Neutrino Reactions on the Deuteron in Core-Collapse Supernovae

Satoshi Nakamura Yukawa Institute, Kyoto University

Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi (Numazu Coll. Tech.) F. Myhrer, K. Kubodera (U. of South Carolina)

Neutrino reactions on the deuteron

$$v_e + d \rightarrow e^- + p + p \qquad v + d \rightarrow v + p + n$$

$$e^- + d \rightarrow v_e + n + n \qquad e^+ + d \rightarrow \overline{v}_e + p + p$$

$$p + p \rightarrow d + e^+ + v_e \qquad p + n \rightarrow d + v + \overline{v} \qquad n + n \rightarrow d + e^- + \overline{v}_e$$

Important relevance to neutrino physics, astrophysics

- Supernova (v-heating, v-emission)
- v-oscillation experiment @ SNO
- Solar fusion (*pp*-chain)

Calculational method

Well-established method for electroweak processes in few-nucleon systems

$$\langle \psi_f | H_{\rm ew} | \psi_i \rangle$$

 $|\psi
angle$: solution of Schröding eq. with high-precision NN (+ NNN) potential

AV18, Nijmegen, Bonn, etc.

 $H_{\rm ew}$: impulse + meson exchange currents

review : Carlson and Schiavilla, Rev. Mod. Phys. 70, 743841 (1998)

cf. chiral effective field theory

Contents

- Model for *H*_{ew}
- v-heating in supernova

 $v_e + d \rightarrow e^- + p + p$ $v + d \rightarrow v + p + n$

• v-emission in supernova

 $e^{\pm} + d \rightarrow v_e(\overline{v}_e) + N + N \qquad N + N \rightarrow d + l + \overline{l}$

MODEL

Interaction Hamiltonian

$$H_W^{CC} = \frac{G'_F V_{ud}}{\sqrt{2}} \int d\boldsymbol{x} [J_\lambda^{CC}(\boldsymbol{x}) L^\lambda(\boldsymbol{x}) + h. c.] \quad \text{for CC}$$

$$H_W^{NC} = \frac{G'_F}{\sqrt{2}} \int d\boldsymbol{x} [J_\lambda^{NC}(\boldsymbol{x}) L^\lambda(\boldsymbol{x}) + h. c.] \qquad \text{ for NC}$$

$$L^{\lambda}(\boldsymbol{x}) = \bar{\psi}_{l}(\boldsymbol{x}) \gamma^{\lambda} (1 - \gamma^{5}) \psi_{\nu}(\boldsymbol{x})$$

Nuclear Current

$$\begin{aligned} J_{\lambda}^{CC}(\boldsymbol{x}) &= V_{\lambda}^{\pm}(\boldsymbol{x}) + A_{\lambda}^{\pm}(\boldsymbol{x}) \\ J_{\lambda}^{NC}(\boldsymbol{x}) &= V_{\lambda}^{3} - 2\sin^{2}\theta_{W}(V_{\lambda}^{3} + V_{\lambda}^{s}) + A_{\lambda}^{3} \end{aligned}$$

V(A) : Vector (Axial) current

 V^s : Isoscalar vector current

 θ_W : Weinberg Angle $\sin^2 \theta_W = 0.23$

 J_{λ} = (one-body current) + (two-body exchange current)

Impulse Approximation (IA) Current

$$\langle p' | V_{\lambda}(0) | p \rangle = \bar{u}(p') \left[f_V \gamma_{\lambda} + i \frac{f_M}{2M_N} \sigma_{\lambda\rho} q^{\rho} \right] u(p)$$

$$\langle p' | A_{\lambda}(0) | p \rangle = \bar{u}(p') \left[f_A \gamma_{\lambda} \gamma^5 + f_P \gamma^5 q_{\lambda} \right] u(p)$$

$$q_{\lambda} \equiv p'_{\lambda} - p_{\lambda}$$

 f_M : CVC f_P : PCAC

$$f_A(q_\mu^2) = -g_A \left(1 - \frac{q_\mu^2}{1.04 \,[\text{GeV}^2]}\right)^{-2}, \quad g_A = 1.2670 \pm 0.0030 \ (\text{PDG})$$

Exchange vector current

- ★ Current conservation for one-pion-exchange potential
- ★ *VN* Δ coupling is fitted to $np \rightarrow d\gamma$ data

Comparison with $np \rightarrow d\gamma$ data

Exchange currents contribute about 10 %

Exchange axial charge

Kubodera, Delorme, Rho, PRL 40 (1978)

Soft pion theorem + PCAC

Exchange axial-vector current

R. Schiavilla et al. PRC 58, 1263 (1998)

- Fit $AN\Delta$ coupling to tritium β -decay rate
- Rigorous three-body calculation

Why tritium β decay?

u d : Gamow-Teller ($^3S_1 \rightarrow {}^1S_0$) \Rightarrow \mathbf{A}_{EXC} is main correction

 ^{3}H : Fermi ($^{1}S_{0} \
ightarrow \ ^{1}S_{0}$) & Gamow-Teller

Most recent applications of the model to weak processes

★ pp-fusion $(p + p \rightarrow d + e^+ + v_e)$ for solar model, Schiavilla et al. PRC 58 (1998)

★ Muon capture $(\mu^- + d \rightarrow n + n + \nu_{\mu}, \mu^- + {}^{3}He \rightarrow {}^{3}H + \nu_{\mu})$, Marcucci et al., PRC 83 (2011)

	[1]	[2]	Theory	MuSun@PSI	
$\Gamma(\mu^- + d)[s^{-1}]$	409 ± 40	470 ± 29	393	???	
	[3]	Theory	[1] Cargnell	i et al. (1998)	
$\Gamma(\mu^- + {}^3He)[s^{-1}]$	1496 ± 4	1496	[2] Bardin e [3] Ackerba	t al. NPA 453 (1986) uer et al. PLB 417 (199	8)

★ vd-reactions ($v_e + d \rightarrow e^- + p + p$, $v_e + d \rightarrow v + p + n$) for SNO experiment SN et al. PRC 63 (2000); NPA707 (2002)

evidence of v-oscillation, solar v problem resolved

Neutrino-deuteron reaction as heating mechanism in Supernova

SXN, K. Sumiyoshi, T. Sato, PRC 80, 035802 (2009)

In many simulations, supernova doesn't explode !

- ➔ extra assistance needed for re-accelerating shock-wave
 - ★ neutrino absorption on nucleon (main)
 - ★ neutrino scattering or absorption on nuclei (extra agent)
 NC can contribute to the heating

- * ⁴He, ⁵⁶Fe Haxton, PRL 60, 1999 (1988) \Rightarrow small effect on supernova dynamics
- * ³He, ³H O'Connor et al. PRC 75, 055803 (2007) more effective heating than ⁴He
- * deuteron ?

can be abundant in supernova, $\sigma_{\nu d} \gg \sigma_{\nu^3 He}, \sigma_{\nu^3 H}$

Abundance of light elements in supernova

Sumiyoshi, Röpke, PRC 77, 055804 (2008)

cf. Arcones et al. PRC 78, 015806 (2008)

Energy transfer cross section

- CC (absorption) $\sigma\omega(E_{\nu}) = \int dE'_l \frac{d\sigma}{dE'_l} E_{\nu}$
- NC (scattering) $\sigma\omega(E_{\nu}) = \int dE'_{\nu} \frac{d\sigma}{dE'_{\nu}} (E_{\nu} E'_{\nu})$

Thermal average

$$<\sigma\omega>_{T_{\nu}} = \int dE_{\nu}f(T_{\nu}, E_{\nu})\sigma\omega(E_{\nu})$$
$$f(T_{\nu}, E_{\nu}) = \frac{N}{T_{\nu}^{3}}\frac{E_{\nu}^{2}}{e^{E_{\nu}/T_{\nu}} + 1}$$

Results

Neutrino-deuteron cross sections

* $\sigma(\nu d \ CC) \sim \sigma(\nu N \ CC)/3$ at $E_{\nu} = 10 \text{ MeV}$ * $\sigma(\nu d \ CC) \sim \sigma(\nu N \ CC)/2$ at $E_{\nu} = 50 \text{ MeV}$ * $\sigma(\text{elastic } \nu d)$ is very small

* Main contribution is from E_{ν} = 20 (60) MeV for T_{ν} = 5 (10) MeV

* High energy tail of $\sigma\omega imes f$ is appreciable

Thermal average of energy transfer cross sections

³H ($\overline{\nu}$) : Arcones et al. PRC 78 (2008) ⁴He(ν) : Haxton PRL 60 (1998)

Thermal average of energy transfer cross sections

³He (v) : O'conner et al. PRC 78 (2007) ⁴He (v) : Gazit et al. PRL 98 (2007)

Thermal average of energy transfer cross sections

 $* < \sigma \omega >$ for the deuteron is much larger than those of 3 H, 3 He, 4 He

* Small binding energy \Rightarrow rapid increase of $< \sigma \omega >$ at low $T_{
u}$

 $* < \sigma \omega >_{\nu_e d} / < \sigma \omega >_{\nu_e N} \sim 0.44$ at $T_{\nu_e} = 5$ MeV $* < \sigma \omega >_{\nu_\mu d} / < \sigma \omega >_{\nu_e N} \sim 0.25$ at $T_{\nu_e} = 5$ MeV and $T_{\nu_\mu} = 10$ MeV

Electron capture on deuteron & NN fusion as neutrino emission mechanism

S. Nasu, SXN, T. Sato, K. Sumiyoshi, F. Myrer, K. Kubodera (2012)

v-emission previously considered (A≤2)

*
$$p + e^- \rightarrow n + \nu_e$$

*
$$n + e^+ \rightarrow p + \bar{\nu}_e$$

*
$$n+n \rightarrow p+n+e^- + \bar{\nu}_e$$

*
$$p + p \rightarrow p + n + e^+ + \nu_e$$

*
$$N + N \rightarrow N + N + \nu + \bar{\nu}$$

New agents

*	$p + e^- \rightarrow n + \nu_e$	$d + e^- \rightarrow n + n + \nu_e$
*	$n + e^+ \rightarrow p + \bar{\nu}_e$	$d + e^+ \rightarrow p + p + \bar{\nu}_e$
*	$n+n \rightarrow p+n+e^- + \bar{\nu}_e$	$n+n \rightarrow d + e^- + \bar{\nu}_e$
*	$p + p \rightarrow p + n + e^+ + \nu_e$	$p + p \rightarrow d + e^+ + \nu_e$
*	$N+N \to N+N+\nu+\bar{\nu}$	$p + n ightarrow d + \nu + \bar{\nu}$

Emissivity (Q)

 $N_1+N_2\rightarrow N_1'+N_2'+\nu+\bar\nu$

$$Q = \frac{(2\pi)^4}{S} \int \frac{d\mathbf{p}_{N_1}}{(2\pi)^3} \frac{d\mathbf{p}_{N_2}}{(2\pi)^3} \frac{d\mathbf{p}_{N_1'}}{(2\pi)^3} \frac{d\mathbf{p}_{N_2'}}{(2\pi)^3} \frac{d\mathbf{p}_{\nu}}{(2\pi)^3} \frac{d\mathbf{p}_{\nu}}{(2\pi)^3} \frac{d\mathbf{p}_{\nu}}{(2\pi)^3} \delta^{(4)}(p_f - p_i)$$

$$\times \quad (E_{\nu} + E_{\bar{\nu}}) \sum_{spin} |\langle \psi_f | H_{ew} | \psi_i \rangle|^2 F_{N_1} F_{N_2} (1 - F_{N_1'}) (1 - F_{N_2'})$$

$$F_N = \frac{1}{1 + \exp[(\varepsilon_N - \mu_N) / kT]}$$

Emissivity (Q)

 $N_1 + N_2 \to \mathbf{d} + \nu + \bar{\nu}$

$$Q = \frac{(2\pi)^4}{S} \int \frac{d\mathbf{p}_{N_1}}{(2\pi)^3} \frac{d\mathbf{p}_{N_2}}{(2\pi)^3} \frac{d\mathbf{p}_d}{(2\pi)^3} \frac{d\mathbf{p}_{\nu}}{(2\pi)^3} \frac{d\mathbf{p}_{\bar{\nu}}}{(2\pi)^3} \delta^{(4)}(p_f - p_i)$$

× $(E_{\nu} + E_{\bar{\nu}}) \sum_{spin} |\langle \psi_f | H_{ew} | \psi_i \rangle|^2 F_{N_1} F_{N_2}$

11 dimensional integral !!

Approximation necessary to evaluate Q

Emissivity (Q)

 $8\pi^2 p_\nu^2 p_{\bar{\nu}}^2 dp_\nu dp_{\bar{\nu}} d\cos\theta_{\nu\bar{\nu}}$

3 dimensional integral

Previous common approximation to evaluate Q_{NN-brem}

• One-pion-exchange potential, Born approximation

• Neglect momentum transfer ($\vec{p}_v + \vec{p}_{\bar{v}}$)

 \clubsuit also angular correlation between $v \, {\rm and} \, \bar{v}$

• Nuclear matrix element \rightarrow long wave length limit

Supernova profile

Sumiyoshi, Röpke, PRC 77, 055804 (2008)

Summary

Deuteron breakup (v-heating) & formation (v-emission) in SNe and NS

Framework : NN wave functions based on high-precision NN potential + 1 & 2-body nuclear weak currents (tested by data)

v-heating:
$$v_e + d \rightarrow e^- + p + p$$
 $v + d \rightarrow v + p + n$

Substantial abundance of light elements (NSE model)

 $\langle \sigma \omega \rangle$ for deuteron : much larger than those for ³H, ³He, ⁴He 25-44% of $\langle \sigma \omega \rangle$ for the nucleon

Summary

v-emission: $e^{\pm} + d \rightarrow v_e(\bar{v}_e) + N + N$ $N + N \rightarrow d + l + \bar{l}$

New agents other than direct & modified Urca, NN bremsstrahlung

Electron captures \rightarrow effectively reduced v_e emissivity

→ Need careful estimate of light element abundance & emissivity

NN fusions

- → $np \rightarrow dv\overline{v}$ can be very important for $\overline{v}_e \& v_\mu$ emissivites
- → play a role comparable to NN bremsstrahlung & modified Urca