP SLIDES

B. Riedel - Supernova Neutrino Detection with IceCube - Overview and Outlook - 07/20/2012

Thursday, July 19, 2012

28

Movie III

High energy neutrino induced cascade from August 9th 2011 DOM Colors represent arrival times Red - Early Green/Blue - Later DOM Size represents amount of deposited charge Order of 1 PeV in Energy

and the stand of the stand							
					13/1-1-1		
					111/1		
		2 No 1 1					
		arra a					