
Inferring	
  Core-­‐Collapse	
  Supernova	
  Physics	
  
from	
  Gravita:onal-­‐Wave	
  Observa:ons	
  

Chris:an	
  D.	
  O@	
  
TAPIR,	
  California	
  Ins:tute	
  of	
  Technology	
  

co@@tapir.caltech.edu	
  

Collaborators	
  on	
  this	
  project:	
  
Josh	
  Logue	
  (Glasgow),	
  I.	
  Siong	
  Heng	
  (Glasgow),	
  
James	
  Scargill	
  (Oxford)Peter	
  Kalmus	
  (Caltech)	
  



The	
  Advanced	
  GW	
  Detector	
  Network:	
  2020+	
  

2	
  C.	
  D.	
  OH	
  @	
  INT,	
  2012/07/25	
  

GEO	
  600	
  (HF)	
  2011	
  	
  Advanced	
  LIGO	
  	
  
Hanford	
  2015+	
  	
  

Advanced	
  LIGO	
  	
  
Livingston	
  	
  
2015+	
  	
  

Advanced	
  	
  
Virgo	
  2015+	
   LIGO	
  India	
  

2020+	
  

KAGRA	
  
2017+	
  



Observing	
  the	
  CCSN	
  Mechanism	
  

C.	
  D.	
  OH	
  @	
  INT,	
  2012/07/17	
   3	
  

Red	
  Supergiant	
  	
  
Betelgeuse	
  	
  
D	
  ~200	
  pc	
  

300	
  km	
  800	
  million	
  km	
  
HST	
  

Supernova	
  “Central	
  Engine”	
  

Probing	
  the	
  “Supernova	
  Engine”	
  
-­‐  Gravita:onal	
  Waves	
  
-­‐  Neutrinos	
  
EM	
  waves	
  (op:cal/UV/X/Gamma):	
  	
  
secondary	
  informaaon,	
  	
  
late-­‐ame	
  probes	
  of	
  engine.	
  



Gravita:onal-­‐Waves	
  from	
  Core-­‐Collapse	
  Supernovae	
  

C.	
  D.	
  OH	
  @	
  INT,	
  2012/07/17	
   4	
  

Recent	
  reviews:	
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Tasks:	
   (1)  Determine	
  GW	
  signals	
  from	
  these	
  emission	
  processes.	
  
(2)  Connect	
  GW	
  emission	
  processes	
  to	
  CCSN	
  Mechanism.	
  
(3)  Detecaon:	
  How	
  far	
  out	
  can	
  we	
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  GWs	
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  CCSNe	
  and	
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  mechanism	
  (and	
  other	
  physics)?	
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OH	
  ‘09,	
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Mechanism	
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Mechanism	
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Mechanism	
  

	
  

Dominant	
  GW	
  Emission	
  Processes	
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  convecaon,	
  	
  
Standing-­‐Accreaon-­‐Shock	
  Instability	
  

Rotaang	
  core	
  collapse	
  &	
  bounce,	
  
rotaaonal	
  3D	
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  star	
  pulsaaons.	
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  &	
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  ’08,	
  
	
  Marek	
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  et	
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  06,	
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  et	
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  Burrows	
  et	
  al.	
  ’07,	
  Takiwaki	
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  ‘11]	
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  ‘10,	
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  et	
  al.	
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Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts
of gravitational waves (GWs) that might be detected by the advanced generation of laser interfer-
ometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT.
GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct evidence for the yet
uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations
of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion
mechanisms have predicted GW signals which have distinct structure in both the time and frequency
domains. Motivated by this, we describe a promising method for determining the most likely explo-
sion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and
Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector
and linear waveform polarization for simplicity, we demonstrate that our method can distinguish
magnetorotational explosions throughout the Milky Way (D . 10 kpc) and explosions driven by
the neutrino and acoustic mechanisms to D . 2 kpc. Furthermore, we show that we can di↵erenti-
ate between models for rotating accretion-induced collapse of massive white dwarfs and models of
rotating iron core collapse with high reliability out to several kpc.

PACS numbers: 04.30.Tv, 04.80.Nn, 05.45.Tp, 97.60.Bw

I. INTRODUCTION

Almost eighty years after the proposal by Baade &
Zwicky that (core-collapse) supernovae represent the
transition of an ordinary massive star into a neutron star
[1], we still lack a complete understanding of this phe-
nomenon. In particular, we do not know with certitude
how the supernova mechanism operates and converts the
necessary fraction of gravitational energy of collapse into
kinetic energy and light of the explosive outflow.

The basic story line of core collapse goes as follows
(see [2, 3] for detailed reviews): At the end of a massive
star’s (8 � 10 M

�

. M . 130 M
�

at zero-age main se-
quence [ZAMS]) life, nuclear burning has ceased in its
core, which is then composed primarily of iron-group nu-
clei (or O-Ne nuclei at the lower end of the mass range)
and supported against gravity by the pressure of rela-
tivistically degenerate electrons. Eventually, the core ex-
ceeds its e↵ective Chandrasekhar mass and dynamical
collapse sets in. The collapsing core separates into sub-
sonically infalling homologous (v / r) inner core and su-

⇤Electronic address: j.logue@physics.gla.ac.uk
†Electronic address: cott@tapir.caltech.edu
‡Electronic address: Ik.Heng@glasgow.ac.uk
§Electronic address: kalmus@caltech.edu
¶Electronic address: james.scargill@new.ox.ac.uk

personically collapsing outer core [4, 5]. When the inner
core reaches nuclear density, the repulsive core of the nu-
clear force leads to a sti↵ening of the nuclear equation of
state (EOS). The inner core, suddenly supported by the
sti↵ supernuclear EOS, overshoots its new equilibrium,
then bounces back into the still infalling outer core. A
shock wave forms at the sonic point between inner and
outer core at an enclosed baryonic mass of ⇠0.5 M

�

. It
quickly moves out in radius and mass, but must do work
in breaking up infalling iron-group nuclei. This and neu-
trino losses from electron capture in the region behind
the shock sap its might. The shock succumbs to the ram
pressure of the outer core, stalls, and turns into an ac-
cretion shock.

The shock must be re-energized to drive a core-collapse
supernova explosion and, in the canonical scenario, leave
behind a neutrino-cooling and contracting protoneutron
star. This shock revival must, depending on progenitor
star structure, occur within ⇠0.5 � 3 s, otherwise accre-
tion will push the protoneutron star over its maximum
mass, leading to collapse and black hole formation [6].
Understanding the supernova mechanism, which must ro-
bustly revive the stalled shock in supernovae from mas-
sive stars that are observed on a daily basis, is the prin-
ciple current challenge of core-collapse supernova theory.

Observational clues for the supernova mechanism are
few. Electromagnetic waves are emitted in optically thin
regions far from the core and thus yield only second-
hand information about the supernova mechanism. Yet,
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P (M |D, I) =
P (M |I)P (D|M, I)

P (D|I)

•  Can	
  we	
  really	
  tell	
  these	
  signals	
  apart	
  in	
  a	
  noisy	
  detector?	
  
•  Approach:	
  Bayesian	
  Model	
  Selecaon	
  
Bayes	
  Theorem:	
  

“Posterior	
  
	
  	
  Probability”	
   “Prior	
  

	
  	
  Probability”	
  
“Evidence	
  
	
  	
  	
  (Likelihood)”	
  

•  For	
  model	
  selecaon:	
  When	
  comparing	
  
two	
  models,	
  odds	
  raao	
  is	
  sufficient:	
  

M: 	
  Model	
  
D: 	
  Data	
  
	
  I: 	
  Prior	
  informaaon	
  

Normalizaaon	
  

“Marginal	
  Likelihood”	
  

P (D|M, I) =

Z

✓
p(✓|M, I)p(D|✓,M)d✓

Bij

θ:	
  Model	
  Parameters	
  

Bayes	
  Factor	
  Raao	
  of	
  Priors	
  

logBij = logP (D|Mi, I)� logP (D|Mj , I)

Oij =
P (Mi|I)P (D|Mi, I)

P (Mj |I)P (D|Mj , I)



CCSN Mechanisms 
from simulations 

Neutrino mechanism 

 3x1053 erg released in gravitational energy 
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 1052 erg in rotational, 10x explosion energy 

 Need strong magnetic fields 

Acoustic mechanism 

 PNS pulsations grow unstable after ~1 s 

 Less well-supported in literature 
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-­‐>	
  Waveforms	
  impossible	
  to	
  predict	
  exactly.	
  

-­‐>	
  Parameter	
  studies	
  of	
  GW	
  emission	
  in	
  CCSNe	
  provide	
  waveform	
  catalogs.	
  

-­‐>	
  Approach:	
  Try	
  to	
  isolate	
  robust	
  features	
  present	
  in	
  waveform	
  catalogs	
  
	
  and	
  parameterize	
  waveforms	
  according	
  to	
  these.	
  



Principal	
  Component	
  Analysis	
  

C.	
  D.	
  OH	
  @	
  INT,	
  2012/07/17	
   14	
  

Assumpaon:	
  
Logue	
  et	
  al.	
  ‘12,	
  arXiv:1202.3256,	
  PRD	
  in	
  press,	
  

previously	
  applied	
  to	
  GWs	
  by	
  Heng	
  ’09,	
  Roever+	
  ‘09	
  

Gravitaaonal	
  wave	
  signals	
  have	
  certain	
  robust	
  features	
  in	
  their	
  ame	
  
series	
  or	
  power	
  spectra	
  that	
  can	
  be	
  isolated.	
  

Example:	
  

the component associated to Ye in the system (4) of hydro-
dynamic evolution equations is treated as a passive advec-
tion equation, which does not contribute to the
characteristic structure in the form of eigenvalues and
eigenvectors required by some flux solvers.

To numerically solve the metric equations we utilize an
iterative nonlinear solver based on spectral methods. The
spectral grid of the metric solver is split into 6 radial
domains with 33 radial and 17 angular collocation points
each. The combination of high-resolution shock-capturing
methods for the hydrodynamics and spectral methods for
the metric equations (the Mariage des Maillages or ‘‘grid
wedding’’ approach) in a multidimensional numerical code
has been presented in detail in [62]. Even when using
spectral methods the calculation of the spacetime metric
from the system (12)–(14) of elliptic equations is computa-
tionally expensive. Hence, in our simulations the metric is
updated only once every 100=10=50 hydrodynamic time
steps before/during/after core bounce, and extrapolated in
between. The numerical adequacy of this procedure has
been tested and discussed in detail in [14].

In this study we focus on the gravitational wave signal
associated with core bounce. As demonstrated by [17,25],
effects that may break rotational symmetry are most likely
unimportant in this context. Hence, we assume axisymme-
try and in addition impose symmetry with respect to the
equatorial plane.

The COCONUT code utilizes Eulerian spherical coordi-
nates fr; !g, and for the computational grid we choose 250
logarithmically spaced, centrally condensed radial zones
with a central resolution of 250 m and 45 equidistant
angular zones covering 90!. A small part of the grid is
covered by an artificial low-density atmosphere extending
beyond the core’s outer boundary defined where " "
10#4"c;i.

We also note that we have performed extensive resolu-
tion tests with different grid resolutions to ascertain that
the grid setup specified above is appropriate for our
simulations.

IV. COLLAPSE DYNAMICS AND WAVEFORM
MORPHOLOGY

A. Generic waveform type

We begin our discussion with an analysis of the gravi-
tational radiation waveform emitted during core bounce as
an indicator for the influence of the EoS, the progenitor
structure, and the precollapse rotational configuration on
the collapse and bounce dynamics. In Fig. 2, we present
example waveforms for representative collapsing cores
selected from the investigated parameter space of models
(i.e., less or more massive progenitors with slow or rapid
precollapse rotation, varying degree of differential rota-
tion, and using either the Shen EoS or LS EoS). The
waveforms of all models are of type I, and hence exhibit
a positive prebounce rise and a large negative peak, fol-

lowed by a ringdown. In the light of a considerably ex-
tended parameter space in terms of EoS and progenitor
mass of the rotating core-collapse models investigated in
this work, we thus confirm the observation presented in
[17,18,38,41] that in general relativistic gravity all models
with microphysics exhibit gravitational wave burst signals
of type I.

0 10 20 30 40

-1

0

1

2

h 
[1

0-2
1  a

t 1
0 

kp
c]

0 10 20
-10

-5

0

5

31O3A11s70O1A11s

0 10 20 30

-4

-2

0

2

h 
[1

0-2
1  a

t 1
0 

kp
c]

0 10 20

-5

0

5 90O2A02s50O2A51s

0 10 20 30 40
-4

-3

-2

-1

0

1

2

3

h 
[1

0-2
1  a

t 1
0 

kp
c]

0 20 40 60

-5

0

5

31O3A04s70O1A04s

0 20 40

t − tb [ms]

-5

0

5

Shen EoS
LS EoS

b02e

0 10 20

t − tb [ms]

-10

-5

0

5

h 
[1

0-2
1  a

t 1
0 

kp
c] a51e

FIG. 2 (color online). Time evolution of the gravitational wave
amplitude h for representative models with different precollapse
rotation profiles using the Shen EoS (red lines) or LS EoS (blue
lines). Models with slow and almost uniform precollapse rotation
(e.g., s11A1O07) develop considerable prompt postbounce con-
vection visible as a dominating lower-frequency contribution in
the waveform, while the waveform for both models with mod-
erate rotation (e.g., s11A3O13, s15A2O05, s20A2O09,
s40A1O07, or e15a) and rapidly rotating models, which undergo
a centrifugal bounce (e.g., s40A3O13 or e20b), exhibit an
essentially regular ringdown. Time is normalized to the time
of bounce tb.
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Gravitaaonal	
  wave	
  signals	
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  certain	
  robust	
  features	
  in	
  their	
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series	
  or	
  power	
  spectra	
  that	
  can	
  be	
  isolated.	
  

Procedure	
  for	
  feature	
  isolaaon:	
  
•  Take	
  m	
  waveforms	
  of	
  length	
  n	
  that	
  span	
  the	
  m-­‐dimensional	
  
parameter	
  space	
  and	
  construct	
  n	
  x	
  m	
  matrix	
  A.	
  

•  One	
  can	
  show	
  (-­‐>linear	
  algebra)	
  that	
  the	
  eigenvectors	
  Ui	
  of	
  AAT	
  
are	
  orthorgonal	
  basis	
  vectors	
  of	
  the	
  m-­‐dimensional	
  parameter	
  
space.	
  They	
  are	
  the	
  principal	
  components	
  (PCs).	
  

•  The	
  PCs	
  are	
  ordered	
  according	
  to	
  the	
  values	
  of	
  their	
  eigenvalues	
  
λi,	
  which	
  indicate	
  the	
  importance	
  of	
  any	
  given	
  PC	
  in	
  the	
  parameter	
  
space	
  spanned	
  by	
  m	
  waveforms.	
  

•  If	
  the	
  PCA	
  works	
  efficiently,	
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ATA and ⌃ is an n⇥m diagonal matrix whose elements
correspond to the square root of the corresponding eigen-
values.

Since AAT is the covariance matrix of A, the eigen-
vectors in U are e↵ectively an orthonormal basis which
span the m-dimensional parameter space defined by the
catalog of waveforms used to construct A. Note that, in
practice, n � m and it is impractical to determine the
eigenvectors in U directly. Instead, the smaller V and
its corresponding eigenvalues in ⌃ are first determined
which are subsequently used to derive U.

The orthonormal eigenvectors of U are the PCs and
are ranked by their corresponding eigenvalues. The PC
with the largest corresponding eigenvalue is referred to
as the first PC and consists of the most significant com-
mon features of all waveforms in the catalog. It follows
that the PC with the second largest corresponding eigen-
value is the second PC and consists of the second most
significant common features and so on.

The waveforms in A can be reconstructed by taking a
linear combination of PCs,

hi ⇡

kX

j=1

Uj�j , (7)

where hi is the desired waveform from the catalog, Uj

is the jth PC from the U matrix and �j is the corre-
sponding PC coe�cient, which can be obtained by pro-
jection of hi onto Uj . The sum of k PCs produces an
approximation of the desired waveform since k  m.

E. Signal and Noise Models

For the analysis described here, two types of models
are considered. The signal model Ms tests the presence
of a signal waveform h(�) in the data. Here, PCA is per-
formed for each catalog (using SVD; see section IIID)
and each waveform is parameterized by its PC coe�-
cients (�). The Gaussian likelihood function for the sig-
nal model is

p(D|�, Ms) =
NY

i=1

1

�i

p

2⇡
exp


�

(Di � hi(�))2

2�2
i

�
, (8)

where �i is the standard deviation of the noise, hi(�)
is the desired waveform reconstructed from the PCs and
N is the length of the data with a corresponding index
i. The evidence for the signal model is determined by
performing the integral in Eq. 2 numerically across all
chosen values of �.

On the other hand, the noise model Mn tests the data’s
consistency with Gaussian noise. The likelihood function
for the noise model is the same as that in Eq. 8, but with
h(�) = 0. From this, it is straightforward to perform the

integration in Eq. 2 and obtain an analytic form for the
noise evidence function,

p(D|Mn) =
NY

i=1

1

�i

p

2⇡
exp

�

D2
i

2�2
i . (9)

In both Eq. 8 and 9, the standard deviation of the noise
is a function of each sample in the data, because the sim-
ulated noise is designed to correspond to the expected
sensitivity of Advanced LIGO, which varies as a function
of frequency (see Sec. III F). To handle the frequency-
dependent noise, the signal and noise evidences are calcu-
lated in the frequency domain with Di, hi(�) and �i cor-
responding to data, reconstructed waveform, and noise
in the i-th frequency bin respectively. In particular, each
reconstructed waveform is obtained by taking a linear
combination of the Fourier transforms of its correspond-
ing PCs.

The natural logarithm of the Bayes factor used to com-
pare the signal model to the noise model is then simply

log BSN = log[p(D|Ms)] � log[p(D|Mn)]. (10)

F. Generation of Simulated Noise

We generate Gaussian colored noise, assuming a sin-
gle Advanced LIGO detector in the proposed broadband
configuration (the so-called “zero detuning, high-power”
mode). We employ the data file ZERO DET high P.txt

provided by [113], which contains
p

S(f), the square root
of the one-sided detector noise power spectral density in
units of (Hz)�1/2. An open-source implementation for
MATLAB of what we describe in the following can be found
in [114].

The real discrete time-domain noise n(tj), where tj de-
notes the j-th discrete time interval of size �t, is obtained
by inverse discrete Fourier transform from the complex
frequency-domain noise ñ(fk), where fk denotes the k-
th discrete frequency interval of size �f = 1/(Nt�t),
where Nt is the number of intervals in the time domain.
Since the time-domain noise is real and has zero mean,
the frequency-domain noise must obey

ñ(�f) = ñ⇤(f) , (11)

ñ(f = 0) = ñ(f = fNyq) = ñ(f = �fNyq) = 0.(12)

Here, fNyq = 1/(2�t) is the Nyquist frequency. If Nt is
the even number of equally spaced bins in time of width
�t, then Nf = Nt/2 � 1 is the number of independent
frequency bins fk in the frequency domain of width �f .
The frequency variable fk assumes values from �fNyq to
fNyq.

|ñ(fk)| =
p

ñ(fk)ñ⇤(fk) is a two-sided amplitude spec-
tral density. We generate ñ(fk) by sampling the standard
normal distribution (zero mean, variance one) weighted
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ATA and ⌃ is an n⇥m diagonal matrix whose elements
correspond to the square root of the corresponding eigen-
values.

Since AAT is the covariance matrix of A, the eigen-
vectors in U are e↵ectively an orthonormal basis which
span the m-dimensional parameter space defined by the
catalog of waveforms used to construct A. Note that, in
practice, n � m and it is impractical to determine the
eigenvectors in U directly. Instead, the smaller V and
its corresponding eigenvalues in ⌃ are first determined
which are subsequently used to derive U.

The orthonormal eigenvectors of U are the PCs and
are ranked by their corresponding eigenvalues. The PC
with the largest corresponding eigenvalue is referred to
as the first PC and consists of the most significant com-
mon features of all waveforms in the catalog. It follows
that the PC with the second largest corresponding eigen-
value is the second PC and consists of the second most
significant common features and so on.

The waveforms in A can be reconstructed by taking a
linear combination of PCs,

hi ⇡

kX

j=1

Uj�j , (7)

where hi is the desired waveform from the catalog, Uj

is the jth PC from the U matrix and �j is the corre-
sponding PC coe�cient, which can be obtained by pro-
jection of hi onto Uj . The sum of k PCs produces an
approximation of the desired waveform since k  m.

E. Signal and Noise Models

For the analysis described here, two types of models
are considered. The signal model Ms tests the presence
of a signal waveform h(�) in the data. Here, PCA is per-
formed for each catalog (using SVD; see section IIID)
and each waveform is parameterized by its PC coe�-
cients (�). The Gaussian likelihood function for the sig-
nal model is

p(D|�, Ms) =
NY

i=1

1

�i

p

2⇡
exp


�

(Di � hi(�))2

2�2
i

�
, (8)

where �i is the standard deviation of the noise, hi(�)
is the desired waveform reconstructed from the PCs and
N is the length of the data with a corresponding index
i. The evidence for the signal model is determined by
performing the integral in Eq. 2 numerically across all
chosen values of �.

On the other hand, the noise model Mn tests the data’s
consistency with Gaussian noise. The likelihood function
for the noise model is the same as that in Eq. 8, but with
h(�) = 0. From this, it is straightforward to perform the

integration in Eq. 2 and obtain an analytic form for the
noise evidence function,

p(D|Mn) =
NY

i=1

1

�i

p

2⇡
exp

�

D2
i

2�2
i . (9)

In both Eq. 8 and 9, the standard deviation of the noise
is a function of each sample in the data, because the sim-
ulated noise is designed to correspond to the expected
sensitivity of Advanced LIGO, which varies as a function
of frequency (see Sec. III F). To handle the frequency-
dependent noise, the signal and noise evidences are calcu-
lated in the frequency domain with Di, hi(�) and �i cor-
responding to data, reconstructed waveform, and noise
in the i-th frequency bin respectively. In particular, each
reconstructed waveform is obtained by taking a linear
combination of the Fourier transforms of its correspond-
ing PCs.

The natural logarithm of the Bayes factor used to com-
pare the signal model to the noise model is then simply

log BSN = log[p(D|Ms)] � log[p(D|Mn)]. (10)

F. Generation of Simulated Noise

We generate Gaussian colored noise, assuming a sin-
gle Advanced LIGO detector in the proposed broadband
configuration (the so-called “zero detuning, high-power”
mode). We employ the data file ZERO DET high P.txt

provided by [113], which contains
p

S(f), the square root
of the one-sided detector noise power spectral density in
units of (Hz)�1/2. An open-source implementation for
MATLAB of what we describe in the following can be found
in [114].

The real discrete time-domain noise n(tj), where tj de-
notes the j-th discrete time interval of size �t, is obtained
by inverse discrete Fourier transform from the complex
frequency-domain noise ñ(fk), where fk denotes the k-
th discrete frequency interval of size �f = 1/(Nt�t),
where Nt is the number of intervals in the time domain.
Since the time-domain noise is real and has zero mean,
the frequency-domain noise must obey

ñ(�f) = ñ⇤(f) , (11)

ñ(f = 0) = ñ(f = fNyq) = ñ(f = �fNyq) = 0.(12)

Here, fNyq = 1/(2�t) is the Nyquist frequency. If Nt is
the even number of equally spaced bins in time of width
�t, then Nf = Nt/2 � 1 is the number of independent
frequency bins fk in the frequency domain of width �f .
The frequency variable fk assumes values from �fNyq to
fNyq.

|ñ(fk)| =
p

ñ(fk)ñ⇤(fk) is a two-sided amplitude spec-
tral density. We generate ñ(fk) by sampling the standard
normal distribution (zero mean, variance one) weighted
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III. DATA ANALYSIS

A. Strategy

The three example gravitational waveforms shown in
Fig. 1 that are associated with the three supernova mech-
anisms are clearly di↵erent. Provided the assumptions
made in associating these signals with the various mech-
anisms are correct, a GW signal detected from a core-
collapse supernova should, in principle, allow to deter-
mine the explosion mechanism. To do so in practice, two
problems most be overcome: (i) The exact waveform of
an incident signal is impossible to predict in advance.
(ii) Real GW detectors are noisy instruments (see, e.g.,
[110] for a discussion of detectors and noise sources) and
any GW signal will be contaminated by detector noise.
In other words, it is necessary to develop a data anal-
ysis algorithm that is capable of distinguishing between
underlying physical models (e.g., supernova mechanisms)
on the basis of a noisy signal whose detailed shape cannot
be predicted exactly.

In the following subsections, we describe the compo-
nents of a Bayesian data analysis algorithm which classi-
fies detected GW signals from core-collapse supernovae as
belonging to one of a set of signal catalogs, representing,
e.g., di↵erent explosion mechanisms. A block diagram
of the analysis algorithm, which we call the Supernova
Model Evidence Extractor (SMEE), is shown in Fig. 2.
SMEE is implemented in MATLAB1.

In a first step, SMEE performs Principal Component
Analysis (PCA) via singular value decomposition (SVD)
on the waveforms in each catalog to create sets of or-
thogonal basis vectors, the Principal Components (PCs),
which are ordered according to their prevalence in their
catalog. In other words, the first PC represents the most
common feature of all signals in the catalog, the second
PC represents the second most common feature, and so
on. Using a complete set of PCs, each waveform can be
reconstructed as a linear combination of PCs for the cor-
responding catalog, allowing each waveform to be simply
parameterized by the PC coe�cients in the linear com-
bination. However, since PCs are expected to span the
parameter space defined by each catalog of waveforms
e�ciently, catalog waveforms may be reconstructed with
good accuracy already with a set of PCs that is signifi-
cantly smaller than the number of waveforms in the cata-
log. Moreover, non-catalog waveforms (i.e., real signals)
may be identified as belonging to the same class of sig-
nals as catalog waveforms if they can be approximately
matched with the first few PCs of a catalog.

SMEE then uses Bayesian model selection and com-
putes the logarithm of the Bayes factor to distinguish be-
tween GW signal classes. The Bayes factor is the ratio of

1 The MathWorks Inc., Natick, MA 01760, USA.
http://www.mathworks.com/products/matlab/.
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FIG. 2: Block diagram of the Supernova Model Evidence Ex-
tractor (SMEE). A desired core-collapse supernova gravita-
tional wave signal is injected into noise, and the algorithm
compares it to the principal components (PCs) of a given
waveform catalog representing a particular model. The PCs
are constructed via singular value decomposition (SVD). The
sign of the log Bayes factor between two PC sets indicates
which model is favored by the data.

the evidences for two competing hypotheses and, for the
purpose of our analysis, we weigh the evidence that the
observed data supports the presence of a GW signal con-
sistent with signals from one of any two competing cat-
alogs. This requires summing up the likelihood function
times the prior across all possible signal parameters (in
our case, values of PC coe�cients) to determine the evi-
dence (also called the marginal likelihood) for two di↵er-
ent signal models to be tested. SMEE accomplishes this
e�ciently via the Nested Sampling algorithm [40, 45].

B. Bayesian Model Selection

In our analysis, we employ Bayesian Model Selection,
similar to that described in [111]. Specifically, we use the

P (D|M, I) =

Z

✓
p(✓|M, I)p(D|✓,M)d✓

logBij = logP (D|Mi, I)� logP (D|Mj , I)
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FIG. 4: Results from running SMEE with 7 PCs of the Dim

catalog and without an injected signal on 10,000 randomized
instances of Gaussian Advanced LIGO noise, generated as
described in Sec. III F. A signal consistent with noise is most
likely to have a logarithmic Bayes factor of ⇠�54.0. The red
line plots a Gaussian distribution with a mean of �53.96 and
a standard deviation � = 0.17.

Mur, and Abd catalogs, the expected logarithmic Bayes
factors for pure Gaussian noise and 7 PCs are �52.1,
�52.3, and �53.0, respectively. The observed expecta-
tion value are very comparable to those calculated for the
Dim (�53.9), Ott (�52.2), Mur (�52.3), and Abd (�52.9)
catalogs, respectively, verifying that SMEE is operating
as expected. We have repeated this experiment for the
case when only 3 PCs are used and also in this case find
that SMEE closely reproduces the predicted expectation
values, which are near �26 in the 3-PC case.

Since the logarithmic Bayes factors follow a Gaussian
distribution, we can set a threshold using the standard
deviations as an indicator for the expected false alarm
rate. Ideally, for the Dim catalog, a 1% false alarm rate
would correspond to a threshold that is ⇠2.6 times the
standard deviation, corresponding to ⇠0.44 above the
mean. However, we note that the expected logarithmic
Bayes factor value varies between di↵erent catalogs and,
for a fixed false alarm rate, we would require a di↵erent
threshold for each catalog. This variation can be ad-
dress by re-normalising all Bayes factors so that they are
the same for all catalogs when there is only noise. But,
since the focus of our work here is to distinguish between
di↵erent waveforms and not to perform a study on the
detection e�ciency of GW signals, we choose to take the
more conservative approach of simply setting a higher
threshold. Therefore, we conservatively choose to iden-
tify a signal as being distinct from noise if its log BSN is
greater than �47 (in cases in which we use 3 PCs, this
number is �21). When comparing two signal models Mi

and Mj , we conservatively identify model Mi as favored
if log Bij � 5 (and vice versa).
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FIG. 5: Mean logBSN as a function of signal-to-noise ratio
(SNR; Eq. 18) for 5 representative waveforms from the Mur,
Ott and Dim catalogs using 7 Principal Components (PC).
The shaded areas represent the standard error in the mean
value of logBSN for each waveform catalog computed as � =
±N

�1(⌃i(x̄ � xi)
2)1/2, where x̄ is the mean and xi are the

individual SNRs and N is the number of waveforms. Values
of logBSN below �47 in the 7-PC ase and below �21 in
the 3-PC case indicate that the algorithm considers it more
likely that there is no signal detectable in the noise. Table I
summarizes numerical results for the minimum SNR for which
logBSN � �47.

B. Signal vs. Noise

The minimal GW signal strength required for SMEE to
be able to select the core-collapse supernova mechanism
is an important question. The primary prerequisite for
an incident GW signal to be useful for model selection
is that SMEE can distinguish it from detector noise, i.e.,
we must find the minimum signal strength (i.e., SNR) so
that log BSN > �47 (when 7 PCs are used; Eq. 10 and
§IV A).

In order to determine the range of minimum SNR re-
quired across and within core-collapse supernova GW sig-
nal types, we draw 5 representative waveforms from the
Dim, Mur, and Ott catalogs and run them through SMEE
at varying SNR, using 7 PCs generated from the catalog
to which each injected waveform belongs. The result of
this exercise is shown in Fig. 5 and summarized in Tab. I.
Generally, an SNR & 4 � 5 is required for SMEE to find
log BSN > �47 in the idealized setting that we consider
here. In a real fully blind search, unknown arrival times
and non-Gaussianity of real detector noise will generally
require an SNR in excess of 8 for a detection statement
(e.g., [115]).

Agrees	
  with	
  analyac	
  calculaaon	
  based	
  on	
  noise	
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catalog and without an injected signal on 10,000 randomized
instances of Gaussian Advanced LIGO noise, generated as
described in Sec. III F. A signal consistent with noise is most
likely to have a logarithmic Bayes factor of ⇠�54.0. The red
line plots a Gaussian distribution with a mean of �53.96 and
a standard deviation � = 0.17.

Mur, and Abd catalogs, the expected logarithmic Bayes
factors for pure Gaussian noise and 7 PCs are �52.1,
�52.3, and �53.0, respectively. The observed expecta-
tion value are very comparable to those calculated for the
Dim (�53.9), Ott (�52.2), Mur (�52.3), and Abd (�52.9)
catalogs, respectively, verifying that SMEE is operating
as expected. We have repeated this experiment for the
case when only 3 PCs are used and also in this case find
that SMEE closely reproduces the predicted expectation
values, which are near �26 in the 3-PC case.

Since the logarithmic Bayes factors follow a Gaussian
distribution, we can set a threshold using the standard
deviations as an indicator for the expected false alarm
rate. Ideally, for the Dim catalog, a 1% false alarm rate
would correspond to a threshold that is ⇠2.6 times the
standard deviation, corresponding to ⇠0.44 above the
mean. However, we note that the expected logarithmic
Bayes factor value varies between di↵erent catalogs and,
for a fixed false alarm rate, we would require a di↵erent
threshold for each catalog. This variation can be ad-
dress by re-normalising all Bayes factors so that they are
the same for all catalogs when there is only noise. But,
since the focus of our work here is to distinguish between
di↵erent waveforms and not to perform a study on the
detection e�ciency of GW signals, we choose to take the
more conservative approach of simply setting a higher
threshold. Therefore, we conservatively choose to iden-
tify a signal as being distinct from noise if its log BSN is
greater than �47 (in cases in which we use 3 PCs, this
number is �21). When comparing two signal models Mi

and Mj , we conservatively identify model Mi as favored
if log Bij � 5 (and vice versa).
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FIG. 5: Mean logBSN as a function of signal-to-noise ratio
(SNR; Eq. 18) for 5 representative waveforms from the Mur,
Ott and Dim catalogs using 7 Principal Components (PC).
The shaded areas represent the standard error in the mean
value of logBSN for each waveform catalog computed as � =
±N

�1(⌃i(x̄ � xi)
2)1/2, where x̄ is the mean and xi are the

individual SNRs and N is the number of waveforms. Values
of logBSN below �47 in the 7-PC ase and below �21 in
the 3-PC case indicate that the algorithm considers it more
likely that there is no signal detectable in the noise. Table I
summarizes numerical results for the minimum SNR for which
logBSN � �47.

B. Signal vs. Noise

The minimal GW signal strength required for SMEE to
be able to select the core-collapse supernova mechanism
is an important question. The primary prerequisite for
an incident GW signal to be useful for model selection
is that SMEE can distinguish it from detector noise, i.e.,
we must find the minimum signal strength (i.e., SNR) so
that log BSN > �47 (when 7 PCs are used; Eq. 10 and
§IV A).

In order to determine the range of minimum SNR re-
quired across and within core-collapse supernova GW sig-
nal types, we draw 5 representative waveforms from the
Dim, Mur, and Ott catalogs and run them through SMEE
at varying SNR, using 7 PCs generated from the catalog
to which each injected waveform belongs. The result of
this exercise is shown in Fig. 5 and summarized in Tab. I.
Generally, an SNR & 4 � 5 is required for SMEE to find
log BSN > �47 in the idealized setting that we consider
here. In a real fully blind search, unknown arrival times
and non-Gaussianity of real detector noise will generally
require an SNR in excess of 8 for a detection statement
(e.g., [115]).

Note:	
  
Real	
  SNR	
  
for	
  detecaon	
  
will	
  need	
  to	
  be	
  
>	
  8-­‐10.	
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FIG. 6: Histograms describing the outcome of signal model comparisons by means of the Bayes factors logBij = log p(D|Mi)�
log p(D|Mj), where i 6= j and Mi and Mj are signal models described by the Dim (magnetorotational mechanism), Mur (neutrino
mechanism), and Ott (acoustic mechanism) waveform catalogs. The Bayes factors are computed with 7 PCs and for a source
distance of 10 kpc. A positive value logBij indicates that the injected waveform most likely belongs to model Mi, while a
negative value suggest that model Mj is the more probable explanation. The bars are color-coded according to the type of
injected waveform. The results are binned into ranges of varying size from < �10000 to > 10000 and the height of the bars
indicates what fraction of the waveforms of a given catalog falls into a given bin of logBij . We consider the range of (�5, 5) of
logBij as inconclusive evidence (see §IVA).
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FIG. 7: Same as Fig. 6, but computed for a source distance of 2 kpc.

dicted by Abdikamalov et al. [? ], share many of the ba-
sic features of the rotating iron core collapse and bounce
waveforms of, e.g., the Dim catalog (see the discussion in
Sec. IV.C. of [? ]). Hence, it is interesting to see if our
SMEE model selection algorithm can tell them apart.

We compute the PCs for the Abd catalog in the same
fashion as done previously for the Dim, Mur, and Ott cata-
logs and inject all Abd and Dim waveforms into simulated
Advanced LIGO noise. SMEE is then run with 7 PCs
to calculate log BAbdDim. The result is shown in Fig. 8
for source distances of 10 kpc and 2 kpc. Full numerical
results are available on-line [? ].

In spite of the strong general similarity of rotating iron
core collapse and rotating AIC waveforms, SMEE cor-
rectly identifies the vast majority of injected waveforms
as most likely being emitted by a rotating iron core col-
lapse or by rotating AIC. However, for a source at 10 kpc
(left panel of Fig. 8), ⇠6% of the Dim and ⇠5% of the Abd

are incorrectly identified as belonging to the respective
other catalog. For an additional 2% of the Dim waveforms
and 14% of the Abd waveforms, the evidence is inconclu-
sive.

At a source distance of 2 kpc (right panel of Fig. 8),
88% of the AIC (Abd) and 93% of the rotating core col-
lapse (Dim) waveforms are correctly identified.

If one placed trust in the reliability of less dominant
and more particular features of waveforms in the underly-
ing catalogs, one could use a larger number of PCs in the
analysis. In order to study the e↵ect of using an increased
number of PCs, we re-run the Abd vs. Dim comparison
with 14 PCs and find that the result is significantly worse
than with 7 PCs: ⇠61% of the Abd waveforms and ⇠23%
of the Dim catalog are now incorrectly attributed to the
respective other catalog at 10 kpc. This counter intuitive
and at first surprising result is readily explained by the
overall great similarity of the AIC and iron core collapse

logBij = logP (D|Mi, I)� logP (D|Mj , I)

Injected	
  “known”	
  waveforms	
  from	
  catalogs	
  that	
  were	
  used	
  to	
  generate	
  
principle	
  components	
  (PCs);	
  use	
  first	
  7	
  PCs.	
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FIG. 9: Mean and 1-� range of logBSN as a function of signal-to-noise ratio SNR comparing signal with noise evidence.
The horizontal lines mark the threshold values of logBSN above which we consider an injected waveform to be distinct from
Gaussian noise. Left panel: Results for the Sch and DimExtra. These two were both reconstructed with 7 Dim PCs. Right
panel: Results for the Yak, MurRem and OttExtra waveforms as reconstructed with 7 Mur for the first two and 7 Ott PCs for
the latter. The Dim PCs very e�ciently reconstruct the Sch and DimExtra waveforms at moderate SNRs while the Yak and
OttExtra require very high SNRs to be distinguished from noise by the Mur and Ott PCs, respectively.

form features associated with the acoustic mechanism is
not e�ciently covered by the 7 PCs generated from the
Ott catalog. This could simply be attributed to the very
small number of waveforms in this catalog. However,
when studying the Ott and OttExtra waveforms, one
immediately notes that the time between the first peak
(associated with core bounce) and the second peak (the
global maximum, associated with the non-linear phase
of the protoneutron star pulsations) varies significantly
between waveforms. Since we compute PCs in the time
domain, such large-scale features are imprinted onto the
PCs and make it di�cult to identify waveforms whose
two peaks are separated by significantly di↵erent inter-
vals. An alternative method that may work much better
for waveforms of this kind is to compute PCs based on
waveform power spectra, which would remove any poten-
tially problematic phase information.

3. Neutrino Mechanism

We test SMEE’s ability to identify GW signals emit-
ted by core-collapse supernovae exploding via the neu-
trino mechanism in two ways. First, we remove three
randomly selected Mur waveforms (Mur waveforms 20 3.4,
12 3.4, and 15 3.2, labeling this set as MurRem) from the
Mur catalog, recompute the PCs without these 3 wave-
forms, then run SMEE to compute log BSN for the three
MurRem waveforms. The results, listed in Tab. III, show
that SMEE is able to correctly identify MurRem wave-

forms as GW signals consistent with the Mur catalog with
strong evidence out to a distance of ⇠2 kpc and even
at 10 kpc two out of three MurRem waveforms are picked
out of the noise (though with relatively weak evidence).
This is consistent with the overall results for waveforms
belonging to the Mur catalog discussed in Sec. IV C.

However, a comparison of the right panel of Fig. 9 with
Fig. 5 shows that the MurRem waveforms require an SNR
that is more than twice as high to reach values of log BSN

at which we can consider them to be distinct from Gaus-
sian noise. This is most likely due to the rather large
diversity of Mur waveforms. Components of relevance to
the MurRem waveforms are apparently not captured in the
first 7 PCs when these waveforms are not included in the
PCA.

A yet more stringent test is enabled by the waveforms
of the Yak catalog (see Sec. II A 1) that were obtained
with a completely di↵erent numerical code. We inject
the three available Yak waveforms into Advanced LIGO
noise and run SMEE on them to compute log BSN . We
list the results in Tab. III. SMEE correctly and clearly as-
sociates the Yak waveforms with the Mur PCs at 0.2 kpc.
At 2 kpc, the association is still possible, but at 10 kpc the
Yak waveforms appear to be most consistent with noise
for SMEE. The right panel of Fig. 9 shows that the Yak
waveforms require an SNR to be clearly associated with
the neutrino mechanism that is &7 times higher than for
MurRem waveforms and more than ⇠17 times higher than
for Mur waveforms. This rather disappointing result can
be explained as follows: While the Yak waveforms are

Use	
  unknown	
  waveforms	
  from	
  different	
  studies	
  modeling	
  the	
  same	
  physics.	
  
Scheidegger	
  et	
  al.	
  ‘10:	
  magnetorotaaonal	
  mechanism.	
  
Yakunin	
  et	
  al.	
  ‘10:	
  neutrino	
  mechanism	
  

-­‐>	
  Method	
  robust	
  for	
  magnetorotaaonal	
  mechanism	
  out	
  to	
  10	
  kpc.	
  
-­‐>	
  Can	
  idenafy	
  neutrino	
  mechanism	
  out	
  to	
  ~2	
  kpc	
  (using	
  Murphy+	
  09	
  PCs).	
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•  Magnetorotaaonal,	
  neutrino-­‐driven,	
  and	
  
acous:cally-­‐driven	
  CCSN	
  explosions	
  are	
  
likely	
  to	
  have	
  disanct	
  GW	
  signatures.	
  

•  Provided	
  (a)	
  that	
  this	
  is	
  the	
  case,	
  and,	
  
(b)	
  robust	
  large	
  catalogs	
  of	
  waveform	
  predicaons	
  are	
  available,	
  
The	
  Supernova	
  Model	
  Evidence	
  Extractor	
  (SMEE)	
  can	
  determine	
  the	
  
core-­‐collapse	
  supernova	
  explosion	
  mechanism	
  based	
  on	
  the	
  GW	
  
signal	
  alone.	
  

•  Need	
  nearby	
  event	
  (<	
  2	
  –	
  10	
  kpc).	
  

•  Neutrinos	
  will	
  provide	
  addiaonal	
  informaaon	
  (to	
  be	
  explored).	
  

•  Many	
  Limitaaons:	
  PCA	
  not	
  good	
  for	
  some	
  signal	
  types,	
  so	
  far	
  only	
  
considered	
  ideal	
  case	
  of	
  Gaussian	
  noise,	
  single	
  detector,	
  opamal	
  
orientaaon,	
  linear	
  polarizaaon,	
  catalogs	
  with	
  limited	
  predicave	
  
power.	
  

Betelgeuse	
  (HST)	
  


