Core-Collapse Supernova Neutrinos

Evan O'Connor with Christian Ott INT 12-2A Workshop 1 July 2-6, 2012

Overview

- NuLib
 - Motivation
 - Current Status
- Core-Collapse Supernovae: Models and Observable Signals: From the Neutrino Sector
 - Transport
 - Motivate our Study
 - Look at Progenitor Dependence of Neutrino Signal

NuLib

- NuLib is an open-source neutrino microphysics library
- Intention is to create a one-stopshop for everything neutrino
- inspired by ReacLib, a collection of reaction rates for astrophysical models.
- used for benchmarking current codes, validating and developing new codes
- provide venue for nuclear theorists to provide new/improved interaction rates
- github repository for easy distribution and collaborative efforts

http://www.nulib.org

evanoco	vatch 2 P Fork				
Code Network			Pull Reque	Graphs	
open-source nei	utrino interaction lil	brary — Re	ad more		
Clone in M	Mac 🗘 ZIP	HTTP	SSH Git Read-Only	https://github.com/evanoconnor/NuLib.git	Read+Write access
ទ្រ branch: mast	er - Files	Commit	ts Branches 1		Tags Download
*bug in weak ma	ignetism. I had gA (r authored 5 months	defined as a ago	a -1.254 in constants.	.inc	commit 6bb1c2f
*bug in weak ma evanoconnou NuLib / name	ignetism. I had gA or r authored 5 months age	defined as a ago messag	a -1.254 in constants. ge	.inc	commit 6bb1c2f
*bug in weak ma evanoconnou NuLib / name marc	authored 5 months age 5 months ago	defined as a ago messay *bug in	a -1.254 in constants. ge weak magnetism. I h	.inc	commit 6bb1c2fr histo
*bug in weak ma evanoconnor NuLib / name src Makefile	age authored 5 months age 5 months ago 8 months ago	defined as a ago messag *bug in first cor	a -1.254 in constants. ge weak magnetism. I h mmit of NuLib [evanor	.inc	Commit 6bb1c2fo
*bug in weak ma evanoconnor NULID / name src Makefile README	age age 5 months ago 8 months ago 8 months ago	defined as a ago messag *bug in first cor more [e	a -1.254 in constants. ge weak magnetism. I h mmit of NuLib [evanor avanoconnor]	.inc ad gA defined as a -1.254 in constants.inc [evanoconnol connor]	commit 6bb1c2f histo

NuLib

- NuLib provides routines for calculating neutrino cross sections, opacities, emissivities, kernals, Fermi functions/integrals, ...
- Ideally, routines are optimized for on the fly evaluation of neutrino interaction rates
- Also provides routines for developing tables for fast onthe-fly interpolation of rates
- Currently includes a base set of neutrino interactions: Bruenn '85; Burrows, Reddy, Thompson '06

!emissivities

logical :: add_nue_emission_epannihil = .true. logical :: add_anue_emission_epannihil = .true. logical :: add_numu_emission_epannihil = .true. logical :: add_anumu_emission_epannihil = .true. logical :: add_anutau_emission_epannihil = .true. logical :: add_anutau_emission_epannihil = .true.

logical :: add_nue_emission_NNBrems = .true. logical :: add_anue_emission_NNBrems = .true. logical :: add_numu_emission_NNBrems = .true. logical :: add_anumu_emission_NNBrems = .true. logical :: add_nutau_emission_NNBrems = .true. logical :: add_anutau_emission_NNBrems = .true.

!scatterings

logical :: add_nue_scattering_n = .true. logical :: add_nue_scattering_p = .true. logical :: add_nue_scattering_heavies = .true. logical :: add_nue_scattering_electrons = .true. logical :: add_nue_scattering_alphas = .true. logical :: add_anue_scattering_n = .true. logical :: add_anue_scattering_p = .true. logical :: add_anue_scattering_heavies = .true. logical :: add_anue_scattering_electrons = .true. logical :: add_anue_scattering_alphas = .true. logical :: add_numu_scattering_n = .true. logical :: add numu_scattering p = .true. logical :: add_numu_scattering_heavies = .true. logical :: add_numu_scattering_electrons = .true. logical :: add_numu_scattering_alphas = .true. logical :: add_anumu_scattering_n = .true. logical :: add_anumu_scattering_p = .true. logical :: add_anumu_scattering_heavies = .true. logical :: add_anumu_scattering_electrons = .true. logical :: add_anumu_scattering_alphas = .true. logical :: add_nutau_scattering_n = .true. logical :: add_nutau_scattering_p = .true. logical :: add_nutau_scattering_heavies = .true. logical :: add_nutau_scattering_electrons = .true. logical :: add_nutau_scattering_alphas = .true. logical :: add_anutau_scattering_n = .true. logical :: add_anutau_scattering_p = .true. logical :: add_anutau_scattering_heavies = .true. logical :: add_anutau_scattering_electrons = .true. logical :: add_anutau_scattering_alphas = .true.

!corrections

logical :: do_weak_mag_corrections = .true. logical :: do_ionion_correlation = .true. logical :: do_heavyscat_formfactor = .true. logical :: do_electronpolarization_correction = .true.

!absorptions

logical :: add_nue_absorption_on_n = .true. logical :: add_anue_absorption_on_p = .true. logical :: add_nue_absorption_on_A = .true.

NuLib

Scattering		Charged Currer	ssion / Absorption	Thermal Emission / Absorption				
$\nu + A$	\leftrightarrow	$\nu + A$	$p + e^-$	\leftrightarrow	$\nu_e + n$	$e^{-} + e^{+}$	\leftrightarrow	$\nu + \bar{\nu}$
$\nu + e$	\leftrightarrow	$\nu + e$	$n + e^+$	\leftrightarrow	$\bar{\nu}_e + p$	γ^*	\leftrightarrow	$\nu + \bar{\nu}$
$\nu + N$	\leftrightarrow	$\nu + N$	$A'(Z, A) + e^{-}$	\leftrightarrow	$\nu_e + A(Z-1,A)$	NN	\leftrightarrow	$NN + \nu + \bar{\nu}$
$v_x + \bar{v}_e$	\leftrightarrow	$\nu_x + \bar{\nu}_e$	n	\leftrightarrow	$p + e^- + \bar{\nu}_e$	$\nu_x + \bar{\nu}_x$	\leftrightarrow	$ u_e + \bar{\nu}_e$
$v_x + v_e$	\leftrightarrow	$\nu_x + \nu_e$	n + N	\leftrightarrow	$p + e^- + \nu_e + N$			
			$p + e^- + N$	\leftrightarrow	$n + \nu_e + N$			

- NuLib will ultimately include many more neutrino interactions:
 - inelastic interactions of neutrinos with electrons, nucleons, ions
 - kernels for pair-processes
 - detailed electron capture rates
- covering all high energy astrophysical systems:
 - Core-Collapse Supernovae
 - Protoneutron star cooling
 - Neutron star—Black Hole mergers
 - Neutron star—Neutron star mergers

- and neutrino transport techniques:
 - full transport
 - moment scheme
 - grey schemes
 - leakage schemes

Anyone interested, in contribution, developing, using, or commenting please do

Core-Collapse Supernova Neutrinos

- We are using NuLib in our new neutrino transport code nuGR1D
- nuGR1D, is the combination of a new two-moment neutrino transport code and GR1D
- GR1D is a spherically-symmetric general relativistic Eulerian hydrodynamics code for studying stellar collapse. Open source, www.stellarcollapse.org
- nuGR1D is a general relativistic M1 scheme based on Shibata et al.
 2011, Audit et al. 2002. It is coupled to GR1D. Will be open source when complete.

nuGR1D

• Define the neutrino moment tensor as follows Shibata et al. (2011):

$$M^{\alpha\beta}_{(\nu)} = E_{(\nu)}n^{\alpha}n^{\beta} + F^{\alpha}_{(\nu)}n^{\beta} + F^{\beta}_{(\nu)}n^{\alpha} + P^{\alpha\beta}_{(\nu)}$$
$$n^{\alpha} = (1/\alpha, -\beta^{i}/\alpha)$$
$$n^{\alpha} = (1/\alpha, 0)$$

- Here *E*, F^{α} , $P^{\alpha\beta}$, are the moments in the *laboratory frame*
- Thorne's (1981) moment formalism gives evolution equations for the moment tensor:

$$\nabla_{\beta} M^{\alpha\beta}_{(\nu)} - \frac{\partial}{\partial \nu} \left(\nu M^{\alpha\beta\gamma}_{(\nu)} \nabla_{\gamma} u_{\beta} \right) = S^{\alpha}_{(\nu)}$$

 For simplicity we ignore the energy-coupling term and velocity dependence. Generally bad, but will show it is acceptable for this study

nuGR1D

For GR1D, evolution equations become

$$\partial_t E_{(\nu)} + \frac{1}{r^2} \partial_r \left(\frac{\alpha r^2}{X^2} F_{r,(\nu)} \right) = \alpha^2 \mathcal{S}_{(\nu)}^t$$
$$\partial_t F_{r,(\nu)} + \frac{1}{r^2} \partial_r \left(\frac{\alpha r^2}{X^2} P_{rr,(\nu)} \right) = \alpha X^2 \mathcal{S}_{(\nu)}^r + \alpha \frac{E_{(\nu)}(1 - p_{(\nu)})}{r}$$

• Source terms are calculated using NuLib and tabulate in ρ ,T,Y_e,E space

 $S^{t} = (\eta_{(\nu)} - \kappa_{a,(\nu)} E_{(\nu)}) / \alpha,$ $S^{r} = -(\kappa_{a,(\nu)} + \kappa_{s,(\nu)}) F_{r,(\nu)} / X^{2}$

• Flux equation uses analytic closure and solved via Audit et al. (2002)

$$P_{ii,(\nu)} = \frac{3p_{(\nu)} - 1}{2} P_{ii,(\nu),\text{thin}} + \frac{3(1 - p_{(\nu)})}{2} P_{ii,(\nu),\text{thick}}$$

where $p_{(\nu)} = \frac{1}{3} + \frac{f_{(\nu)}^2}{15} (6 - 2f_{(\nu)} + 6f_{(\nu)}^2)$

Comparison to Full v Transport

We compare nuGR1D to Liebendoerfer *et al.* (2005) "Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods"

Agile-BOLTZTRAN (Liebendoerfer et al. 2001, ...) & VERTEX* (Rampp & Janka 2002)

Motivation:

- In O'Connor and Ott
 (2011) we studied
 progenitor dependence
 of black hole formation 2
- Black hole formation
 properties of massive
 stars do not correlate
 with ZAMS mass

Motivation:

ξ_M is a measure of the compactness of the progenitor's inner M solar masses

 $\xi_{M} = \frac{M / M_{sun}}{R_{M} / 1000 km}$

 In OC&O'11, we chose
 2.5 solar masses as this is the relevant mass
 scale for black hole
 formation

Motivation:

- BH formation time set by progenitor structure and EOS
- Of course, many will explode in nature...
 - Free fall time of a test particle is half the orbital period

$$t_{\rm ff} = \frac{1}{2} \sqrt{\frac{4\pi^2 a^3}{GM^*}} = \pi \sqrt{\frac{r_*^3}{8GM^*}}$$
$$t_{\rm ff}^{2.5M_{\odot}} = \pi \sqrt{\frac{(2.5M_{\odot})^2}{8G(\xi_{2.5})^3}}$$

Models

- We use the 32 solar metallicity models from Woosley & Heger (2007) ranging is ZAMS mass from 12 to 120 M_{sun}
- We use 2 EOS: LS220, Hshen
- perform core collapse and 450ms of postbounce preexplosion evolution with nuGR1D
- We look for trends with the compactness, ξ_{1.75}
- chose 1.75M_{sun} as this is relevant mass scale for early phase

Results - Luminosities

• Luminosities of all species increase with $\xi_{1.75}$ in a predictable way: low $\xi_{1.75}$ have small accretion rates and low protoneutron star temperatures

Results - Luminosities

- Luminosities of all species increase with $\xi_{1.75}$ in a predictable way: low $\xi_{1.75}$ have small accretion rates and low protoneutron star temperatures
- There is a slight EOS dependence, the HShen EOS gives lower luminosities—the neutrinosphere radii are large than the LS220 case

Results – Average Energies

• Average energies of all species also increase with $\xi_{1.75}$ in a predictable way: low $\xi_{1.75}$ models have lower temperature and less compact protoneutron stars.

Results – Average Energies

- Average energies of all species also increase with $\xi_{1.75}$ in a predictable way: low $\xi_{1.75}$ models have lower temperatures and less compact protoneutron stars.
- There is a stronger EOS dependence, the HShen EOS can give up to 5MeV lower average energies.
- At late times, high $\xi_{1.75}$ models are close to black hole formation---very high average energies.

More Quantitative

- Cumulative emitted electron antineutrino energy also is proportional to $\xi_{\rm 1.75}$
- electron antineutrinos are the predominate neutrino detected on Earth from a core-collapse supernova

$$\overline{v}_e + p \rightarrow e^+ + n$$

More Quantitative

- Cumulative emitted electron antineutrino energy also is proportional to $\xi_{\rm 1.75}$
- electron antineutrinos are the predominate neutrino detected on Earth from a core-collapse supernova

$$\overline{v}_e + p \rightarrow e^+ + n$$

Detection on Earth

 We use SNOwGLOBES (Scholberg 2012) to reconstruct the number of events in a Super-K-like v detector for a 10 kpc supernova

- Same trends as cumulative v energy
- Stronger EOS
 dependence as cross
 sections are very
 sensitive to energies
- The early postbounce preexplosion v signal will tell us the compactness of the progenitor star!

Detection on Earth

- Another method of probing the progenitor star's structure is through the total emitted neutrino energy
- Assume explosion is launched at postbounce time t
- Convert baryonic mass into total emitted v energy
- Estimate of explosion time and total v energy gives compactness and remnant mass!

Degeneracies 🛞

 Nuclear equation of state is not completely degenerate with progenitor compactness

• Accurate observations will allow EOS to be probed, otherwise it will cloud $\xi_{1.75}$ determination

Degeneracies 🛞

Distance

- If distance is uncertain, one cannot nail down total emitted energy.
- The energy spectrum would not be changed

<u>Rotation</u>

 1.5D rotation simulations show that significant rotation will alter v signal

Neutrino Oscillations

 both MSW and collective will complicate picture

1987A

- We use SNOwGLoBES to predict the neutrino signal of our models for K-II at 51.47kpc
- We overlay 1987A's first four events
- Very small number statistics so not much can be said
- 1987A progenitor was not a high $\xi_{1.75}$ progenitor that exploded late

Summary

- Next galactic core-collapse supernova will be well observed in neutrinos
- Early postbounce, preexplosion rates of inverse beta decay interactions will relay direct information on the progenitor structure of the core
- Will allow us to connect inner core structure with presupernova structure of the rest of the star
- Several theoretical hurdles to overcome before precise quantitative conclusions can be reached
- Use NuLib!