Amplification of magnetic fields in core collapse

Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz

Universitat de València; Max-Planck-Institut für Astrophysik, Garching

INT Program INT 12-2a Core-Collapse Supernovae: Models and Observable Signals Nuclear and Neutrino Physics in Stellar Core Collapse

Contents

1 Introduction

- 2 Field amplification mechanisms
- 3 Summary

Progenitor fields

- magnetic fields need to be strong to have an effect on SNe
- But: stellar evolution theory predicts rather weak fields in the pre-collapse core
- \rightarrow efficient amplification desired

Meier et al., 1976

Introduction

Magnetic fields and MHD

- ideal MHD: field lines and flux tubes frozen into the fluid
- Lorentz force (Maxwell stress) consists of
 - isotropic pressure $\frac{1}{2}\vec{B}^2$
 - anisotropic tension BⁱBⁱ
- increase the energy by working against the forces
 - compressing the field
 - stretching and folding field lines
- $\rightarrow\,$ estimate for the maximum field energy: $\sim\,$ kinetic energy
 - actual amplification may be less

Introduction

Magnetic fields and MHD

- magnetic energy $\frac{1}{2}\vec{B}^2$
- ideal MHD: field lines and flux tubes frozen into the fluid
- Lorentz force (Maxwell stress) consists of
 - isotropic pressure $\frac{1}{2}\vec{B}^2$
 - anisotropic tension BⁱB^j
- increase the energy by working against the forces
 - compressing the field
 - stretching and folding field lines
- $\rightarrow\,$ estimate for the maximum field energy: $\sim\,$ kinetic energy
- actual amplification may be less

Introduction

Magnetic fields and MHD

- magnetic energy $\frac{1}{2}\vec{B}^2$
- ideal MHD: field lines and flux tubes frozen into the fluid
- Lorentz force (Maxwell stress) consists of
 - isotropic pressure $\frac{1}{2}\vec{B}^2$
 - anisotropic tension BⁱB^j
- increase the energy by working against the forces
 - compressing the field
 - stretching and folding field lines
- $\rightarrow\,$ estimate for the maximum field energy: $\sim\,$ kinetic energy
- actual amplification may be less

Contents

Introduction

2 Field amplification mechanisms

3 Summary

Compression

- (radial) collapse and accretion compress the field
- magnetic flux through a surface is conserved
- $\to \ B \propto \rho^{2/3}$ for a fluid element; energy grows faster than gravitational
 - no change of field topology
 - core collapse: factor of 10³ in field strength
 - possible saturation: e_{mag} ~ e_{kin,r} is unrealistic in collapse
 - occurs in every collapse
 - no difficulties in modelling

6/17

Amplification of Alfvén waves

- requires an accretion flow decelerated above the PNS and a (radial) guide field
- → accretion is sub-/super-Alfvénic inside/outside the Alfvén surface
- Alfvén waves propagating along the field are amplified at the Alfvén point
- ► waves are finally dissipated there → additional heating
- in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem
- modelling issues: high resolution, uncertainties in the dissipation

Amplification of Alfvén waves

- requires an accretion flow decelerated above the PNS and a (radial) guide field
- → accretion is sub-/super-Alfvénic inside/outside the Alfvén surface
 - Alfvén waves propagating along the field are amplified at the Alfvén point
 - ► waves are finally dissipated there → additional heating
 - in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem

 modelling issues: high resolution, uncertainties in the dissipation

Linear winding

- ► works if $\nabla \Omega \cdot \vec{B} \neq 0$, e.g., differential rotation and poloidal field
- creates toroidal field $B^{\phi} \propto \Omega t$
- feedback: slows down rotation
- $\rightarrow\,$ saturation: complete conversion of differential to rigid rotation
 - core collapse: slow compared to dynamic times except for rapid rotation and strong seed field
- should be present in all rotating cores
- no difficulties in modelling

The magneto-rotational instability

- instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $abla_{\varpi} \Omega < 0$
- exponential growth $\propto \exp \Omega t$
- ► starts with coherent channel modes, but leads to turbulence
- feedback: redistribution of angular momentum
- ightarrow maximum saturation: conversion of differential to rigid rotation

9/17

The magneto-rotational instability

- instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $abla_{\varpi} \Omega < 0$
- exponential growth $\propto \exp \Omega t$
- starts with coherent channel modes, but leads to turbulence
- feedback: redistribution of angular momentum
- ightarrow maximum saturation: conversion of differential to rigid rotation

The magneto-rotational instability

- instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $abla_{\varpi} \Omega < 0$
- exponential growth $\propto \exp \Omega t$
- ► starts with coherent channel modes, but leads to turbulence
- feedback: redistribution of angular momentum
- ightarrow maximum saturation: conversion of differential to rigid rotation
- main physical issue: saturation level
- numerical difficulties: high resolution, low numerical diffusion

・ロット (日) ・ (日) ・

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- $\blacktriangleright\,$ in core collapse, this can be \sim 1 m
- grid width $< \lambda$ computationally not feasible
- high-resolution shearing-box simulations to determine fundamental properties of the MRI
- use these results to build models that can be coupled to global simulations

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- $\blacktriangleright\,$ in core collapse, this can be \sim 1 $\,m$
- grid width $< \lambda$ computationally not feasible
- → high-resolution shearing-box simulations to determine fundamental properties of the MRI
- use these results to build models that can be coupled to global simulations

Grid width

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- $\blacktriangleright\,$ in core collapse, this can be \sim 1 $\,\rm m$
- grid width $< \lambda$ computationally not feasible
- $\rightarrow\,$ high-resolution shearing-box simulations to determine fundamental properties of the MRI
- use these results to build models that can be coupled to global simulations

10/17

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- $\blacktriangleright\,$ in core collapse, this can be \sim 1 $\,m$
- grid width $< \lambda$ computationally not feasible
- → high-resolution shearing-box simulations to determine fundamental properties of the MRI
- use these results to build models that can be coupled to global simulations

The MRI: saturation mechanism

• amplification until $e_{mag} \sim e_{diffrot}$?

More complicated actually... Saturation may occur at lower amplitude.

- amplification until $e_{mag} \sim e_{diffrot}$?
- ► More complicated actually... Saturation may occur at lower amplitude.

- ► MRI channel modes are separated by current sheets and shear layers → unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- ► parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- at some point, they overtake the MRI and break the channels down into turbulence
- \blacktriangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

- ► MRI channel modes are separated by current sheets and shear layers → unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- ► parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- at some point, they overtake the MRI and break the channels down into turbulence
- ► weaker field → thinner channels → lower termination amplitude

- ► MRI channel modes are separated by current sheets and shear layers → unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- ► parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- at some point, they overtake the MRI and break the channels down into turbulence
- ► weaker field → thinner channels → lower termination amplitude

- ► MRI channel modes are separated by current sheets and shear layers → unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- at some point, they overtake the MRI and break the channels down into turbulence
- ► weaker field → thinner channels → lower termination amplitude

- ► MRI channel modes are separated by current sheets and shear layers → unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- ► parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- at some point, they overtake the MRI and break the channels down into turbulence
- \blacktriangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

- ⇒ MRI growth limited by initial field strength?
- current simulations (T. Rembiasz) try to test the predictions of Pessah (2010) and focus on how parasites depend on resistivity and viscosity.
 Prerequisite: careful determination of numerical resistivity and viscosity.

Dynamos driven by hydrodynamic instabilities

- instabilities such as convection and SASI drive turbulence
- energy cascades from the large scale at which the instability operates down to dissipation in a Kolmogorov-like cascade

Dynamos driven by hydrodynamic instabilities

 $\rightarrow\,$ dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes

- ► small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations → Kolmogorov-like spectrum of turbulent magnetic field
- ▶ large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity $\vec{v} \times \text{curl } \vec{v}$.

A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1-209

Fig. 4.6. A schematic illustration of the stretch-twist-fold-merge dynamo.

Dynamos driven by hydrodynamic instabilities

- $\rightarrow\,$ dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes
 - ► small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations → Kolmogorov-like spectrum of turbulent magnetic field
 - ► large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity $\vec{v} \times \text{curl}\vec{v}$.

Dynamos driven by hydrodynamic instabilities

- $\rightarrow\,$ dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes
 - ► small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations → Kolmogorov-like spectrum of turbulent magnetic field
 - ► large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity v × curl v.

Instabilities: an overview

Endeve et al., 2008

Dynamos

- MHD uncertainties: type of dynamo, saturation mechanism and level
- technical complications: 3d necessary, high resolution and Reynolds numbers
- ▶ kinematic dynamo: weak fields, back-reaction negligible → mean-field dynamo theory solve the induction equation, $\partial_t \vec{B} = \vec{\nabla} \times (\vec{v} \times \vec{B})$, for a fixed turbulent velocity field $\rightarrow \alpha$ effect: $\partial_t \vec{B} = \alpha \vec{B}$. α parametrises the unknown physics of helical

 $\rightarrow \alpha$ effect: $\partial_t B = \alpha B$. α parametrises the unknown physics of helical turbulence.

(1)

Saturation mechanisms

Will instabilities and turbulence amplify a seed magnetic field to dynamically relevant strength or will the amplification cease earlier?

- if the properties of the instability depend strongly on the field, amplification might be limited by the initial field (MRI channel disruption)
- quenching of turbulent dynamos: small-scale field resists further stretching (e_{mag} ~ e_{kin} locally in k-space), reducing the efficiency of mean-field dynamos by orders of magnitude.
- magnetic helicity: $\vec{A} \cdot \vec{B}$ (where $\vec{B} = \vec{\nabla} \times \vec{A}$), is conserved in ideal MHD. Box simulations indicate that fluxes out of the domain may be important to avoid catastrophic quenching. Inhomogeneity of cores may provide that.

Contents

Introduction

- 2 Field amplification mechanisms
- **3** Summary

Summary

mechnism	requires	results & issues
compression	infall	amplifies field robustly
winding	diff. rotation	works well in rapid rotators
Alfvén waves	accretion flow	works for rather strong fields
MRI	diff. rotation	saturation level?
dynamo	instabilities	saturation level?

Saturation level

Better understanding of turbulence and dynamos is required!