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MOTIVATION 

• Supernova neutrinos are detectable.  

•Neutrino luminosity and spectra influence the explosion 
mechanism and nucleosynthesis. 

• Temporal and spectral features of the supernova neutrino signal is 
an unique probe of physics/astrophysics under extreme 
conditions, neutrino properties and exotic light weakly interacting 
particles. 

≈ 104 neutrinos

for SN @ 10 kpc

νe, ν̄e, νX , ν̄X



NEUTRINO TRANSPORT
• RHS of the Boltzmann Equation. 
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NEUTRINO CROSS SECTIONS

•Neutral and charged current reactions contribute. 
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5. Inelastic Neutrino Interactions with
Relativistic Nucleons and Leptons

We now explore more sophisticated formalisms for handling inelastic
scattering processes in nuclear matter. In this section, we address the
non-interacting nucleon case.

For neutrino energies of interest to supernova, which are less than
a few hundred MeV, we may write the neutrino-matter interaction in
terms of Fermi’s effective Lagrangian

Lcc
int =

GF√
2

lµjµ
W for νl + B2 → l + B4 (47)

Lnc
int =

GF√
2

lνµjµ
Z for νl + B2 → νl + B4 , (48)

where GF # 1.436×10−49 erg cm−3 is the Fermi weak coupling constant.
When the typical energy and momentum involved in the reaction are
small (compared to the mass and 1/size of the target particle) the lepton
and baryon weak charged currents are:

lµ = ψlγµ (1 − γ5)ψν , jµ
W = ψ4γ

µ (gV − gAγ5)ψ2 . (49)

Similarly, the baryon and neutrino neutral currents are given by

lνµ = ψνγµ (1 − γ5)ψν , jµ
Z = ψ4γ

µ (cV − cAγ5)ψ2 , (50)

where 2 and 4 are the baryon (or electron) initial state and final state
labels, respectively (these are identical for neutral-current reactions).
The vector and axial-vector coupling constants (cV , gV & cA, gA) are
listed in Table 1 for the various charged- and neutral-current reactions of
interest. The charged-current reactions are kinematically suppressed for
νµ and ντ neutrinos. This is because their energy Eνµ/ντ

# T ≤ mµ,mτ .
On the other hand, neutral-current reactions are common to all neutrino
species and the neutrino-baryon couplings are independent of neutrino
flavor. Neutrino coupling to the lepton in the same family is modified
since the scattering may proceed due to both W and Z exchange; the
couplings shown in Table 1 reflect this fact.

From the structure of the current-current Lagrangian, we can calcu-
late the differential cross section for neutrino scattering and absorption.
We are generally interested in calculating scattering/absorption rates in
matter. Hence, it is convenient to express results in terms of the differ-
ential scattering/absorption rate. For a neutrino with energy E1, this is
given by dΓ(E1) =

∑

i c dσ(E1)i/V , where dσ is the differential cross
section, the sum is over the target particle in volume V , and c = 1 is the

Differential Scattering/Absorption Rate: 

neutrino/lepton kinematic factor

response function of the medium

R(E1, E3, cos θ) = G2
F L(E1, E3, cos θ) × S[ρ,Ye,T ](q0, q)
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gV = 1, gA = 1.26

cnV = −1.0, cnA = −1.26(−1.1)

cpV = 0.07, cpA = 1.26(1.4)

ceV = 1.92, ceA = 1. [νe]

ceV = −0.08, ceA = −1. [νX ]

R(E1, E3, cos θ) = G2
F L(E1, E3, cos θ) × S[ρ,Ye,T ](q0, q)



RESPONSE FUNCTIONS
Sawyer (1975), Iwamoto & Pethick (1982) 

€ 

jµ(x) =ψ(x) γµ(cV − cAγ5) ψ(x)
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I. NEUTRINO EMISSIVITY AND THE SPIN STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino interaction rates in the medium can be factored into a

product of two terms: (i) the correlation functions of the dense medium, and (ii) kinematical factors and coupling

constants associated with neutrino currents. The latter are well-known and relatively simple functions of the neutrino

energy and momentum. In contrast, the spin, density and current correlation functions are complex functions of

temperature, density, and the energy and momentum transfer because multi-particle dynamics and correlations in the

ground state of the strongly interacting system play a critical role.

The dynamic spin structure factor Sσ(ω,q) of neutron matter encodes the linear response of neutron matter to spin

fluctuations and is defined as [2]

Sσ(ω,q) =
4

3n

1

2π

� ∞

−∞
dteiωt

�
s(t,q) · s(0,−q)

�

=
4

3n

�

f

�0|s(q)|f� · �f |s(−q)|0�δ(ω − (Ef − E0)) (1.1)

where s(t, q) = V −1
�N

i=1 e
−iq·ri(t)σi and σi is the spin operator acting on the ith nucleon at time t. The second line

expresses the same response as a sum over final states |f� coupled to the ground state through the time-independent

spin operator.

Alternatively in terms of the field operators, s(t, q) is Fourier transform of the spin density operator s(x) =
1
2ψ

+
(x) τ ψ(x) with τ being the usual Pauli matrix and ψ(x) is the non-relativistic field operator. The normal-

ization factor 4/3n where n is the neutron number density ensures that the dynamic form factor is canonically

normalized such that Sσ(q → ∞) = 1 for the non-interacting Fermi systems and conforms to the standard definitions

of the sum-rules discussed below in §II.
The rate of neutrino pair production can be expanded in powers of the nucleon velocity and the momentum of the

neutrino pair [1]. The neutrino emissivity of neutron matter denoted by Q, and defined as the rate of energy loss due

to neutrino pair production per unit volume and per unit time, to leading order in the neutron velocity and neutrino

momentum is given by[8]

Q =
C2

AG
2
Fn

20π3

� ∞

0
dω ω6 e−ω/TSσ(ω) , (1.2)

where GF = 1.166 × 10
−11

MeV
−2

is the Fermi constant of the weak interaction, CA = −1.26/2 is the neutron

neutral-current axial coupling constant. At low temperature, when T � EFn, where EFn is the neutron Fermi energy,

the neutrino pair momentum q is small compared to the both the Fermi momentum kFn and the intrinsic momentum

scales associated with the strong interaction, and may be neglected and Sσ(ω) = Sσ(ω,q = 0). Hence in Eq. (1.2)

only Sσ(ω) appears and it is both a function of density and temperature as implied by the ensemble average denoted

on the RHS of the equation (1.1).

II. SUM-RULES

The spin response describes the coupling to the ensemble of final states obtained by flipping all the ground-state

spins in neutron matter. If spin and space are uncoupled, spin is a good quantum number and there would be no

response at zero momentum transfer. However, the spin-orbit and tensor interactions (acting only in relative p−waves

and higher in neutron matter) induce a finite expectation value of �S2� even at T=0 and a finite response results.

The spin-orbit and tensor interactions are of pion range or less, so they predominantly affect neutrons coupled to spin

1 at a pair separation typical for nearest neighbors at that density. Although there is zero total momentum transfer,

the two interacting particles can nevertheless have significant relative momenta in the relevant final states.

The overall strength and energy distribution of the response can be characterized through the relevant sum-rules.

We employ Quantum Monte Carlo to compute the low order sum-rules that relate moments of Sσ(ω,q) to its ground

state properties. We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the

two-particle system to obtain constraints on the distribution of strength of Sσ(ω) as a function of ω at q = 0. For

the same reason, the response in Eq. (1.1) is solely due to the excitation of multi-particle states as single particle

excitations vanish for these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the
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ization factor 4/3n where n is the neutron number density ensures that the dynamic form factor is canonically

normalized such that Sσ(q → ∞) = 1 for the non-interacting Fermi systems and conforms to the standard definitions

of the sum-rules discussed below in §II.
The rate of neutrino pair production can be expanded in powers of the nucleon velocity and the momentum of the

neutrino pair [1]. The neutrino emissivity of neutron matter denoted by Q, and defined as the rate of energy loss due

to neutrino pair production per unit volume and per unit time, to leading order in the neutron velocity and neutrino

momentum is given by[8]

Q =
C2

AG
2
Fn

20π3

� ∞

0
dω ω6 e−ω/TSσ(ω) , (1.2)

where GF = 1.166 × 10
−11

MeV
−2

is the Fermi constant of the weak interaction, CA = −1.26/2 is the neutron

neutral-current axial coupling constant. At low temperature, when T � EFn, where EFn is the neutron Fermi energy,

the neutrino pair momentum q is small compared to the both the Fermi momentum kFn and the intrinsic momentum

scales associated with the strong interaction, and may be neglected and Sσ(ω) = Sσ(ω,q = 0). Hence in Eq. (1.2)

only Sσ(ω) appears and it is both a function of density and temperature as implied by the ensemble average denoted
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II. SUM-RULES

The spin response describes the coupling to the ensemble of final states obtained by flipping all the ground-state

spins in neutron matter. If spin and space are uncoupled, spin is a good quantum number and there would be no

response at zero momentum transfer. However, the spin-orbit and tensor interactions (acting only in relative p−waves
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RESPONSE OF AN IDEAL GAS
• Process involves excitation of single (uncorrelated) particles. Total 

response is the (incoherent) sum over individual species.  

• For nucleons and electrons final state blocking is important. Matter is 
partially degenerate for typical supernova conditions. 

• Nucleons are heavy and recoil energy is small. Response lies at small 
|ω| < q v. Where v ~ pF/M or √T/M.  

Transition rate (Γ=c/λ) in a Fermi Gas.  
Γ(E1) =

�
d3k3
(2π)3

R(E1, E3, cos θ)(1− f3(E3))

≈ G2
F

�
d3k3
(2π)3

[C2
V (1 + cos θ) + C2

A(3− cos θ)] SFG(q0, q)(1− f3(E3))

Wfi�GF
2 � �V�A�2�1�v2 cos�12��1�v4 cos�34�

��V�A�2�1�v2 cos�23��1�v4 cos�14�

��V 2�A 2�
M 2

E2E4
�1�cos�13�� , �7�

where the vector and axial couplings V and A, in the case of
absorption, stand for CgV and CgA , respectively. For the
reactions of interest, gv and gA are listed in Table I. Simi-
larly, for the scattering reactions of interest, V and A stand
for cV/2 and cA/2, respectively, which are listed in Table II.
The particle velocities are denoted by v i�pi /Ei , and the
angle between the momentum vectors pi� and p j� is denoted
by � i j . Further, M is the bare nucleon mass. The functions
f i(Ei) in Eq. �5� denote the particle distribution functions,
which in thermal equilibrium are given by the Fermi-Dirac
functions

f i�Ei���1�exp� Ei�� i

T � ��1

, �8�

where Ei are the single particle energies, � i are the corre-
sponding chemical potentials, and T is the temperature.
In general, the single particle energies and chemical po-

tentials depend on the ambient matter conditions, i.e., the
density and temperature, and also on the interactions among
the various particles. The various chemical potentials are de-
termined by the conditions of charge neutrality and, in all but
the most extremely dynamical situations, chemical equilib-
rium. In some astrophysical situations, such as in the late
stages of core collapse and during the early stages of the
evolution of a protoneutron star, neutrinos are trapped on
dynamical times within the matter �41,42� and chemical
equilibrium is established among the baryons and leptons. In
this case, the chemical potentials satisfy the relation

�B2��B4��e���e
. �9�

These situations are characterized by a trapped lepton frac-
tion YL�Ye�Y �e

, where Ye�(ne�ne�)/nB and Y �e
�(n�e

�n �̄e
)/nB are the net electron and neutrino fractions, respec-

tively. The evolution of a protoneutron star begins from a
neutrino-trapped situation with YL�0.4 to one in which the
net neutrino fraction vanishes and chemical equilibrium
without neutrinos is established. In this case, the chemical
equilibrium is modified by setting ��e

�0. In all cases, the
condition of charge neutrality requires that

�
i

�nBi
�� ��nli

�� ����
i

�nBi
�� ��nli

�� ��, �10�

where the superscript’s (�) on the number densities n sig-
nify positive or negative charge.
Although neutrino opacities are required for a wide range

of densities, temperatures, and compositions, for the most
part we will display results for two limiting situations,
namely beta equilibrium matter with either YL�0.4 or Y �

�0. These are situations encountered in the evolution of a
protoneutron star �43�, as discussed further in Sec. VII.

III. NONRELATIVISTIC NONINTERACTING BARYONS

For baryon densities nB�5n0, where n0�0.16 fm�3 is
the empirical nuclear equilibrium density, and in the absence
of interactions which could significantly alter their effective
masses, baryons may be considered as nonrelativistic. The
expression for Wfi in Eq. �7� then simplifies considerably,
since the baryon velocities v i�1. In this case, the terms
involving the baryon velocities may be safely neglected.
However, the term involving the angle between the initial
and final leptons remains. For reactions involving nucleons,
this term gives a small contribution, since it is proportional
to V 2�A 2. For simplicity, and to make an apposite com-
parison with earlier results in which this term was also ne-
glected, we drop this term in this section, but will return to a
more complete analysis in the succeeding sections.
Under these conditions, the transition rate Wfi becomes a

constant,

Wfi�GF
2 �V 2�3A 2�, �11�

independent of the momenta of the participating particles,
and the differential cross section is given by

1
V

d3�

d2�dE3
�
GF
2

2�
�V 2�3A 2�„1� f 3�E3�…S�q0 ,q �,

�12�

where the three-momentum transfer q� �p1��p3� , so that q
��q� �, and the energy transfer q0�E1�E3. The function
S(q0 ,q), the so-called dynamic form factor or structure
function, characterizes the isospin response of the �nonrela-
tivistic� system. It is simply the total phase space available to
transfer energy q0 and momentum q to the baryons. We note
that the differential cross section is needed in multi-energy
group neutrino transport codes. However, more approximate
neutrino transport algorithms often only require the total
cross section as a function of the neutrino energy. The cross
section per unit volume given in Eq. �5� then simplifies to

��E1�
V �GF

2 �V 2�3A 2�� d3p3
�2��3

„1� f 3�E3�…S�q0 ,q �,

�13�

S�q0 ,q ��2� d3p2
�2��3

� d3p4
�2��3

�2��4�4�P1�P2�P3�P4�

� f 2�E2�„1� f 4�E4�…. �14�

The total cross section given by Eq. �13� can be recast as a
double integral in (q0 ,q) space using d3p3
�2�q(E3 /E1)dq0dq . Since E3 ranges between 0 and � ,
the limits of q0 are �� and E1. The limits of q are obtained
by inspecting the relation q2�E1

2�E3
2�2E1E3 cos �13 for

cos �13��1. Thus, �q0��q�2E1�q0. One finds
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ANALYTIC FORMULA EXIST 
•Closed form expressions for the scattering and absorption 

rates including effects of relativistic kinematics and weak 
magnetism exist in the literature.                                    
[Reddy, Prakash, Lattimer 1998, Horowitz, Perez-Garcia 2003]

2

charge current reactions, so that the Q-value for the reaction

νe +n→ e− + p is enhanced by ∆U while that for ν̄e + p→ e+ +n
is reduced by the same amount. The effect is similar to the

enhancement due to the neutron-proton mass difference, but

is larger when the number density n > n0/20.

In section II, charged current neutrino opacities in an inter-

acting medium are discussed. We consider how mean fields

affect the response of the medium in detail and how this de-

pends on the properties of the nuclear equation of state. The

affect of nuclear correlations and multi-particle hole excita-

tions are also discussed. In section III, the effect of variations

of the charged current reaction rates on the properties of the

emitted neutrinos is studied.

II. THE CHARGED CURRENT RESPONSE

Without medium modifications, the differential cross-

section for the process νe +n → e− + p per unit volume is given

by

1

V
d2σ

d cosθdEe
=

G2

F

2π

�
(1 + cosθ) + g2

A(3 − cosθ)
�

S(q0,q)

× pe Ee [1 − fe(Ee)]. (3)

where the energy transfer to the nuclear medium is q0 =

Eν − Ee, and the magnitude of the momentum transfer to the

medium is q2
= E2

ν + E2

e − 2EνEe cosθ. The free particle re-

sponse function is defined by

SFG(q0,q) =
1

2π2

�
d3 p2δ(q0 + E2 − E4) f2(1 − f4), (4)

where the particle labeled 2 is the incoming nucleon, the par-

ticle labeled 4 is the outgoing nucleon. When the dispersion

relation for nucleons is given by E(p) = M + p2/2M, and ne-

glecting for simplicity the neutron-proton mass difference, the

integrals in Eq. 4 can be performed to obtain

SFG(q0,q) =
M2T

πq (1 − e−z)
ln

�
exp

�
(emin −µ2)/T

�
+ 1

exp
�
(emin −µ2)/T

�
+ exp[−z]

�
,

(5)

where

z =
(q0 +µ2 −µ4)

T
, (6)

µ2 and µ4 are the chemical potentials of the incoming and

outgoing nucleons, M is the nucleon mass, and

emin =
M

2q2

�
q0 − q2

2M

�2

. (7)

emin arises from the kinematic restrictions imposed by the

energy-momentum transfer and the energy conserving delta

function. Physically, emin is the minimum energy of the nu-

cleon in the initial state that can accept momentum q and en-

ergy q0.

A. Frustrated Kinematics

The differential cross-section of νe absorption is the prod-

uct of the nucleon response times the available electron phase

space

∝ pe Ee (1 − fe(Ee)) ≈ E2

e exp

�
Ee −µe

T

�
. (8)

Due to the high electron degeneracy, the lepton phase space

increases exponentially with the electron energy. To com-

pletely overcome electron blocking requires Ee = Eνe −q0 ≈ µe
or q0 ≈ −µe when Eνe � µe. However, the fermi gas response

function in Eq. 4 is peaked at q0 � q2/2M ≈ 0 reflecting the

fact that nucleons are heavy. At large |q0| � q ≈ µe the re-

sponse is exponentially suppressed due to kinematic restric-

tions imposed by Eq. 6 that implies only neutrons with en-

ergy

E2 > emin �
M

2q2
q2

0
≈ M

2
, (9)

can participate in the reaction. For conditions in the PNS de-

coupling region, and in the fermi gas approximation, the νe
reaction proceeds at q0 ≈ 0 at the expense of large electron

blocking. Thus effects that can shift strength to more negative

q0 can increase the electron absorption rate exponentially.

It is well known that the neutron-proton mass difference

∆M = Mn − Mp increases the Q value for this reaction and a

more general expression for S(q0,q) derived in [1] includes

this effect. The effect of ∆M can be understood by noting, that

at leading order, it only changes the argument of the energy

delta-function in Eq. 4 and is subsumed by the replacements

q0 → (q0 +∆M) and

emin → ẽmin ≈
M

2q2

�
q0 +∆M − q2

2M

�2

. (10)

This shift changes the location of the peak of the response

moving it to the region where Ee is larger and confirm-

ing that it increases the Q value and the final state elec-

tron energy by ∆M = Mn − Mp. From Eq. 7 we see that

the rate for νe absorption is increased by roughly a factor

(1 +∆M/Ee)
2

exp(∆M/T ). By the same token, the Q value

for the reaction ν̄e + p → e+ + n is reduced by ∆M and this

acts to reduce the rate. In this case, the detailed balance factor

[1 − exp(−z)]
−1

in the response function S(q0,q) is the source

of exponential suppression – simply indicating a paucity of

high energy protons in the plasma. For small q0 � µe, the

detailed balance factor is

−1

1 − exp(−z)
≈ exp

�q0 −µe

T

�
, (11)

where we have use the fact that µn − µp = µe in beta-

equilibrium. Since q0 → (q0 −∆M) for the ν̄e process, ∆M
will suppress this rate exponentially. In line with the expecta-

tion that ∆M increases the cross-section for νe absorption and

decreases it for ν̄e absorption.
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sponse function is defined by

SFG(q0,q) =
1

2π2

�
d3 p2δ(q0 + E2 − E4) f2(1 − f4), (4)

where the particle labeled 2 is the incoming nucleon, the par-

ticle labeled 4 is the outgoing nucleon. When the dispersion

relation for nucleons is given by E(p) = M + p2/2M, and ne-

glecting for simplicity the neutron-proton mass difference, the

integrals in Eq. 4 can be performed to obtain

SFG(q0,q) =
M2T

πq (1 − e−z)
ln

�
exp

�
(emin −µ2)/T

�
+ 1

exp
�
(emin −µ2)/T

�
+ exp[−z]

�
,

(5)

where

z =
(q0 +µ2 −µ4)

T
, (6)

µ2 and µ4 are the chemical potentials of the incoming and

outgoing nucleons, M is the nucleon mass, and

emin =
M

2q2

�
q0 − q2

2M

�2

. (7)

emin arises from the kinematic restrictions imposed by the

energy-momentum transfer and the energy conserving delta

function. Physically, emin is the minimum energy of the nu-

cleon in the initial state that can accept momentum q and en-

ergy q0.

A. Frustrated Kinematics

The differential cross-section of νe absorption is the prod-

uct of the nucleon response times the available electron phase

space

∝ pe Ee (1 − fe(Ee)) ≈ E2

e exp

�
Ee −µe

T

�
. (8)

Due to the high electron degeneracy, the lepton phase space

increases exponentially with the electron energy. To com-

pletely overcome electron blocking requires Ee = Eνe −q0 ≈ µe
or q0 ≈ −µe when Eνe � µe. However, the fermi gas response

function in Eq. 4 is peaked at q0 � q2/2M ≈ 0 reflecting the

fact that nucleons are heavy. At large |q0| � q ≈ µe the re-

sponse is exponentially suppressed due to kinematic restric-

tions imposed by Eq. 6 that implies only neutrons with en-

ergy

E2 > emin �
M

2q2
q2

0
≈ M

2
, (9)

can participate in the reaction. For conditions in the PNS de-

coupling region, and in the fermi gas approximation, the νe
reaction proceeds at q0 ≈ 0 at the expense of large electron

blocking. Thus effects that can shift strength to more negative

q0 can increase the electron absorption rate exponentially.

It is well known that the neutron-proton mass difference

∆M = Mn − Mp increases the Q value for this reaction and a

more general expression for S(q0,q) derived in [1] includes

this effect. The effect of ∆M can be understood by noting, that

at leading order, it only changes the argument of the energy

delta-function in Eq. 4 and is subsumed by the replacements

q0 → (q0 +∆M) and

emin → ẽmin ≈
M

2q2

�
q0 +∆M − q2

2M

�2

. (10)

This shift changes the location of the peak of the response

moving it to the region where Ee is larger and confirm-

ing that it increases the Q value and the final state elec-

tron energy by ∆M = Mn − Mp. From Eq. 7 we see that

the rate for νe absorption is increased by roughly a factor

(1 +∆M/Ee)
2

exp(∆M/T ). By the same token, the Q value

for the reaction ν̄e + p → e+ + n is reduced by ∆M and this

acts to reduce the rate. In this case, the detailed balance factor

[1 − exp(−z)]
−1

in the response function S(q0,q) is the source

of exponential suppression – simply indicating a paucity of

high energy protons in the plasma. For small q0 � µe, the

detailed balance factor is

−1

1 − exp(−z)
≈ exp

�q0 −µe

T

�
, (11)

where we have use the fact that µn − µp = µe in beta-

equilibrium. Since q0 → (q0 −∆M) for the ν̄e process, ∆M
will suppress this rate exponentially. In line with the expecta-

tion that ∆M increases the cross-section for νe absorption and

decreases it for ν̄e absorption.

where 

• It would be desirable to use these in supernova simulations to 
establish baseline results.  



MANY-PARTICLE DYNAMICS 
•Neutrinos “see” more than one particle in the medium. 

•Nature of spatial and temporal correlations between 
nuclei, nucleons and electrons affect the scattering rate.   

•Nucleon dispersion relation is altered. Mean field energy 
shifts are important.   
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FIG. 1: Top Panel: The electron chemical potential (dashed lines)

and ∆U = Un − Up (solid lines) are shown as a function of density

for the two equation of state models (IUFSU: red curves and GM3:

black curves) in beta-equilibrium for Yν = 0 and T = 8 MeV. The

grey band shows an approximate range of values for inverse spin

relaxation time calculated in [8] and is discussed in connection with

collisional broadening. Bottom Panel: The equilibrium electron frac-

tion as a function of density for the two equations of state shown in

the top panel.

In the following we show that the mean field energy shift,

driven by the nuclear symmetry energy, has a similar but

substantially larger effect in neutron-rich matter at densities

ρ� 10
12

g/cm
3
.

B. Mean Field Effects

Interactions in the medium alter the single particle energies,

and nuclear mean field theories predict a nucleon dispersion

relation of the form

Ei(k) =

√
k2 + M∗2 +Ui ≡ K(k) +Ui , (12)

where M∗
is the nucleon effective mass and Ui is the mean

field energy shift. For neutron-rich conditions, the neutron po-

tential energy is larger due the iso-vector nature of the strong

interactions. The difference ∆U = Un −Up is directly related to

the nuclear symmetry energy, which is the difference between

the energy per nucleon in neutron matter and symmetric nu-

clear matter. Ab-intio methods using Quantum Monte Carlo

reported in [20] and [21], and chiral effective theory calcu-

lations of neutron matter by [22] suggest that the symmetry

energy at sub-nuclear density is larger than predicted by many

mean field models currently employed in supernova and neu-

tron star studies (for a review see [23]). To highlight its im-

portance we choose two models for the dense matter equation

of state: (i) the GM3 relativistic mean field theory parameter

set without hyperons [24] where the symmetry energy is linear

at low density; and (ii) the IU-FSU parameter set [25] where

the symmetry energy is non-linear in the density and large at

sub-nuclear density.

The electron chemical potential (dashed lines) and neutron

proton potential energy difference (solid lines) for these two

models are shown as a function of density in beta-equilibrium

in figure 1. Here Yν = 0 as a function of density with an as-

sumed temperature of 8 MeV. At sub-nuclear densities, the

IU-FSU ∆U is always larger than the GM3 ∆U value due to

the larger sub-nuclear density symmetry energy in the former.

The electron chemical potential as a function of density, as

well as the equilibrium electron fraction, is shown in figure

1 for both models. In beta-equilibrium, models with a larger

symmetry energy predict a larger electron fraction for a given

temperature and density and therefore a larger electron chem-

ical potential. Therefore, IU-FSU has a larger equilibrium µe
than GM3 and νe + n → e− + p will experience relatively more

final state blocking. However, as we show below, the inclusion

of ∆U in the reaction kinematics is needed for consistency.

To elucidate the effects of ∆U we set M∗
= M and note

that this assumption can easily be relaxed [1] and it does not

change the qualitative discussion below. Because in current

equation of state models the potential, Ui, is independent of

the momentum, k, this form of the dispersion relation results

in a free Fermi gas distribution function with single particle

energies K(k) for nucleons of species i, but with an effective

chemical potential µ̃i ≡ µi −Ui. This fact was emphasized in

Burrows and Sawyer [2], and used to show that it was un-

necessary to explicitly know the values of the nucleon poten-

tials for a given nuclear equation of state (which are often not

easily available from widely used nuclear equations of state

in the core-collapse supernova community) when calculating

the neutral current response of the nuclear medium. Clearly, if

both µi and µ̃i are known, then Ui can be easily obtained. This

implies that for a given temperature, density and electron frac-

tion, the neutral current response function is unchanged in the

presence of mean field effects, as the kinematics of the reac-

tion are unaffected by a constant offset in the nucleon single

particle energies. In contrast, the kinematics of the charged

current reaction are affected by the difference between the

neutron and proton potential and the charged current response

is altered in the presence of mean field effects.

Inspecting the response function in Eq. 4 and the dispersion

relation in Eq. 11 it is easily seen that the mean field response

SMF(q0,q) =
M2T

πq (1 − e−z)
ln

�
exp

�
(ẽmin − µ̃2)/T

�
+ 1

exp
�
(ẽmin − µ̃2)/T

�
+ exp[−z]

�
,

(13)

where

ẽmin =
M

2q2
(q0 +U2 −U4 − q2/2M)

2 , (14)

is obtained from the free gas response by the replacements

µi → µ̃i = µi −Ui

q0 → q̃0 = q0 +U2 −U4 (15)

and q → q. Therefore, we see that the potential difference

∆U = ±(U2 − U4) affects reaction kinematics and cannot be

Response of Interacting System
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a single nucleon.    

Sawyer (1975, 1989)
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NEUTRINO SCATTERING OFF NUCLEI
•Nuclei are strongly correlated by the (screened) Coulomb 

force.  At 1012 g/cm3 and T > 1 MeV behavior is classical - 
many particles dynamics can be predicted exactly using F = m 
a (Molecular Dynamics).  

20

current interaction of low-energy neutrinos with nuclei is given by

LNC =
GF√

2
QW lµ jµ (80)

where lµ = νγµ(1 − γ5)ν is the neutrino neutral current. Nuclei are
heavy, and, correspondingly, their thermal velocities are small (v ∼=
√

T/M $ c). For simplicity, we assume that nuclei are bosons char-
acterized only by their charge and baryon number. In this case it is
an excellent approximation to write the neutral current carried by the
nuclei as jµ = ψ†ψ δµ

0 . We can write the differential scattering rate in
terms of the density operator in momentum space given by

ρ(&q, t) = ψ†ψ =
∑

i=1···N

exp(i&q · &ri(t)) , (81)

where the sum is over N particles in a volume V which are labeled
i = 1 · · ·N . The rate for scattering of a neutrino with energy Eν to a
state with energy E′

ν = Eν−ω, at an angle θ, with a momentum transfer
&q is given by

dΓ

d cos θdE′
ν

=
G2

F

4π2
Q2

W (1 + cos θ) E′
ν
2 S(|&q|,ω) . (82)

The function S(|&q|,ω) is called the dynamic structure function. It em-
bodies all spatial and temporal correlations between target particles aris-
ing from strong or electromagnetic interactions and is given by

S(|&q|,ω) =

∫ ∞

−∞
dt exp(iωt) 〈ρ(&q, t)ρ(−&q, 0)〉 . (83)

In the above, 〈· · · 〉 denotes the ensemble average per unit volume. Note
that S(|&q|,ω) is normalized such that in the elastic limit for a non-
degenerate, non-interacting gas S(|&q|,ω) = 2π δ(ω) n, where n = N/V
is the density of particles.

To calculate the structure function we need to solve for the dynamics
(&r(t)) of the ions as they move in each others presence, interacting via the
two-body ion-ion interaction potential. The electrons are relativistic and
degenerate, and the electron Fermi momentum kF = (3π2 Z n)1/3 . The
timescale associated with changes in their density distribution is rapid
compared to the slow changes we expect in the density field of the heavy
ions. Electrons almost “instantaneously” follow the ions and screen the
Coulomb potential between ions. Correspondingly, there is small excess
in the electron distribution around each ion. As first discussed by Lein-
son et al. (1988), this excess will also screen the weak charge of the nu-
cleus to which the neutrinos couple. Electronic screening was discussed
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the vector, axial, and vector-axial polarization tensors discussed earlier.
Explicit forms for the imaginary parts of these polarization tensors can
be found in Horowitz & Pérez-Garćia (2003).

6. Strong and electromagnetic correlations
between nuclei, nucleons, and electrons

The results of the previous sections provide a complete description of
neutrino cross sections in an ideal Fermi gas of nucleons and leptons.
Here, we address non-ideal corrections to neutrino scattering rates aris-
ing due to interactions between nucleons, electrons and nuclei. The role
of correlations in neutrino opacities was first appreciated in the pioneer-
ing works of Sawyer (1975) and Iwamoto & Pethick (1982). They showed
that strong interactions between nucleons could significantly modify (by
as much as a factor of 2-3) neutrino cross sections at densities and tem-
peratures of relevance to supernovae. In the past decade, there have
been several attempts to incorporate these effects in calculations of the
neutrino opacity of dense matter. While much progress has been made in
understanding qualitative aspects of these corrections, quantitative pre-
dictions for the neutrino cross sections at high density remain elusive.
We present a pedagogic review of the qualitative findings of model calcu-
lations, provide an overview of the current state of the art of many-body
effects in neutrino cross sections, and comment on their shortcomings.

6.1 Plasma of Heavy Ions: Neutrino Opacity at
ρ ∼ 1012 g/cm3:

The simplest system, with non-trivial many-body dynamics, which is
relevant in the supernova context is a plasma of heavy nuclei (like Fe)
immersed in a background of degenerate electrons. Freedman (1974)
showed that the dominant source of opacity for neutrinos in such a
plasma is the coherent scattering off nuclei. Low-energy neutrinos can
couple coherently, via the vector neutral current, to the total weak charge
of the nucleus. The weak charge of a nucleus with A nucleons and Z
protons is given by QW = (2Z − A − 4Z sin2 θW )/2.

For neutrino-nucleus scattering in a plasma, we must properly ac-
count for the presence of other nuclei, since scattering from these dif-
ferent sources can interfere. In the language of many-body theory, this
screening is encoded in the density-density correlation function. It is
therefore natural to express the scattering rate in terms of these cor-
relation functions as described earlier in §5. To motivate the relation
between the cross section and the density-density correlation function
we begin by noting that the effective Lagrangian describing the neutral-

Neutrinos couple coherently to the weak charge in the nucleus. 
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Scattering rate is related to the density-density correlation 
function 



SCREENING, DAMPING & COLLECTIVE MODES

• Strong repulsive Coulomb 
forces affect the spatial 
distribution. 

• A collective mode exists in 
the system. 

• Response is pushed to 
high energy.  

• Multi-particle excitations 
smears the response.  
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Figure 5. The l = 0 term in the Legendre expansion of the neutrino-nucleon scat-
tering kernel, Φ0(εν , ε′ν) (eq. (37)), for T = 6 MeV and ηn = −2 as a function of
ε′ν for εν = 5, 10, 15, 20, 25, and 35 MeV. Note that for εν = 5 MeV the neutrino
is predominantly upscattered, while for εν = 35 MeV the neutrino is predominantly
downscattered. The magnitude of Φ0(εν , ε′ν) and sign of 〈ω〉 are to be compared with
those in Fig. 3.
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Figure 6. Dynamic structure function of a plasma of ions as a function of energy
transfer ω (measured in units of the plasma frequency ωp $ 0.3 MeV) and fixed
momentum transfer |$q| = 2π/L $ 6 MeV (left panel) and |$q| = 6π/L $ 18 MeV
(right panel). Statistical errors for the results of the molecular dynamics simulations
are also indicated.

“Exact”

Smaller cross-section & larger energy transfer. 

Burrows, Reddy & Thompson (2006)

ρ = 1012 g/cm3

ΓC =
Z2e2

a T
� 9

ωplasmon = 0.3 MeV



RESPONSE OF A CLASSICAL LIQUID

Ensemble average

The density-density correlation for N particles is 

Positions at t=0

Positions at t

Need to specify equations of motion ie rj(t). 
Classical limit:

Tractable and could be used under non-degenerate conditions.   



RANDOM PHASE APPROXIMATION (RPA)
• An approximate method to include correlations in the 

response function. Required for consistency with the mean 
field equation of state.     
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• Provides a fair qualitative description of response in nuclei. 
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reduction in the differential cross sections in the region
q0 /q�vF , where vF is the Fermi velocity. The presence of
a collective state in the region q0 /q�vF enhances the cross
sections in this region. This enhancement, however, is not
significant enough to override the large suppression seen in
the region where q0 /q is small.
Integrating over the q0-q space, we obtain the total cross

section per unit volume or equivalently the inverse collision
mean free path. This is shown in Fig. 12. The left panels
show the cross sections calculated by taking into account
only effects due to M*. The results shown are for different
temperatures and for a neutrino energy E���T . The right
panels show the ratio �RPA /�M* . The resulting increase in �
due to the presence of a repulsive p-h interaction is approxi-
mately a factor of 2.5 at low temperature and decreases with
increasing temperature.

The density dependence of the Fermi-liquid parameters is
poorly constrained by data. Although numerous theoretical
models have been constructed to gain insight into their high-
density behavior, there appears to be no general consensus at
the present time. Microscopic calculations of neutron matter
differ quantitatively depending on their underlying assump-
tions. These model dependences are so large that no generic
qualitative trends may be identified. The exception is the
isoscalar parameter F0, which becomes positive and in-
creases with increasing density, a feature which may be ex-
pected on general grounds as the repulsive vector meson
contributions dominate. The uncertainties associated with F0�
are related to the model dependence of the nuclear symmetry
energy. In models that favor a less than linear increase of a4
with density, F0� is expected to decrease with increasing den-
sity �see Eq. �35��. State-of-the-art microscopic many-body
calculations favor a modest increase in the nuclear symmetry
energy at intermediate densities �27,31�; thus, we may expect
that F0� will generally decrease. The parameter G0� is related
to pion condensation, since it is a measure of the spin-isospin
susceptibility of nuclear matter. The large repulsive character
of G0� strongly inhibits s-wave pion condensation in the vi-
cinity of the nuclear saturation density. However, at higher
densities pion condensation cannot be ruled out a priori
�30,31�. Thus, while we may expect G0� to decrease some-
what with increasing density, quantitatively it remains very
sensitive to the underlying model. The density dependence of
the isoscalar spin parameter G0, which is not well con-
strained even at nuclear density, is largely unknown.
Faced with these uncertainties, we begin by assuming that

the spin-dependent parameters are fixed at their empirical
values �determined at saturation density�, and use schematic
models to explore the influence of the density dependence of
F0 and F0� . For this purpose, we employ a simple parametric
form for the EOS �41� �see Appendix A�. This model does
not explicitly address the role of spin-dependent interactions
and assumes that the favored ground state is spin symmetric.
In particular, we choose the Skyrme-like models labeled
‘‘SLn2’’ with a linear increase in the nuclear symmetry en-
ergy. The index ‘‘n’’ in SLn2 takes on the values n�1, 2,
and 3 for which K�120, 180, and 240 MeV, respectively.
The magnitudes of the RPA corrections to the neutrino mean
free paths for these different EOS models are shown in Fig.
13. Since the dominant contribution to the scattering cross
section arises from the axial vector response function, the
magnitudes of the RPA corrections are mostly sensitive to
the spin-dependent parameters. Thus, although the vector re-
sponse of the nuclear medium is modified by about 50–80%
at high density due to RPA effects, the changes due to the
varying stiffness of the dense matter EOS are small. This
suggests that the neutrino mean free paths will not be signifi-
cantly altered due to variations in the nuclear compressibility
(F0) or due to variations in the nuclear symmetry energy
(F0�) as long as the axial contributions are not drastically
reduced.
Figure 14 shows the behavior of the neutrino mean free

paths in symmetric nuclear matter for the EOS labeled SL22
as a function of density for the temperatures of interest. A
comparison of the upper and lower panels shows that there is

FIG. 11. The neutrino differential cross sections in symmetric
nuclear matter for q�E��30 MeV. The Fermi-liquid parameters
employed are given in Eq. �36�. Results for the free gas, the Hartree
approximation, and with RPA correlations are compared for T�0
and 10 MeV.

FIG. 12. The temperature dependence of the neutrino scattering
mean free path in symmetric nuclear matter at density n0 for the
Fermi-liquid parameters in Eq. �36�. The left panel shows results for
thermal neutrinos (E���T) calculated in the Hartree approxima-
tion, and the right panel shows the effect of RPA correlations.
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SIMPLE RPA IN A NUCLEAR LIQUID
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respectively. In terms of these response functions, the differ-
ential cross section per unit volume is given by

1
V
d3��E1�

d�2 dq0
�

GF
2

8�3 E3
2

��1� f ��E3����1� cos��SV�q0 ,q �

��3� cos��SA�q0 ,q �� , �33�

where the various kinematical labels appearing above are as
in Eq. �1�. Using Eq. �33�, the neutrino cross sections may be
computed if the p-h interaction is specified. From the discus-
sion of the previous section, it is clear that these interactions
are model dependent and that uncertainties are large. There-
fore, we explore different dense matter models to identify the
generic trends.

1. Particle-hole interactions in nuclear matter

In contrast to neutron-rich matter, for which we have little
empirical information, the p-h interaction in nuclear matter
may be related to empirical values of the Fermi-liquid pa-
rameters at nuclear saturation density. The p-h interaction is
written in terms of the Fermi-liquid parameters in Eq. �8�. In
isospin-symmetric matter, f nn� f pp and gnn�gpp . This al-
lows us to directly relate the interaction strengths to Fermi-
liquid parameters �37�:

f nn�
F0�F0�
N0

, f np�
F0�F0�
N0

, gnn�
G0�G0�

N0
,

gnp�
G0�G0�

N0
, �34�

where N0�2M*k f /�2 is the density of states at the Fermi
surface. Note that we have retained only the l�0 (s-wave�
terms, since we expect the momentum transfer in the p-h
channel to be small for low-energy neutrino scattering. How-
ever, the momentum dependent part of the interaction, which
gives rise to the l�1 term, F1�3(1�M*/M ) is still impor-
tant since it determines the nucleon effective mass and hence
N0.
From FLT, we know that the l�0 Fermi-liquid param-

eters are directly related to macroscopic observables. F0 is
related to the isoscalar incompressibility K�9�P/�nB , and

F0� is related to the nuclear symmetry energy a4
�(nB/2)�2�/�n3

2 , where n3�nn�np is the isospin density.
Explicitly,

F0��K/6EF��1, F0���3a4 /EF��1, �35�

with EF�(kF
2 /2M*) being the Fermi energy. Note that in

extracting the p-h interaction potential from experimental ob-
servables such as K and a4, a consistent value of M* must
be employed, since both F0 and F0� depend on M*.
At nuclear saturation density, investigation of the mono-

pole resonances in nuclei suggests that the isoscalar com-
pressibility K�240�40 MeV �38�. Information from
neutron-rich nuclei and observed isovector giant dipole reso-
nances in nuclei requires that a4�32�5 MeV, and empirical
determinations of the nucleon effective mass from level den-
sity measurements in nuclei favor M*/M�0.7�0.1. For
typical values of K�240 MeV, a4�30 MeV, and M*/M
�0.75, the Fermi-liquid parameters are F0��0.18, F0�
�0.83, and F1�0.75. The spin-dependent parameter G0,
which is related to the experimentally observed isoscalar
spin-flip resonances, is estimated to be small, G0�0.1�0.1
�39,40�. In contrast, the parameter G0� , which is related to
the isovector spin-flip �giant Gamow-Teller� resonances in
nuclei is empirically estimated to be large, G0��1.5�0.2
�21,39�.
Using the empirical values for the Fermi-liquid param-

eters F0��0.18, F0��0.83, G0�0, G0��1.7, and M*/M
�0.75, we find that the numerical values for the p-h interac-
tion strengths in the various channels are

f nn� f pp�1.7�10�5 MeV�2, f np��2.7�10�5 MeV�2,

gnn�gpp�4.5�10�5 MeV�2,

gnp��4.5�10�5 MeV�2. �36�

Using these values, the neutrino scattering differential cross
sections in nuclear matter are shown in Fig. 11. The upper
panels are for matter at zero temperature, where only the
positive q0 response exists. The suppression due to M* ef-
fects is important, amounting to �50% reduction. Correla-
tions, which are predominantly repulsive in nature due to the
large empirical values for G0� and F0� , result in significant
further reductions. The RPA result indicates a factor of 2
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tion strengths in the various channels are

f nn� f pp�1.7�10�5 MeV�2, f np��2.7�10�5 MeV�2,

gnn�gpp�4.5�10�5 MeV�2,

gnp��4.5�10�5 MeV�2. �36�

Using these values, the neutrino scattering differential cross
sections in nuclear matter are shown in Fig. 11. The upper
panels are for matter at zero temperature, where only the
positive q0 response exists. The suppression due to M* ef-
fects is important, amounting to �50% reduction. Correla-
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tromagnetic correlations between the protons and develop
the basic formalism required to calculate the correlated re-
sponse of the strongly interacting system to neutrino scatter-
ing. For a two-component system, the Hartree polarization
function may be written as a 2�2 matrix, diagonal
(�p

0 ,�n
0), where �p

0 and �n
0 are the proton and neutron po-

larizations, whose real and imaginary parts may be explicitly
evaluated using Eq. �3� and Eq. �7�, respectively. To com-
pute the 2�2 RPA polarization function, we parametrize the
p-h interactions in the spin-independent and spin-dependent
channels. The spin-independent interaction is given by
f nn , f pp , and f np , and the spin dependent interaction by
gnn , gpp , and gnp . It must be borne in mind that these
parameters are associated with in-medium p-h interactions
and not particle-particle interactions. For example, the pa-
rameter f nn (gnn) is a measure of the matrix element be-
tween two nn�1 states with identical �opposite� spin projec-
tions, and f np (gnp) measures the matrix element between
nn�1 and pp�1 states with identical �opposite� spin projec-
tions �37�. In matrix form, the interactions in the spin inde-
pendent and spin-dependent channels are given by

DV�� f pp f pn
f pn f nn

� , DA��gpp gpn
gpn gnn

� , �26�

respectively. The Dyson equation for the vector polarization
is

�V
RPA��0��RPADV�0. �27�

The axial polarization is obtained by replacing DV in the
above equation by DA . Solving the matrix equations, we
obtain

�V
RPA�

1
�V

� �1� f nn �n
0��p

0 f np �p
0 �n

0

f pn �p
0 �n

0 �1� f pp �p
0��n

� , �28�

�V��1� f nn �n
0� f pp �p

0� f pp �p
0 f nn �n

0� f np2�n
0 �p

0� ,
�29�

for the vector part, and

�A
RPA�

1
�A

� �1�gnn �n
0��p

0 gnp �p
0 �n

0

gpn �p
0 �n

0 �1�gpp �p
0��n

� , �30�

�A��1�gnn �n
0�gpp �p

0�gpp �p
0 gnn �n

0�gnp2�n
0 �p

0� ,
�31�

for the axial part. Multiplying the above polarization matri-
ces by the appropriate vector and axial-vector couplings for
the neutrons and protons, we arrive at the vector and axial-
vector response functions

FIG. 9. Same as in Fig. 8, but for the model GM3. FIG. 10. The density and temperature dependences of neutrino
mean free paths at energy E���T in neutron matter. The top pan-
els are for the model GM3; the bottom panels are for RHA. The left
panels show the results in the Hartree approximation. In the right
panels, effects due to spin-dependent correlations introduced
through the Migdal parameter g� are shown. The different curves
correspond to the same temperatures as in the left panels.
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THE RESIDUAL INTERACTION IN RPA

trino opacities for the supernova explosion mechanism.
The small differences seen in Fig. 35 between the neu-

trino lumonisities with and without RPA modifications for
t�10 s cannot be discriminated in the case of SN 1987A,
based upon the few observed events. However, the large
number of events expected in detectors such as SuperKamio-
kande, SNO, OMNIS, and LAND for a future galactic super-
nova should provide detailed information about the neutrino
emission at late times. In a future publication, we will ex-
plore whether the modifications to the neutrino opacities of
the type investigated in this work will be discernable from a
future supernova neutrino signal. The task of isolating and
identifying features of the neutrino signal that is most sensi-
tive to the properties of matter and the neutrino opacities in
the deep interior, while daunting, promises to provide useful
insights into the nature and composition of dense matter.
Recent progress made in the field of numerical modeling of
supernova combined with the improved microphysical inputs
�EOS and opacities� will go a long way toward achieving
this goal.
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APPENDIX A: PARTICLE-HOLE INTERACTIONS

The p-h interaction in the Skyrme and Skyrme-like sche-
matic models may be directly obtained by double functional
differentiation of the potential energy density. The potential
energy density for the densities and temperatures of interest
is mainly a function of baryon density and proton fraction.
The temperature dependence, which enters only through the
explicitly momentum-dependent interactions, is weak. In
what follows, we provide analytical expressions for the p-h
interaction at zero temperature.
The effective nucleon-nucleon interaction in the standard

Skyrme model �23� is given in Eq. �9�. The potential energy
density in the Hartree-Fock approximation for the above in-
teraction may be computed using the standard method by
employing plane-wave states for the nucleons �23�. In terms
of the neutron and proton Fermi momenta kF

n and kF
p , the

neutron and proton densities nn and np , and the total baryon
density n�nn�np , the potential energy density is given by
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The single-particle potential energy for a given nucleon with isospin index � and with momentum k is

U��k ��
��V�
�nkk

, �A2�

where nkk is the (��)-diagonal element of the occupation number matrix

ni j����a j
�ai���, �A3�

each label i , j denoting momentum, spin, and isospin. For Skyrme interactions, one gets
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The p-h interaction is obtained by functional differentiation of the single-particle potential energy or equivalently the double
functional differentiation of the total potential energy, namely,

�k1k3
�1�Vph�k4k2

�1��
�2�V�

�nk3k1�nk4k2
. �A5�

Hereafter, we will employ the standard notation for the participating momenta, namely k1�q�q1 , k2�q2 , k3�q1, and
k4�q�q2, which indicates that q is the transferred momentum. The p-h interaction can be expressed as
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Vp-h�q1 ,q2 ,q�� �
����,S �

V ����,S ��q1 ,q2 ,q� P �S �, �A6�

with the p-h spin projectors P (0)�1/2 and P (1)��� •�� �/2. The symbol (���) indicates the four isospin combinations

�pp�1;pp�1� and �nn�1;nn�1� with ���� , �A7�

�pp�1;nn�1� and �nn�1;pp�1� with ����� . �A8�

Two other isospin combinations, namely, (pn�1; pn�1) and (np�1; np�1), are needed to describe the p-h interaction
relevant for the charge-exchange processes. These are, however, not independent, and may be related to interactions in the
(pp�1; pp�1), (nn�1; nn�1), and (pp�1; nn�1) by isospin considerations. Denoting the p-h interaction in the spin
independent channels as f pp , f nn , and f np for the particle-hole states (pp�1;pp�1), (nn�1;nn�1), and (pp�1;nn�1),
respectively, we arrive at the relations �56�
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The interaction between p-h proton states f pp is related to f nn evaluated at proton fraction (1�x) by isospin symmetry. The
spin-dependent p-h interactions characterized by gnn , gpp , and gnp are obtained by taking functional derivatives of the
energy density with arbitrary spin excess and are given by
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As noted earlier, the quantity gpp is equal to gnn evaluated at proton fraction (1�x).
For the schematic models described in Ref. �41�, where one begins with a parametric form for the energy density for spin

symmetric, but for arbitrary isospin asymmetry. The single-particle potential, obtained by functional differentiation of the
potential energy density, is given by
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where the upper �lower� sign in � is for neutrons �protons� and i� j . Taking functional derivatives of the single-particle
potential energy density, we arrive at the p-h interaction parameters
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Their explicit algebraic forms are

2914 PRC 59REDDY, PRAKASH, LATTIMER, AND PONS

p-h interaction obtained from 
the equation of state. 

Or from Fermi Liquid 
parameters calculated in a 
microscopic theories.   
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The form of the energy density employed in these schematic
models does not explicitly account for the explicit spin de-
pendence of the nucleon-nucleon interaction. The potential
energy density is independent of any spin excess, indicating
that gnn and gnp are zero.
The p-h interactions parameters discussed in this appen-

dix are related to the Fermi-liquid parameters. In symmetric
nuclear matter the appropriate relations are
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where the normalization factor N0�2M*kF /�2 is the den-
sity of states at the Fermi surface. For neutron matter F0
�N0 f nn and G0�gnnN0, with N0�M*kF /�2.

APPENDIX B: POLARIZATION FUNCTIONS

The various polarization functions required to evaluate
the Hartree and RPA response functions are presented in this
appendix. The zero-temperature polarization functions may
be found in Ref. �34� and for finite temperatures in Ref. �35�.
Here, we collect the present extensions of these results to
asymmetric matter, and, in particular, to unlike p-h excita-
tions. For space like excitations, q�

2�0, they are given by
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The particle distribution functions f i(E) are given by the
Fermi-Dirac distribution functions

f i�Ep*��
1

1� exp��Ep*�� i�/kT�
, �B8�

where � is the effective chemical potential defined by

� i�� i�Ui�� i��g�Bi
�0�t3Big�Bi

b0�, �B9�

and the particle labels 2 and 4 correspond to the initial and
final baryons.
The angular integrals are performed by exploiting the

delta functions. The three-dimensional integrals can be re-
duced to the following one-dimensional integrals:
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The form of the energy density employed in these schematic
models does not explicitly account for the explicit spin de-
pendence of the nucleon-nucleon interaction. The potential
energy density is independent of any spin excess, indicating
that gnn and gnp are zero.
The p-h interactions parameters discussed in this appen-

dix are related to the Fermi-liquid parameters. In symmetric
nuclear matter the appropriate relations are
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where the normalization factor N0�2M*kF /�2 is the den-
sity of states at the Fermi surface. For neutron matter F0
�N0 f nn and G0�gnnN0, with N0�M*kF /�2.
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the Hartree and RPA response functions are presented in this
appendix. The zero-temperature polarization functions may
be found in Ref. �34� and for finite temperatures in Ref. �35�.
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Very simple s-wave interaction is used
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that gnn and gnp are zero.
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�N0 f nn and G0�gnnN0, with N0�M*kF /�2.
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•The residual interaction for density and isospin density 
fluctuations obtained from the EoS is consistent. 
•Important feedback may exist in SN simulations.
•The more important spin-flip interaction strength is 
chosen from phenomenology of response in nuclei.     



MULTI-PARTICLE EXCITATIONS
• Excitation of 2 particle-2 hole states 

enables pair-processes and larger energy 
transfer during scattering. 

• In strongly coupled systems leads to 
significant smearing of the single particle 
and collective strength. 

• Especially important for the spin 
response because spin is not conserved 
in nuclear interactions. 

• Can enhance the charged current rate 
at small Ye.        

ν + n+ n → n+ n+ ν

ν + ν̄ + n+ n → n+ n

n+ n → n+ n+ ν + ν̄Raffelt & Seckel (1995)



UNIFIED TREATMENT OF SPIN RESPONSE

• 2p-2h response is incorporated 
through a finite quasi-particle 
lifetime correction in RPA. 
Combines single-pair and multi-
pair excitations and RPA 
correlations. 

• Captures key aspects of the 
response (screening, damping 
and collectivity). 

• Quasi-particle life-times have 
been calculated using realistic 
and modern nucleon-nucleon 
interactions.     

Lykasov, Olsson, Pethick (2005)
Lykasov, Pethick, Schwenk (2006) 
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FIG. 3: (Color online) Ratio of the spin relaxation rate to the relaxation rate for an excess of quasiparticles in a single
momentum state (1/τσ)/(1/τ ) as a function of Fermi momentum kF for purely tensor scattering amplitudes (in which case
the value is 2), for the one-pion exchange interaction (which gives the value 4/3), from low-momentum interactions Vlow k, and
including second-order many-body contributions.
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FIG. 4: The imaginary part of the spin response function Imχσ/N(0) of Eq. (21) in units of the density of states versus ω/(vFq).
Results are shown for the non-interacting system, without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vFqτσ = 2 and vFqτσ = 5.

range physics in nuclear forces. This deficiency of the OPE model is most prominent at low densities, in comparison
to the increasing Vlow k rate. Similar to the spin response, we find a reduction of C due to second-order many-body
contributions, where the band in Fig. 2 again indicates a range for the effects due to many-body correlations. Finally,
as expected, the relaxation rate obtained from Vlow k plus second-order contributions is now dominated by the central
terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ)/(1/τ) of the spin relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi momentum kF. This is a very useful measure of the
strength of noncentral interactions compared to central ones. For purely tensor scattering amplitudes, the ratio of
the corresponding spin traces in Eqs. (41) and (42) gives (1/τσ)/(1/τ) = 2, while for the OPE interaction, which
has a central part in Eq. (36), this ratio is (1/τσ)/(1/τ) = 4/3, see Eq. (40). While the ratio obtained from Vlow k

6

with dimensionless Landau parameter G0 = N(0) g0, and X̃σ = Xσ/N(0), whose imaginary part is

ImX̃σ =
ω

2vFq

[
arctan

[
(ω + vFq)τσ

]
− arctan

[
(ω − vFq)τσ

]]
. (22)

The branch of the arctangent to be used is that lying between −π/2 and +π/2. For τσ → ∞, the form for Imχσ given
by Eqs. (21) and (22) reproduces the results of Ref. [4] for single particle-hole pair states, with

ImX̃σ →
πω

2vFq
Θ

(
vFq − |ω|

)
, (23)

where Θ(x) is the step function. Our results generalize earlier work by taking into account effects due to non-zero
wavelengths and recoil of the nucleons. A direct inspection shows that the resulting dynamical structure factor
satisfies the detailed balance condition S(−ω) = S(ω)e−ω/T . In contrast to Ref. [12], where calculations were made
to leading order in the scattering rate, Eq. (21) contains contributions of higher order and thereby takes into account
the Landau-Pomeranchuk-Migdal effect [28, 29].

In the long-wavelength limit, q → 0, we have

X̃σ(ω, q → 0) =
1

1 − iωτσ
and χ̃σ(ω, q → 0) =

1

1 + G0 − iωτσ
, (24)

with imaginary part

Imχ̃σ(ω, q → 0) =
ωτσ

(1 + G0)2 + (ωτσ)2
. (25)

In the absence of mean-field effects, this has the same form as the Ansatz used by Raffelt et al. to account for multiple
scattering at low ω [8, 9, 10]. Equation (25) shows that the characteristic frequency for the response is ∼ (1+G0)/τσ.
The factor 1 + G0 indicates that near the transition to a ferromagnetic state, G0 → −1, the characteristic time
becomes long, corresponding to what is referred to as critical slowing down. For neutrons, one has G0 > 0 [30] and
the spin response is pushed to higher frequencies.

V. RELAXATION TIMES

To begin, we consider the time for an excess population of quasiparticles in a particular momentum, energy and spin
state (denoted by p1, ε1 and σ1) to relax when the distribution function for all other states is that for equilibrium.
It is convenient to consider the general case when the quasiparticles of the excess population are not on the energy
shell, since this is the quantity which naturally enters calculations of the response functions at high frequency [12].
The relaxation time can be written in operator form

1

τ(ε1 + ω, σ1 · p̂1)
=

1

τ(ε1 + ω)
(1 + α σ1 · p̂1) , (26)

where α is a coefficient that characterizes the strength of noncentral contributions to the relaxation rate. Unlike in
systems with only central interactions (α = 0), the relaxation rate depends on the spin orientation of the quasiparticle,
because spin and momentum are coupled.

By generalizing the standard theory of relaxation rates [22] to the case of noncentral interactions, we have [12]

1

τ(ε1 + ω)
=

3

4
C

[
T 2 +

(ε1 + ω)2

π2

]
, (27)

where the factor 3/4 is included so that energy-averaged relaxation rates have a simple form (see Eqs. (33) and (35))
and the coefficient C is given by

C =
4π3

3N(0)2

∏

i=2,3,4

(
m∗

kF

∫
dpi

(2π)3
δ(pi−kF)

)
(2π)3δ(p1+p2−p3−p4)

1

4
Tr

[
Aσ1,σ2

(k,k′)Aσ1,σ2
(−k,k′)

] ∣∣∣∣
p1=kF

. (28)

Here we have taken p1 to lie on the Fermi surface, Aσ1,σ2
(k,k′) denotes the quasiparticle scattering amplitude in

units of the density of states, k = p1 − p3 and k′ = p1 − p4 are the momentum transfers,2 and we have neglected

2 We use k and k′ for the momentum transfers between nucleons, in order to distinguish them from the momentum transfer q in the
structure factors. This differs from the notation used in Refs. [23, 30, 31] and these should also not be confused with relative momenta.

Sσ(q → 0,ω) =
Imχ̃σ(ω)

1− exp (−βω)



CHARGED CURRENT REACTIONS

•Determine the electron neutrino spectra and deleptonization 
times. 

•  Final state electron blocking is strong for electron neutrino 
absorption reaction. 

•  Asymmetry between mean field energy between neutrons 
and protons alters the kinematics. 

νe + n → p+ e−

ν̄e + p → n+ e+⎨

q0 ≈ ∆U = Un − Up

νe e−

n p
Reddy, Prakash & Lattimer (1998)
Roberts (2012)
Martinez-Pinedo et al. (2012)
Roberts & Reddy (2012)



SPECTRA AT LATE TIMES

•Decoupling occurs at 
relatively high density.

• Spectra influenced by 
nuclear correlations. 
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MEAN FIELD SHIFT IN THE NEUTRINO SPHERE

∆U = Un − Up ≈ 40
nn − np
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FIG. 1: Top Panel: The electron chemical potential (dashed
lines) and ∆U = Un−Up (solid lines) are shown as a function
of density for the two equation of state models (IUFSU: red
curves and GM3: black curves) in beta-equilibrium for Yν =
0 and T = 8 MeV. The grey band shows an approximate
range of values for inverse spin relaxation time calculated in
[8] and is discussed in connection with collisional broadening.
Bottom Panel: The equilibrium electron fraction as a function
of density for the two equations of state shown in the top
panel.

where we have use the fact that µn − µp = µe in beta-

equilibrium. Since q0 → (q0 − ∆M) for the ν̄e process,

∆M will suppress this rate exponentially. In line with

the expectation that ∆M increases the cross-section for

νe absorption and decreases it for ν̄e absorption.

In the following we show that the mean field energy

shift, driven by the nuclear symmetry energy, has a sim-

ilar but substantially larger effect in neutron-rich matter

at densities ρ � 10
12

g/cm
3
.

B. Mean Field Effects

Interactions in the medium alter the single particle en-

ergies, and nuclear mean field theories predict a nucleon

dispersion relation of the form

Ei(k) =
�

k2 +M∗2 + Ui ≡ K(k) + Ui , (11)

whereM∗
is the nucleon effective mass and Ui is the mean

field energy shift. For neutron-rich conditions, the neu-

tron potential energy is larger due the iso-vector nature of

the strong interactions. The difference ∆U = Un −Up is

directly related to the nuclear symmetry energy, which is

the difference between the energy per nucleon in neutron

matter and symmetric nuclear matter. Ab-intio meth-

ods using Quantum Monte Carlo reported in [20] and

[21], and chiral effective theory calculations of neutron

matter by [22] suggest that the symmetry energy at sub-

nuclear density is larger than predicted by many mean

field models currently employed in supernova and neu-

tron star studies (for a review see [23]). To highlight

its importance we choose two models for the dense mat-

ter equation of state: (i) the GM3 relativistic mean field

theory parameter set without hyperons [24] where the

symmetry energy is linear at low density; and (ii) the

IU-FSU parameter set [25] where the symmetry energy

is non-linear in the density and large at sub-nuclear den-

sity.

The electron chemical potential (dashed lines) and neu-

tron proton potential energy difference (solid lines) for

these two models are shown as a function of density in

beta-equilibrium in figure 1. Here Yν = 0 as a function of

density with an assumed temperature of 8 MeV. At sub-

nuclear densities, the IU-FSU ∆U is always larger than

the GM3 ∆U value due to the larger sub-nuclear density

symmetry energy in the former. The electron chemical

potential as a function of density, as well as the equi-

librium electron fraction, is shown in figure 1 for both

models. In beta-equilibrium, models with a larger sym-

metry energy predict a larger electron fraction for a given

temperature and density and therefore a larger electron

chemical potential. Therefore, IU-FSU has a larger equi-

librium µe than GM3 and νe+n → e−+p will experience

relatively more final state blocking. However, as we show

below, the inclusion of ∆U in the reaction kinematics is

needed for consistency.

To elucidate the effects of ∆U we set M∗
= M and

note that this assumption can easily be relaxed [1] and

it does not change the qualitative discussion below. Be-

cause in current equation of state models the potential,

Ui, is independent of the momentum, k, this form of the

dispersion relation results in a free Fermi gas distribu-

tion function with single particle energies K(k) for nucle-
ons of species i, but with an effective chemical potential

µ̃i ≡ µi − Ui. This fact was emphasized in Burrows and

Sawyer [2], and used to show that it was unnecessary to

explicitly know the values of the nucleon potentials for a

given nuclear equation of state (which are often not easily

available from widely used nuclear equations of state in

the core-collapse supernova community) when calculat-

ing the neutral current response of the nuclear medium.

Clearly, if both µi and µ̃i are known, then Ui can be

easily obtained. This implies that for a given tempera-

ture, density and electron fraction, the neutral current

response function is unchanged in the presence of mean

field effects, as the kinematics of the reaction are unaf-

fected by a constant offset in the nucleon single particle

energies. In contrast, the kinematics of the charged cur-

rent reaction are affected by the difference between the

neutron and proton potential and the charged current

response is altered in the presence of mean field effects.

Inspecting the response function in Eq. 4 and the dis-

persion relation in Eq. 11 it is easily seen that the mean

•After a few seconds, the 
density at the neutrino 
sphere is large. ~n0/50-n0/10. 
•Nucleon propagation is 
affected by mean fields and 
collisions. 
•Sensitive to the low-density 
behavior of the symmetry 
energy. 

Roberts (2012)
Martinez-Pinedo et al. (2012)



ABSORPTION RATES

•Mean field energy shift 
helps overcome electron 
final state blocking. 

• Enhances νe absorption

• Larger energy needed to 
produce neutrons 
suppresses anti-νe 
absorption. 

2

vector potentials. Empirical properties of nuclear matter

and neutron-rich matter suggest that Vis×n0 ≈ −50 MeV

and Viv × n0 ≈ 20 MeV. The potential energy associated

with n → p conversion in the medium is

∆U = Un − Up ≈ 40× (nn − np)

n0
MeV, (2)

where n0 = 0.16 nucleons/fm
3
is the number density at

saturation. It will be shown that ∆U changes the kine-

matics of charge current reactions, so that the Q-value

for the reaction νe + n → e− + p is enhanced by ∆U
while that for ν̄e + p → e+ + n is reduced by the same

amount. The effect is similar to the enhancement due to

the neutron-proton mass difference, but is larger when

the number density n > n0/20.
In section II, charged current neutrino opacities in

an interacting medium are discussed. We consider how

mean fields affect the response of the medium in detail

and how this depends on the properties of the nuclear

equation of state. The affect of nuclear correlations and
multi-particle hole excitations are also discussed. In sec-

tion III, the effect of variations of the charged current

reaction rates on the properties of the emitted neutrinos

is studied.

II. THE CHARGED CURRENT RESPONSE

Without medium modifications, the differential cross-
section for the process νe + n → e− + p per unit volume

is given by

1

V

d2σ

d cos θdEe
=

G2
F

2π

�
(1 + cos θ) + g2A(3− cos θ)

�
S(q0, q)

× pe Ee [1− fe(Ee)]. (3)

where the energy transfer to the nuclear medium is q0 =

Eν − Ee, and the magnitude of the momentum transfer

to the medium is q2 = E2
ν + E2

e − 2EνEe cos θ. The free

particle response function is defined by

SF(q0, q) =
1

2π2

�
d3p2δ(q0 + E2 − E4)f2(1− f4), (4)

where the particle labeled 2 is the incoming nucleon, the

particle labeled 4 is the outgoing nucleon. When the

dispersion relation for nucleons is given by E(p) = M +

p2/2M , and neglecting for simplicity the neutron-proton

mass difference, the integrals in Eq. 4 can be performed

to obtain

SF(q0, q) =
M2T

πq (1− e−z)
ln

�
exp [(emin − µ2) /T ] + 1

exp [(emin − µ2) /T ] + exp [−z]

�
,

(5)

where z ≡ (q0 + µ2 − µ4)/T , µ2 and µ4 are the chemical

potentials of the incoming and outgoing nucleons, M is

the nucleon mass, and

emin =
M

2q2

�
q0 −

q2

2M

�2

. (6)

emin arises from the kinematic restrictions imposed by

the energy-momentum transfer and the energy conserv-

ing delta function. Physically, emin is the minimum en-

ergy of the nucleon in the initial state that can accept

momentum q and energy q0.

A. Frustrated Kinematics

The differential cross-section of νe absorption is the

product of the nucleon response times the available elec-

tron phase space

∝ pe Ee (1− fe(Ee)) ≈ E2
e exp

�
Ee − µe

T

�
. (7)

Due to the high electron degeneracy, the lepton phase

space increases exponentially with the electron energy.

To completely overcome electron blocking requires Ee =

Eνe − q0 ≈ µe or q0 ≈ −µe when Eνe � µe. How-

ever, the fermi gas response function in Eq. 4 is peaked

at q0 � q2/2M ≈ 0 reflecting the fact that nucleons are

heavy. At large |q0| � q ≈ µe the response is exponen-

tially suppressed due to kinematic restrictions imposed

by Eq. 6 that implies only neutrons with energy

E2 > emin � M

2q2
q20 ≈ M

2
, (8)

can participate in the reaction. For conditions in the PNS

decoupling region, and in the fermi gas approximation,

the νe reaction proceeds at q0 ≈ 0 at the expense of large

electron blocking. Thus effects that can shift strength

to more negative q0 can increase the electron absorption

rate exponentially.

It is well known that the neutron-proton mass differ-
ence ∆M = Mn − Mp increases the Q value for this

reaction and a more general expression for S(q0, q) de-

rived in [1] includes this effect. The effect of ∆M can

be understood by noting, that at leading order, it only

changes the argument of the energy delta-function in Eq.

4 and is subsumed by the replacements q0 → (q0 +∆M)

and

emin → ẽmin ≈ M

2q2

�
q0 +∆M − q2

2M

�2

. (9)

This shift changes the location of the peak of the response

moving it to the region where Ee is larger and confirming

that it increases the Q value and the final state electron

energy by ∆M = Mn −Mp. From Eq. 7 we see that the

rate for νe absorption is increased by roughly a factor

(1 +∆M/Ee)
2
exp (∆M/T ). By the same token, the Q

value for the reaction ν̄e+p → e++n is reduced by ∆M
and this acts to reduce the rate. In this case, the detailed

balance factor [1 − exp (−z)]−1
in the response function

S(q0, q) is the source of exponential suppression – simply

indicating a paucity of high energy protons in the plasma.

For small q0 � µe, the detailed balance factor is

−1

1− exp (−z)
≈ exp

�
q0 − µe

T

�
, (10)
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mass difference, the integrals in Eq. 4 can be performed

to obtain
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�
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ing delta function. Physically, emin is the minimum en-

ergy of the nucleon in the initial state that can accept

momentum q and energy q0.
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The differential cross-section of νe absorption is the

product of the nucleon response times the available elec-

tron phase space

∝ pe Ee (1− fe(Ee)) ≈ E2
e exp

�
Ee − µe

T

�
. (7)

Due to the high electron degeneracy, the lepton phase

space increases exponentially with the electron energy.

To completely overcome electron blocking requires Ee =

Eνe − q0 ≈ µe or q0 ≈ −µe when Eνe � µe. How-

ever, the fermi gas response function in Eq. 4 is peaked

at q0 � q2/2M ≈ 0 reflecting the fact that nucleons are

heavy. At large |q0| � q ≈ µe the response is exponen-

tially suppressed due to kinematic restrictions imposed

by Eq. 6 that implies only neutrons with energy

E2 > emin � M

2q2
q20 ≈ M

2
, (8)

can participate in the reaction. For conditions in the PNS

decoupling region, and in the fermi gas approximation,

the νe reaction proceeds at q0 ≈ 0 at the expense of large

electron blocking. Thus effects that can shift strength

to more negative q0 can increase the electron absorption

rate exponentially.

It is well known that the neutron-proton mass differ-
ence ∆M = Mn − Mp increases the Q value for this

reaction and a more general expression for S(q0, q) de-

rived in [1] includes this effect. The effect of ∆M can

be understood by noting, that at leading order, it only

changes the argument of the energy delta-function in Eq.

4 and is subsumed by the replacements q0 → (q0 +∆M)

and

emin → ẽmin ≈ M

2q2

�
q0 +∆M − q2

2M

�2

. (9)

This shift changes the location of the peak of the response

moving it to the region where Ee is larger and confirming

that it increases the Q value and the final state electron

energy by ∆M = Mn −Mp. From Eq. 7 we see that the

rate for νe absorption is increased by roughly a factor

(1 +∆M/Ee)
2
exp (∆M/T ). By the same token, the Q

value for the reaction ν̄e+p → e++n is reduced by ∆M
and this acts to reduce the rate. In this case, the detailed

balance factor [1 − exp (−z)]−1
in the response function

S(q0, q) is the source of exponential suppression – simply

indicating a paucity of high energy protons in the plasma.

For small q0 � µe, the detailed balance factor is

−1

1− exp (−z)
≈ exp

�
q0 − µe

T

�
, (10)
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MEAN FIELD & COLLISIONAL BROADENING  

ImΠ̃(q0, q) =
1

π

�
d3p

(2π)3
fp(�p+q)− fn(�p)

�p+q − �p + µ̂
I(Γ)

I(Γ) = Γ

(q0 +∆U − (�p+q − �p))2 + Γ2

Sστ−(q0, q) =
1

1− exp (−β(q0 + µn − µp)
Im

�
Π̃(q0, q)

1− Vστ Π̃(q0, q)

�
Ansatz for the spin-isospin charge-exchange 
response function: 

Collisional broadening (finite lifetime) introduced in 
the relaxation time approximation: Γ = τ−1

σ



ABSORPTION RATES IN RPA & DAMPING 
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•RPA correlations suppress cross-section. Collisional 
broadening enhances it. 
•Net effect mild suppression.  Need further investigation.
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SUM RULES

2

I. NEUTRINO EMISSIVITY AND THE SPIN STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino interaction rates in the medium can be factored into a

product of two terms: (i) the correlation functions of the dense medium, and (ii) kinematical factors and coupling

constants associated with neutrino currents. The latter are well-known and relatively simple functions of the neutrino

energy and momentum. In contrast, the spin, density and current correlation functions are complex functions of

temperature, density, and the energy and momentum transfer because multi-particle dynamics and correlations in the

ground state of the strongly interacting system play a critical role.

The dynamic spin structure factor Sσ(ω,q) of neutron matter encodes the linear response of neutron matter to spin

fluctuations and is defined as [2]

Sσ(ω,q) =
4

3n

1

2π

� ∞

−∞
dteiωt

�
s(t,q) · s(0,−q)

�

=
4

3n

�

f

�0|s(q)|f� · �f |s(−q)|0�δ(ω − (Ef − E0)) (1.1)

where s(t, q) = V −1
�N

i=1 e
−iq·ri(t)σi and σi is the spin operator acting on the ith nucleon at time t. The second line

expresses the same response as a sum over final states |f� coupled to the ground state through the time-independent

spin operator.

Alternatively in terms of the field operators, s(t, q) is Fourier transform of the spin density operator s(x) =
1
2ψ

+
(x) τ ψ(x) with τ being the usual Pauli matrix and ψ(x) is the non-relativistic field operator. The normal-

ization factor 4/3n where n is the neutron number density ensures that the dynamic form factor is canonically

normalized such that Sσ(q → ∞) = 1 for the non-interacting Fermi systems and conforms to the standard definitions

of the sum-rules discussed below in §II.
The rate of neutrino pair production can be expanded in powers of the nucleon velocity and the momentum of the

neutrino pair [1]. The neutrino emissivity of neutron matter denoted by Q, and defined as the rate of energy loss due

to neutrino pair production per unit volume and per unit time, to leading order in the neutron velocity and neutrino

momentum is given by[8]

Q =
C2

AG
2
Fn

20π3

� ∞

0
dω ω6 e−ω/TSσ(ω) , (1.2)

where GF = 1.166 × 10
−11

MeV
−2

is the Fermi constant of the weak interaction, CA = −1.26/2 is the neutron

neutral-current axial coupling constant. At low temperature, when T � EFn, where EFn is the neutron Fermi energy,

the neutrino pair momentum q is small compared to the both the Fermi momentum kFn and the intrinsic momentum

scales associated with the strong interaction, and may be neglected and Sσ(ω) = Sσ(ω,q = 0). Hence in Eq. (1.2)

only Sσ(ω) appears and it is both a function of density and temperature as implied by the ensemble average denoted

on the RHS of the equation (1.1).

II. SUM-RULES

The spin response describes the coupling to the ensemble of final states obtained by flipping all the ground-state

spins in neutron matter. If spin and space are uncoupled, spin is a good quantum number and there would be no

response at zero momentum transfer. However, the spin-orbit and tensor interactions (acting only in relative p−waves

and higher in neutron matter) induce a finite expectation value of �S2� even at T=0 and a finite response results.

The spin-orbit and tensor interactions are of pion range or less, so they predominantly affect neutrons coupled to spin

1 at a pair separation typical for nearest neighbors at that density. Although there is zero total momentum transfer,

the two interacting particles can nevertheless have significant relative momenta in the relevant final states.

The overall strength and energy distribution of the response can be characterized through the relevant sum-rules.

We employ Quantum Monte Carlo to compute the low order sum-rules that relate moments of Sσ(ω,q) to its ground

state properties. We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the

two-particle system to obtain constraints on the distribution of strength of Sσ(ω) as a function of ω at q = 0. For

the same reason, the response in Eq. (1.1) is solely due to the excitation of multi-particle states as single particle

excitations vanish for these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the

3

moments of the sum-rules defined by the relation

Sn
σ =

� ∞

0
Sσ(ω, q = 0) ωn dω, (2.1)

are calculable as ground state properties. The sum-rules provide a simple and systematic means to eliminate explicit
dependence on the intermediate excited states of the system.The relevant excited state information is sampled by
operators contained in the nuclear Hamiltonian. In this study we use the following sum-rule relations:

S−1
σ =

χσ

2n
(2.2)

S0
σ = 1 + lim

q→0

4

3N

N�

i �=j

�
0|e−iq·(ri−rj)σi · σj |0

�
(2.3)

S+1
σ = − 4

3N
lim
q→0

�
0|[HN , s(q)] · s(−q)|0

�
(2.4)

where χσ = ∂nσ/∂µσ is the spin susceptibility of the interacting ground state |0
�
of the nuclear Hamiltonian HN , and

nσ and µσ are number density and chemical potential of particles with spin σ (±1/2). Our strategy here is to evaluate
the right hand side of Eqs. (2.2), (2.3) and (2.4) using QMC and use this information to constrain the behavior of
Sσ(ω) for values of ω relevant to the calculation of neutrino production.

This strategy is not new, in Ref. [7] estimates of the S0
σ and S1

σ sum-rules were used to argue that spin response
function must saturate at high density, and in Ref. [12], sum-rules were used to estimate the relative importance of
multi-particle excitations to the response function in the kinematical regime where ω ≥ q. Our work improves upon
these earlier studies in two respects: (i) we compute and combine for the first time all three sum-rules to constrain
both low-frequency and high-frequency behavior of Sσ(ω, q = 0); and (ii) we deduce the high-frequency response or
short-time behavior of the two-particle dynamics where they dominate in the many-body system by direct calculation
of the two-particle matrix elements.

To compute the expectation values of operators in the ground state needed to evaluate the sum-rules we use a
non-relativistic nuclear Hamiltonian with local 2-body potentials of the form

HN =
N�

i

p2
i

2m
+

�

i<j

4�

p

vp(rij)O
(p)
ij . (2.5)

where Op=1,4
ij = (1,σi ·σj , Sij ,L ·S), and Sij = (3σ1 · r̂σ2 · r̂−σ1 ·σ2) is the tensor operator, and L ·S is the spin-orbit

operator. We employ the Auxiliary Field Diffusion Monte Carlo (AFDMC) method described in Ref. [13, 14] and use
the Argonne AV8’ form for the two-body interaction as it provides a good description of properties of light nuclei [15].
The AFDMC calculations use auxiliary field quantum Monte Carlo techniques to treat the spin and spatial degrees
of freedom in neutron matter. They have been used extensively to calculate the equation of state of neutron matter,
and also the spin susceptibility [16]. We use AFDMC to compute the sum-rules expressed in Eq. (2.2, 2.3) and 2.4.

The S−1
σ sum-rule is calculated by considering the ground state of neutron matter in the presence of a magnetic

field as proposed in Ref. [16]. The energy of neutron matter in the presence of a magnetic field is:

E(p) = E(0)− bP + (1/2)P 2E��(0), (2.6)

where E(0) is the ground state energy in the absence of a magnetic field, P = N↑−N↓
N↑+N↓

is the spin polarization, and

the spin susceptibility χσ is

χσ = µ2P
1

E��(0)
. (2.7)

The calculations are performed for zero magnetic field and a finite magnetic field for of order 60 particles in periodic
boundary conditions. The system we simulate has finite number of up and down neutrons, and the magnetic field is
chosen in such a way the finite system is close to the thermodynamic limit as described in Ref. [16]. In a non-superfluid
system, the calculation of the spin susceptibility yields the S−1

σ sum-rule.
We calculate S0

σ by computing the spin–dependent pair correlation function and evaluating the structure function
at q = 0. The spin correlation function is defined by

gσ(r) =
1

2πr2nN

�

i<j

�ψ|δ(rij − r)σi · σj |ψ�
�ψ|ψ� , (2.8)
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STRENGTH AT INTERMEDIATE ENERGY

• Response function constructed to satisfy QMC sum-rules at 
T=0 predict significant strength at 10-50 MeV. 
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Figure 2: (Color online) The spin response function Sσ(q = 0,ω) of neutron matter at saturation density obtained by fitting

to AFDMC sum-rules using two different ansatz are shown as the black solid and dashed curves. The inset compares the fits

and the two-particle response at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8

fm (green). The linear, low-frequency forms predicted in Ref. [22], labeled as OPE and χPT are shown for comparison. The

dot-dot-dashed curve is obtained using the two-body approach in Eq. (4.6) with OPE.

the structure function obtained in Ref. [22] are shown for the two choices of C̃σ corresponding to the OPE and χPT
potentials discussed earlier. The form of the low-frequency response in Eq. (4.1) is valid only at ω � EF . In the

figure we also show the results from the two-body approach (described in Eq. (4.6)) in the Born approximation with

OPE. At low frequency ω ≤ EF /2, it gives similar results to the quasi-particle picture, then becomes larger at higher

frequency since it includes the exact phase space integrals. The inset compares the fits and the two-particle response

at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8 fm (green). The

asymptotic forms and sum-rules force significantly more strength at lower energy than obtained previously.

The simple phenomenological fit (dashed line - Eq. (5.2) and the fit to the quasi-particle form (solid line - Eqs.

(4.5) and (5.1)) produce very similar response functions. In addition to the sum-rule constraints, we are forcing the

response to go to zero at low frequency, have a single peak structure, and to fall off fairly rapidly at high-energy as

obtained from the two-neutron response. Combined, these considerations place fairly tight constraints on the spin

response of neutron matter.

In Figure 3 we compare the response functions obtained over a range of densities n = 0.12, 0.16 and 0.20 fm−3. As

expected from the sum-rules, the peak of the response functions shifts to larger energy with increasing density. The

tensor and spin-orbit correlations are naturally of shorter range at the higher densities where the mean inter-particle

spacing is shorter, and hence the peak shifts to higher energy. The total strength in the response is fairly flat over

the regime of densities we consider as obtained in the sum-rule calculations for S0.

Finally, at higher density the distribution is somewhat broader as ω1 increases more rapidly with density than

ω0. Both ω0 and ω1 increase rapidly, presumably associated with the increasing importance of the shorter-range

5

the superfluid critical temperature. For T � ∆ where ∆ ≈ 1 MeV is the superfluid gap, the number of quasi-particles

is exponentially suppressed and response is vanishingly small. In vicinity of the critical temperature, Cooper pair

breaking and formation, as well as collective modes can enhance spin-fluctuations at a frequency ω ≈ (1 − 2)∆ [18].

It may be possible in the future to examine this regime more critically using techniques similar to those developed

here.

The AFDMC results for the sum-rules are shown in Table I where the individual sum-rules and average excitation

energies defined by ω̄0 = S0
σ/S

−1
σ and ω̄1 = S1

σ/S
0
σ are listed. The density dependence of the S0

σ sum-rule is quite

modest over the range of densities considered.

Table I: AFDMC results for the sum-rules
Density (fm−3) S−1

σ (MeV−1) S0
σ S+1

σ (MeV) ω̄0 (MeV) ω̄1 (MeV)
n = 0.12 0.0057(9) 0.20(1) 8(1) 35(9) 40(8)
n = 0.16 0.0044(7) 0.20(1) 11(1) 46(11) 55(8)
n = 0.20 0.0038(6) 0.18(1) 14(1) 47(12) 78(10)

The spin susceptibilities shown in table I correspond to χ/χF = 0.37, 0.34, and 0.34 for n = 0.12, 0.16, and 0.20

fm
−3

. At the lowest density this is very similar to results obtained in [16], at the highest density our result is

approximately 20 per cent lower for the susceptibility. The difference may lie in the fact that the three-nucleon force

used in [16] is repulsive in unpolarized neutron matter, and less so in spin-polarized matter.

The average energies ω̄0 and ω̄1 are extracted from the sum-rules as estimates for the energy of the peak of the

response, and their difference is a measure of the width of the distribution. The fact that the calculated ω̄0 and ω̄1

are fairly similar indicates a moderately narrow peak in the response. A positive definite response requires ω̄1 ≥ ω̄0.

The peaks shift to higher energy with increasing density, as expected. The tables also indicate that the strength

distribution gets more diffuse with increasing density with strength being pushed out to higher energy.

III. ASYMPTOTIC FORM AT HIGH ENERGY

In order to constrain the low-energy response relevant for astrophysical applications using sum-rules we need some

knowledge of the behavior of Sσ(ω) at large ω. In this regime the response probes the short time behavior of the

many-body correlation function and on general grounds we can expect this to be dominated by two-particle dynamics.

This intuitive expectation can be cast in more formal terms using the operator product expansion originally developed

by Wilson as a standard technique in quantum field theory. The operator product expansion has been used to analyze

short-time behavior of the density-density correlation function in a strongly interacting non-relativistic fermi gas

[19, 20]. Adapting this to the spin-density operator, the relevant expansion in this case organizes Sσ(ω) in terms of

local operators in inverse powers ω, and is given by

�
dt e

iωt

�
d
3
x ψ†σψ(t,R+ x) ψ†σψ(0,R− x) = iW1(ω) O

(1)
(R) + iW2(ω) O

(2)
(R) + · · · (3.1)

where the expectation value of the local operators O(n)
(R) depends on the many-body ground state but the Wilson

coefficients Wi(ω) depend only on few-body physics with i incoming and outgoing asymptotic states. For q = 0 the

Wilson coefficient W1(ω) vanishes identically in spin saturated system and the leading contribution is due to W2(ω).
The functional form of W2(ω) is determined by the matrix elements of the spin operator between two-body scattering

states. This implies that up to an overall constant which depends only on the ground state, Sσ(ω) at high frequency

is determined by the the two-body matrix elements. In general, this will depend sensitively on the short-distance

behavior of the two-nucleon interaction and will be model dependent. However, to extract the response at low energy

in a model independent fashion it suffices to use in the two-body calculation, the same Hamiltonian employed in the

calculation of the sum-rules in many-body calculation.

The spin response function Sσ(ω, q) for two neutrons are evaluated as follows,

Sσ(ω, q) = | < ψF |ÔA|ψI > |
2δ(ω + EI − EF ). (3.2)

For spin response at q=0, the operator is the sum of spins, ÔA = �σ1 + �σ2. ψI and ψF are the eigenstates of two

neutrons in spin-triplet states and take ψI to be the ground state.

We have calculated these matrix elements using the same nuclear Hamiltonian employed in the AFDMC by solving

the Schrödinger equation for two-neutrons with simple box boundary condition. These results indicate that the high



SUMMARY & OUTLOOK

• Formula that incorporate kinematics(recoil), full structure of 
the weak current(weak magnetism) and Pauli blocking exactly 
are available. 

• Correlations are relevant. Recent progress in including 
damping effects beyond RPA are important. 

• Charged current rates in the neutrino sphere are especially 
sensitive to many-body effects. 

• How do we benchmark calculations of response functions ? 

• General trends indicate large suppression at and above 
nuclear density - Implications ?     


