Amplification of magnetic fields in core collapse

Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz

Universitat de València: Max-Planck-Institut für Astrophysik, Garching

INT Program INT 12-2a Core-Collapse Supernovae: Models and Observable Signals Nuclear and Neutrino Physics in Stellar Core Collapse

1 / 17

(ロ) (@) (경) (경)

Contents

¹ [Introduction](#page-1-0)

- **² [Field amplification mechanisms](#page-6-0)**
- **³ [Summary](#page-33-0)**

Progenitor fields

- \triangleright magnetic fields need to be strong to have an effect on SNe
- \triangleright But: stellar evolution theory predicts rather weak fields in the pre-collapse core
- \rightarrow efficient amplification desired

 \Rightarrow **3 / 17**

K ロ ▶ K (包) K K

[Introduction](#page-3-0)

Magnetic fields and MHD

the

重

경기 지경기

 \rightarrow

(□) () →

[Introduction](#page-4-0)

Magnetic fields and MHD

- **•** magnetic energy $\frac{1}{2}\vec{B}^2$
- \triangleright ideal MHD: field lines and flux tubes frozen into the fluid
- \triangleright Lorentz force (Maxwell stress) consists of
	- \blacktriangleright isotropic pressure $\frac{1}{2}\vec{B}^2$
	- **P** anisotropic tension B^iB^j
- \triangleright increase the energy by working against the forces
	- \triangleright compressing the field
	- \triangleright stretching and folding field lines
- \rightarrow estimate for the maximum field energy: \sim kinetic energy
	- actual amplification may be less

[Introduction](#page-5-0)

Magnetic fields and MHD

- **•** magnetic energy $\frac{1}{2}\vec{B}^2$
- \triangleright ideal MHD: field lines and flux tubes frozen into the fluid
- \triangleright Lorentz force (Maxwell stress) consists of
	- \blacktriangleright isotropic pressure $\frac{1}{2}\vec{B}^2$
	- **P** anisotropic tension B^iB^j
- \blacktriangleright increase the energy by working against the forces
	- \triangleright compressing the field
	- \triangleright stretching and folding field lines
- \rightarrow estimate for the maximum field energy: \sim kinetic energy
	- actual amplification may be less

Contents

¹ [Introduction](#page-1-0)

² [Field amplification mechanisms](#page-6-0)

³ [Summary](#page-33-0)

Compression

- \triangleright (radial) collapse and accretion compress the field
- \blacktriangleright magnetic flux through a surface is conserved
- $\rightarrow \,$ *B* \propto $\rho^{2/3}$ for a fluid element; energy grows faster than gravitational
- \triangleright no change of field topology
- **Dolog collapse:** factor of 10³ in field strength
- ^I possible saturation: *e*mag ∼ *e*kin,^r is unrealistic in collapse
- \triangleright occurs in every collapse
- \triangleright no difficulties in modelling

6 / 17

Amplification of Alfvén waves

- \blacktriangleright requires an accretion flow decelerated above the PNS and a (radial) guide field
- \rightarrow accretion is sub-/super-Alfvénic inside/outside the Alfvén surface
	- \blacktriangleright Alfvén waves propagating along the field are amplified at the Alfvén point
	- **waves are finally dissipated there** \rightarrow additional heating
	- \triangleright in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem
- \triangleright modelling issues: high resolution, uncertainties in the dissipation

Amplification of Alfvén waves

- \blacktriangleright requires an accretion flow decelerated above the PNS and a (radial) guide field
- \rightarrow accretion is sub-/super-Alfvénic inside/outside the Alfvén surface
- \blacktriangleright Alfvén waves propagating along the field are amplified at the Alfvén point
- **waves are finally dissipated there** \rightarrow additional heating
- \triangleright in core collapse: efficient for a limited parameter range (strong guide field); strong time variability of the Alfvén surface may be a problem
- \triangleright modelling issues: high resolution, uncertainties in the dissipation

Linear winding

- \triangleright works if $\vec{\nabla}$ Ω · $\vec{B} \neq 0$, e.g., differential rotation and poloidal field
- \blacktriangleright creates toroidal field $B^{\phi} \propto Ωt$
- \blacktriangleright feedback: slows down rotation
- \rightarrow saturation: complete conversion of differential to rigid rotation
	- \triangleright core collapse: slow compared to dynamic times except for rapid rotation and strong seed field
- \triangleright should be present in all rotating cores
- \blacktriangleright no difficulties in modelling

The magneto-rotational instability

- instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $\nabla_{\overline{m}}\Omega < 0$
- exponential growth \propto exp Ωt
- starts with coherent channel modes, but leads to turbulence
- \blacktriangleright feedback: redistribution of angular momentum
- \rightarrow maximum saturation: conversion of differential to rigid rotation

The magneto-rotational instability

- \blacktriangleright instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $\nabla_{\overline{n}}\Omega < 0$
- exponential growth \propto exp Ωt
- starts with coherent channel modes, but leads to turbulence
- feedback: redistribution of angular momentum
- \rightarrow maximum saturation: conversion of differential to rigid rotation

The magneto-rotational instability

- \triangleright instability of differentially rotating fluids with weak magnetic field
- (simplest) instability criterion $\nabla_{\varpi} \Omega < 0$
- exponential growth \propto exp Ωt
- starts with coherent channel modes, but leads to turbulence
- feedback: redistribution of angular momentum
- \rightarrow maximum saturation: conversion of differential to rigid rotation
- \blacktriangleright main physical issue: saturation level
- numerical difficulties: high resolution, low numerical diffusion

9 / 17

← ロ ⊁ → 伊 ⊁ → 君 ⊁ →

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- in core collapse, this can be \sim 1 m
-
-
-

10 / 17

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- in core collapse, this can be \sim 1 m
- grid width $< \lambda$ computationally not feasible
-
-

10 / 17

Grid width

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- in core collapse, this can be \sim 1 m
- grid width $< \lambda$ computationally not feasible
-
-

10 / 17

The MRI: no amplification without representation

- dispersion relation of the MRI: only short modes, $\lambda \propto |B|$, grow rapidly
- in core collapse, this can be \sim 1 m
- arid width $< \lambda$ computationally not feasible
- high-resolution shearing-box simulations to determine fundamental properties of the MRI
- use these results to build models that can be coupled to global simulations

The MRI: saturation mechanism

^I amplification until *e*mag ∼ *e*diffrot?

 \blacktriangleright More complicated actually... Saturation may occur at lower amplitude.

- ^I amplification until *e*mag ∼ *e*diffrot?
- \triangleright More complicated actually... Saturation may occur at lower amplitude.

$$
\bigoplus_{\ell=1}^{\infty} \frac{1}{\sqrt{\ell}}
$$

The MRI: saturation mechanism

- \triangleright MRI channel modes are separated by current sheets and shear layers \rightarrow unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- \triangleright parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- \triangleright at some point, they overtake the MRI and break the channels down into turbulence
- \triangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

11 / 17

- \triangleright MRI channel modes are separated by current sheets and shear layers \rightarrow unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- \blacktriangleright parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI}/B_0$, i.e., faster as the MRI proceeds
- \triangleright at some point, they overtake the MRI and break the channels down into turbulence
- \triangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

- \triangleright MRI channel modes are separated by current sheets and shear layers \rightarrow unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- \blacktriangleright parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- \triangleright at some point, they overtake the MRI and break the channels down into turbulence
- \triangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

- \triangleright MRI channel modes are separated by current sheets and shear layers \rightarrow unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- \blacktriangleright parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI}/B_0$, i.e., faster as the MRI proceeds
- \triangleright at some point, they overtake the MRI and break the channels down into turbulence
- \triangleright weaker field \rightarrow thinner channels \rightarrow lower termination amplitude

The MRI: saturation mechanism

- \triangleright MRI channel modes are separated by current sheets and shear layers \rightarrow unstable against parasitic instabilities: Kelvin-Helmholtz and tearing modes
- \triangleright parasites grow at rates $\propto B_{\rm MRI}/\lambda \propto \exp \sigma_{\rm MRI} t/B_0$, i.e., faster as the MRI proceeds
- \triangleright at some point, they overtake the MRI and break the channels down into turbulence
- ► weaker field \rightarrow thinner channels \rightarrow lower
termination amplitude

11 / 17

The MRI: saturation mechanism

- \Rightarrow MRI growth limited by initial field strength?
- current simulations (T. Rembiasz) try to test the predictions of Pessah (2010) and focus on how parasites depend on resistivity and viscosity. Prerequisite: careful determination of numerical resistivity and viscosity.

a mills.

11 / 17

Dynamos driven by hydrodynamic instabilities

- \triangleright instabilities such as convection and SASI drive turbulence
- energy cascades from the large scale at which the instability operates down to dissipation in a Kolmogorov-like cascade

Dynamos driven by hydrodynamic instabilities

dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes

-
- \blacktriangleright large-scale dynamo adds an inverse cascade of field to larger length scales,

A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1-209

Fig. 4.6. A schematic illustration of the stretch-twist-fold-merge dynamo.

イロト イ押 トイヨ トイヨト

Dynamos driven by hydrodynamic instabilities

- \rightarrow dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes
	- \triangleright small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations \rightarrow Kolmogorov-like spectrum of turbulent magnetic field
	- \blacktriangleright large-scale dynamo adds an inverse cascade of field to larger length scales,

Dynamos driven by hydrodynamic instabilities

- \rightarrow dynamo converting turbulent kinetic to magnetic energy by stretching and folding flux tubes
	- \triangleright small-scale dynamo: amplifies the field only on length scales of turbulent velocity fluctuations \rightarrow Kolmogorov-like spectrum of turbulent magnetic field
	- \blacktriangleright large-scale dynamo adds an inverse cascade of field to larger length scales, i.e., generates an ordered component. Key ingredient: helicity $\vec{v} \times \text{curl } \vec{v}$.

Instabilities: an overview

Endeve et al., 2008 13/17

Dynamos

- ^I MHD uncertainties: type of dynamo, saturation mechanism and level
- technical complications: 3d necessary, high resolution and Reynolds numbers
- kinematic dynamo: weak fields, back-reaction negligible \rightarrow mean-field dynamo theory solve the induction equation, $\partial_t \vec{B} = \vec{\nabla} \times (\vec{v} \times \vec{B})$, for a fixed turbulent velocity field

 $\rightarrow \alpha$ effect: $\partial_t \vec{B} = \alpha \vec{B}$. α parametrises the unknown physics of helical turbulence.

$$
\begin{array}{c}\n\begin{array}{ccc}\n\bullet & & \\
\bullet & & \\
\bullet & & \\
\bullet & & \\
\end{array}
$$

Saturation mechanisms

Will instabilities and turbulence amplify a seed magnetic field to dynamically relevant strength or will the amplification cease earlier?

- \triangleright if the properties of the instability depend strongly on the field, amplification might be limited by the initial field (MRI channel disruption)
- \blacktriangleright quenching of turbulent dynamos: small-scale field resists further stretching (*e*mag ∼ *e*kin locally in *k*-space), reducing the efficiency of mean-field dynamos by orders of magnitude.
- **If** magnetic helicity: $\vec{A} \cdot \vec{B}$ (where $\vec{B} = \vec{\nabla} \times \vec{A}$), is conserved in ideal MHD. Box simulations indicate that fluxes out of the domain may be important to avoid catastrophic quenching. Inhomogeneity of cores may provide that.

Contents

¹ [Introduction](#page-1-0)

- **² [Field amplification mechanisms](#page-6-0)**
- **³ [Summary](#page-33-0)**

Summary

Saturation level

Better understanding of turbulence and dynamos is required!

