(1) Update on Gravitational-Wave Detectors(2) Studying Core-Collapse Supernovae with Gravitational Waves (and Neutrinos)

Christian D. Ott

TAPIR, California Institute of Technology cott@tapir.caltech.edu

Part (1) is for the LIGO Scientific Collaboration and the Virgo Collaboration

What are Gravitational Waves?

- GWs are very weak and interact weakly with matter. $~~h \lesssim 10^{-21}$
 - No human-made sources.
 - Bad: Very hard to detect.
 - Good: Travel from source to detectors unscathed by intervening material.

(for most astrophysical

sources)

Gravitational Wave Emission

Canonical example:

Binary of two compact stars (mix of WDs,NSs,BHs). Inspiral and merger driven by GW emission.

Detecting Gravitational Waves

Auriga

Multiple bars on-line: Explorer (at CERN) Auriga (Padova) Nautilus (Frascati) Allegro (LSU) Schernberg (Sao Paulo)

Joe Weber

Broadband Gravitational-Wave Detectors

Prototypes in 70's & 80's at Garching, Glasgow, Caltech & other institutions.

C. D. Ott @ INT, 2012/07/18

Rai Weiss

R. L. Forward, Hughes Research, 1973

Fig. 4. Photograph of interferometer setup on 3-Hz isolation suspension.

C. D. Ott @ INT, 2012/07/18

Laser Interferometer Gravitational-Wave Observatory

LIGO Hanford, Washington 2 & 4 km interferometers

C. D. Ott @ INT, 2012/07/18

Kip Thorne, Rai Weiss, Ron Drever

LIGO Livingston, Louisiana 4 km interferometer

NSF

LIGO

Envisioned in the 1980s by Kip Thorne, Rai Weiss, Ron Drever Built in the 1990s.

6 "science runs" 2002-2010.

Gravitational Wave Astronomy International Network of LIGOs

First Generation – 2000 -- 2010

- Sky coverage
- Duty cycle

C. D. Ott @ INT, 2012/07/18

Initial LIGO

Abbott et al., LSC, Rep. Prog. Phys. **72** (2009) 076901

Noise Budget

Anthropogenic Noise...

+ trucks, trains, tree cutting, rush hour on highways...

The Data Analysis Challenge: Digging out the Signal

Gravitational Wave Data Analysis

Must deal with a variety of source types:

- **Binary Coalescence**: Inspiral signal predicted nearly exactly. Merger can be predicted exactly for BH-BH. -> "Matched Filtering"
- Bursts: Signals that can't be predicted exactly Core-collapse supernovae, postmerger NSNS/NSBH, long GRBs, SGRs, and unknown sources. -> Excess-Power Searches.

Excess Power Search Method

GW Spectrogramm

- Decompose data stream into time-frequency pixels.
- Normalize power by noise level.
- Search for "hot" regions with excess power.
- Use intelligent "clustering" algorithms to optimize search/exclude background. C. D. Ott @ University of Rochester, 2012/04/18

Gravitational Wave Data Analysis

Must deal with a variety of source types:

- **Binary Coalescence**: Inspiral signal predicted nearly exactly. Merger can be predicted exactly for BH-BH. -> "Matched Filtering"
- Bursts: Signals that can't be predicted exactly Core-collapse supernovae, postmerger NSNS/NSBH, long GRBs, SGRs, and unknown sources. -> Excess-Power Searches.
- Continuous sources: pulsars with tiny mountains or r-modes. Must integrate for many cycles (computationally limited); http://einstein.phys.uwm.edu/ : Einstein@Home
- **Stochastic:** Cosmic GW background primordial and summed-up signals from cosmological supernovae, mergers, GRBs etc.
- -> There is a working group for each signal type in LSC/Virgo.

C. D. Ott @ INT, 2012/07/18

Electromagnetic Follow-Up Observations

- Sky localization of GW event possible via triangulation between 3 (or more) detectors.
- S6A/B science run: V1/L1/H1/G1 Dec 17, '09 – Jan 8, '10 Sep 4, '10 – Oct 20, '10
- Low-latency data analysis.
 High-significance triggers passed to telescope partners.

Abadie et al. (LSC+Virgo), Astron. Astrophys. 539, A124 (2012)

 Large error boxes – few to tens of square degrees (timing/calibration uncertainties, weak signals)
 C. D. Ott @ INT, 2012/07/18

Electromagnetic Follow-Up Observations

Abadie et al. (LSC+Virgo), Astron. Astrophys. 539, A124 (2012)

- ROTSE 3.4 sq deg. PTF 7.8 sq deg.
- QUEST 9.4 sq. deg. Liverpool 21 sq. arcmin.

X-Ray and UVOT:

• Swift – 0.15 sq. deg.

Advanced LIGO

Advanced LIGO

What is Advanced?

Parameter	Initial LIGO	Advanced LIGO	ETM
Input Laser Power	10 W (10 kW arm)	180 W (>700 kW arm)	
Mirror Mass	10 kg	40 kg	
Interferometer Topology	Power- recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry-Perot arm cavity Michelson (stable RC)	$\begin{array}{c c} ly \\ p \\ pR3 \\ SR2 \\ POX \\ ls \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband	
Seismic Isolation Performance	<i>f_{low}</i> ~ 50 Hz	<i>f_{low}</i> ~ 12 Hz	Using the same
Mirror Suspensions	Single Pendulum	Quadruple pendulum	vacuum system as Initial LIGO.

Projected Advanced LIGO Performance

Factor of ~10 better amplitude sensitivity than Initial LIGO
 → Factor of ~1000 greater volume of space

What will Advanced Detectors see?

• Summarized in Abadie et al., CQG 27, 173001 (2010) :

IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{\rm re} { m yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
Initial	NS–NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01 ^c
	IMBH-IMBH			$10^{-4 d}$	10^{-3e}
Advanced	NS–NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH–BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300 ^c
	IMBH-IMBH			0.1 ^d	1 ^e

 Table 5. Detection rates for compact binary coalescence sources.

"Realistic" (=best-guess) event rates per year with Advanced detectors later this decade

Networks of Advanced Detectors

Sky Localization Error Ellipses

Red crosses denote regions where the network has blind spots

C. D. Ott @ INT, 2012/07/18

Networks of Advanced Detectors: Case 2

Sky Localization Error Ellipses

Adding detector in India would remove blind spots and improve pointing accuracy for follow-up.

Fairhurst 2011

LIGO India

- Direct partnership between LIGO Laboratory and the IndIGO consortium + 3 lead institutions to build a GW detector in India.
- LIGO will provide hardware of second Hanford Advanced LIGO interferometer.
- India will provide infrastructure, staff, and operating costs.
- Approved by LIGO, LSC.
 Final NSF Review done and passed on to National Science Board.
- \$200M "mega-project" in Indian 5-year plan.
 Biggest proposed bilateral US-India science project.

C. D. Ott @ INT, 2012/07/18

LIGO India

- Direct partnership between LIGO Laboratory and the IndIGO consortium + 3 lead institutions to build a GW detector in India.
- LIGO will provide hardware of second Hanford Advanced LIGO interferometer.
- India will provide infrastructure, staff, and operating costs.
- Approved by LIGO, LSC.
 Final NSF Review done and passed on to National Science Board.
- \$200M "mega-project" in Indian 5-year plan.
 Biggest proposed bilateral US-India science project.

- LIGO-India will have three phases: (1) Site selection and facility design.
- (2) Site/facility/vacuum construction.
- (3) Detector installation and commissioning(> 2018-2020)

C. D. Ott @ INT, 2012/07/18

The Advanced GW Detector Network: 2020+

The Ultimate Network: Hanford—LIGO India—KAGRA—Livingston--Virgo

LIGO Laboratory

LIGO-G1200541-v1

C. D. Ott @ INT, 2012/07/18

Fairhurst 2011

Advanced LIGO Timeline and Trigger Release

Discovery Phase

- 2015/16+, until multiple (N=4) detections have been made.
- Trigger release to partner collaborations (via MoU) and electromagnetic telescopes for follow-up.
- No low-latency public data release.

Observational Phase

- 2017+ (?), after at 4 detections/publications.
- High-confidence triggers released to public (-> SNEWS).
- Full data release with 2 year latency, 6 month cadence.

Observing the CCSN Mechanism

Probing the "Supernova Engine"

- Gravitational Waves
- Neutrinos

EM waves (optical/UV/X/Gamma): secondary information, late-time probes of engine.

Red Supergiant Betelgeuse D ~200 pc

Supernova "Central Engine"

Gravitational-Waves from Core-Collapse Supernovae

Recent reviews: Ott '09, Kotake '11, Fryer & New '11

Need:

$$h_{jk}^{TT}(t,\vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t-\frac{|\vec{x}|}{c})\right]^{TT}$$

accelerated aspherical (quadrupolar) mass-energy motions

Candidate Emission Processes:

- Neutrino-driven Convection and SASI
- Prompt convection
- Protoneutron star convection
- Rotating collapse & bounce
- Rotational 3D instabilities

- Black hole formation
- Pulsations of the protoneutron star
- Anisotropic neutrino emission
- Aspherical accelerated outflows
- Magnetic stresses
- Tasks: (1) Determine GW signals from these emission processes.
 - (2) Connect GW emission processes to CCSN Mechanism.
 - (3) Detection: How far out can we detect GWs from CCSNe and can we infer the explosion mechanism (and other physics)?

Gravitational-Waves from Core-Collapse Supernovae

Recent reviews: Ott '09, Kotake '11, Fryer & New '11

$$h_{jk}^{TT}(t,\vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t-\frac{|\vec{x}|}{c})\right]^{TT}$$

accelerated aspherical (quadrupolar) mass-energy motions

Candidate Emission Processes:

- Neutrino-driven Convection and SASI
- Prompt convection
- Protoneutron star convection
- Rotating collapse & bounce
- Rotational 3D instabilities

- (Black hole formation)
- Pulsations of the protoneutron star
- Anisotropic neutrino emission
- Aspherical accelerated outflows
- Magnetic stresses
- Tasks: (1) Determine GW signals from these emission processes.
 - (2) Connect GW emission processes to CCSN Mechanism.
 - (3) Detection: How far out can we detect GWs from CCSNe and can we infer the explosion mechanism?

GWs from Convection & SASI

Recent work: Kotake et al. '09, '11, Murphy et al. '09, Müller (B&E) et al. '11/'12

Here: **2D simulations** (see Annop Wongwathanarat's talk for 3D this afternoon!)

- Prompt convection soon after bounce (Marek et al. '09, Ott '09).
- Neutrino-driven convection & SASI (many authors).
- Protoneutron star convection (Keil et al. '96, Müller & Janka '07, Müller et al. '04)

Murphy, Ott, Burrows '09

GWs from Convection & SASI

Murphy, Ott, Burrows '09

GWs from Convection & SASI (2D)

GWs from Convection & SASI (2D)

GWs from Convection & SASI (2D)

GWs from Rotating Collapse & Bounce

Recent work: Dimmelmeier+ '08, Takiwaki & Kotake '11, Scheidegger+ '10, Ott+ '12

Rapid rotation:

Oblate deformation of the inner core

- Most extensively studied GW emission in core collapse
- Axisymmetric: ONLY h₊
- Simplest GW emission process:
 Rotation + Gravity +
 Stiffening of EOS.

GWs from Rotating Collapse & Bounce: New Study

Team: Ott, Abdikamalov, O'Connor, Reisswig, Haas, Kalmus, Drasco, Burrows, Schnetter

- 3D GR hydro
 + full spacetime evolution.
- Simulation in a 3D octant.
- Approximate neutrino treatment:
 - 3 species *leakage* scheme $u_e, \overline{\nu}_e, \nu_x = \{\nu_\mu, \overline{\nu}_\mu, \nu_\tau, \overline{\nu}_\tau\}$
 - Heating/cooling & deleptonization (ΔY_e)
 - Improvement over

Murphy/Nordhaus/Burrows+ '08,'09,'12.

- Somewhat worse than Kuroda+ '12.
- Far inferior to B. Müller+ '09, '12ab.
- Open-source 3D adaptive-mesh refinement code based on the Einstein Toolkit (<u>einsteintoolkit.org</u>).
- Open EOS/neutrino microphysics at <u>stellarcollapse.org</u>.

[Ott et al. '12, <u>arXiv:1204.0512</u>, PRD in press]

GWs from Rotating Collapse & Bounce: New Study

Team: Ott, Abdikamalov, O'Connor, Reisswig, Haas, Kalmus, Drasco, Burrows, Schnetter

[Ott et al. '12, <u>arXiv:1204.0512</u>, PRD in press]

Simulation Goals and Setup

- How sensitive is the GW signal to neutrino emission after bounce? What is the dependence on progenitor star structure?
- 12 M_{Sun} & 40 M_{Sun} model; set up to have nearly the same angular momentum within ~0.5 M_{Sun}.
- Initial rotation rates leading to PNS with 10 ms to 2 ms periods (-> very rapid rotation).
- Neutrinos: Y_e(ρ) [Liebendörfer '05] & leakage after bounce.
- LS220 EOS.

Baseline Results

- Very weak sensitivity to neutrino emission after bounce.
- Very weak dependence on progenitor ("universality of core collapse").

Correlated GW and Neutrino Signals: Rotation

[Ott et al. '12, arXiv:1204.0512]

Correlated GW and Neutrino Signals: Rotation

[Ott et al. '12, arXiv:1204.0512]

Can we observe this?

[Ott et al. '12, arXiv:1204.0512]

Gravitational Waves

C. D. Ott @ INT, 2012/07/17

Can we observe this?

[Ott et al. '12, arXiv:1204.0512]

Neutrinos

~1 kpc with a megaton water-Cherenkov detector. IceCube limited by readout rate. c. D. Ott @ INT, 2012/07/17

(2) Connecting GW Signals and Explosion Mechanisms

Ott '09, CQG see also Kotake '11, Kotake et al.'12

Connecting GW Signals and Explosion Mechanisms

Ott '09, CQG 26, 063001

Connecting GW Signals and Explosion Mechanisms

Connecting GW Signals and Explosion Mechanisms

Caveats:

- GW signal predictions still mostly based on 2D simulations.
- Advanced LIGO sensitivity: Need core-collapse supernova in the Milky Way.

(3) Inferring Physics from GW Observations of Core-Collapse Supernovae

Logue, Ott, Heng, Kalmus, Scargill 2012, arXiv:1202.3256

Supernova Model Evidence Extractor (SMEE)

Logue et al. '12, arXiv:1202.3256, PRD in press

• Can we really tell these signals apart in a noisy detector?

• For model selection: When comparing two models, odds ratio is sufficient: "Marginal Likelihood"

$$O_{ij} = \frac{P(M_i|I)P(D|M_i,I)}{P(M_j|I)P(D|M_j,I)} P(D|M,I) = \int_{\theta} p(\theta|M,I)p(D|\theta,M)d\theta$$
Binometers Binometers
Ratio of Priors Binometers Binometers

$$O_{ij} = \log P(D|M_i,I) - \log P(D|M_j,I)$$

Supernova Model Evidence Extractor (SMEE)

Logue et al. '12, arXiv:1202.3256, PRD in press

Must consider two cases:

(1) Is signal different from noise?

$$\log B_{SN} = \log P(D|M_S,I) - \log P(D|M_N,I)$$

$$M_S \ \text{ signal model} \ M_N \ \text{ noise model (here: Gaussian, stationary)}$$

(note: real detector noise: non-Gaussian, non-stationary)

(2) Comparison of signal models

$$\log B_{ij} = \log P(D|M_i, I) - \log P(D|M_j, I)$$

Problem: How to describe signal mode? GW signals cannot be predicted exactly (turbulence! + unknown physics).

SMEE: Signal Models

Logue et al. '12, arXiv:1202.3256, PRD in press Consider waveforms representative for:

Neutrino Mechanism

Magnetorotational Mechanism

Acoustic Mechanism

Uncertainties in Signals:

Use Principal Component Analysis (PCA) to extract robust signal features from model catalogs, then look for linear combinations of these features.

In this study: Simplified analysis Single aLIGO detector, Gaussian noise, single polarization, optimal orientation

Principal Component Analysis

Results: Ideal Case

Logue et al. '12, arXiv:1202.3256, PRD in press

Injected "known" waveforms from catalogs that were used to generate principle components (PCs); use first 7 PCs.

 $\log B_{ij} = \log P(D|M_i, I) - \log P(D|M_j, I)$

Results: More realistic case

Logue et al. '12, arXiv:1202.3256, PRD in press

Use **unknown waveforms** from different studies modeling the same physics. Scheidegger et al. '10: magnetorotational mechanism.

Yakunin et al. '10: neutrino mechanism

-> Method robust for magnetorotational mechanism out to 10 kpc.

-> Can identify neutrino mechanism out to ~2 kpc (using Murphy+ 09 PCs).

C. D. Ott @ INT, 2012/07/17

Summary

 Advanced LIGO/Virgo/KAGRA are on track. L1/H1 online in ~2015 at initial aLIGO sensitivity. LIGO India likely to happen. 2020: L1/H1/V1/K1/I1 network.

- Core-collapse supernovae do emit GWs, but emission is weak & even advanced detectors can only see galactic (+LMC/SMC) events.
- GW observations (combined with neutrino observations) could provide crucial insight into the heart of the next galactic supernova.
 Need detailed, robust, reproducible GW+v predictions from self-consistent models.
- The next galactic core-collapse supernova has already exploded, but its GWs (& neutrinos & light) better not get here until ~2015...

Supplemental Slides

Gravitational Waves from Black Hole Formation

Ott, Reisswig (Einstein Fellow), Schnetter, O'Connor, Sperhake, Löffler, Diener, Abdikamalov, Hawke, Burrows PRL 106, 161103 (2011)

- 75-M_{Sun} 10⁻⁴ solar-metallicity progenitor of Woosley et al. 2002., ξ~1.14
- Rotation law based on Woosley & Heger 2006.
- Soft EOS with $M_{max} \sim 1.7 M_{Sun}$. Neutrino cooling; no heating.

Computational Setup

Time: -1.49 ms

3D BH Formation: First Results

[Ott et al. 2011, PRL]

C. D. Ott @ CfA/ITC, 2011/02/10

Nascent BH Spin Evolution

[Ott et al. 2011, PRL]

Gravitational Waves from BH Formation

C. D. Ott @ CfA/ITC, 2011/02/10