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1D simulations
(Rad-hydro)

Wilson ‘85
Bethe & Wilson ‘85
Liebendoerfer et al. ‘01
Rampp & Janka ‘02
Buras et al. ‘03
Thompson et al. ‘03
Liebendoer et al. ‘05
Kitaura et al. ‘06
Burrows et al. ‘07

No Explosions
(Except lowest masses)

Neutrino mechanism suggested

Spherical symmetry!
No GW emission?



Fundamental Question of 
Core-Collapse Theory

?

Steady-State
Accretion

Explosion



Relax 1D assumption?
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Neutrino Mechanism:
•Neutrino-heated convection
•Standing Accretion Shock Instability (SASI)
•Explosions? Maybe

Acoustic Mechanism:
•Explosions but caveats.

Magnetic Jets:
•Only for very rapid rotations
•Collapsar?



Fundamental Question of 
Core-Collapse Theory

?

Steady-State
Accretion

Explosion



Why is it easier to explode in 2D 
compared to 1D?



Two Paths to the Solution

• Detailed 3D radiation-hydrodynamic simulations
  (“Accurate” energies, NS masses, nucleo., etc.)

• Parameterizations that capture essential physics
  (Tease out fundamental mechanisms)



M
.

Lνe
Critical Curve

Steady-state accretion
(Solution)

Explosions!
(No Solution)

Burrows & Goshy ‘93
Steady-state solution (ODE)
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Explosion is a global, boundary-
value problem
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Explosion is a global, boundary-
value problem

In other words:
What neutrino forcing is required to change the global structure 
between the NS and shock such that explosions occur? 
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This also means that one can’t easily and cleanly pick out 
one simple diagnostic

Hence... “Mazurek’s Law”

Explosion is a global, boundary-
value problem



Is a critical luminosity relevant in 
hydrodynamic simulations?

• 1D
• 2D Convection and SASI?



How do the critical luminosities 
differ between 1D and 2D?



Murphy & Burrows ‘08



Murphy & Burrows ‘08
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Nordhaus et al. 2010
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SASI activity as key to successful neutrino-driven SN explosions? 5
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Fig. 2.— Critical curves for the electron-neutrino luminosity (Lνe ) versus mass accretion rate (Ṁ) (left plot) and versus explosion time texp (right plot) for
simulations in 1D (black), 2D (blue), and 3D (red) with standard resolution. The accretion rate is measureed just outside of the shock at the time texp when the
explosion sets in. The results of the 11.2M! models are represented by plus symbols and those of the 15M! models by diamonds. All models were computed
with standard resolution.
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Fig. 3.— Time evolution of the average shock radius as function of the post-
bounce time tpb for simulations in one (thin dashed lines), two (thin solid
lines), and three dimensions (thick lines). The shock position is defined as
the surface average over all angular directions. The top panel shows results
for the 11.2M! progenitor and the bottom panel for the 15M! progenitor, all
obtained with our standard resolution. Different electron-neutrino luminosi-
ties (labelled in the plots in units of 1052 erg s−1) are displayed by different
colors.

sion by 15–25% compared to the 2D case.
Despite the basic agreement of the outcome of these investi-

gations it should be kept in mind that it is not ultimately clear
whether the simple concept of a critical threshold condition
separating explosions from failures (and the dependences of
this threshold on dimension and rotation for example) holds
beyond the highly idealized setups considered in the men-

tioned works. None of the mentioned systematic studies by
steady-state or hydrodynamic models was able to include ad-
equately the complexity of the feedback between hydrody-
namics and neutrino transport physics. In particular, none of
these studies could yield the proof that the non-existence of
a steady-state accretion solution for a given combination of
mass accretion rate and neutrino luminosity is equivalent to
the onset of an explosion. The latter requires the persistence
of sufficiently strong energy input by neutrino heating for a
suffiently long period of time. This is especially important
because Pejcha & Thompson (2011) showed that the total en-
ergy in the gain layer is still negative even in the case of the
limiting accretion solution that corresponds to the critical lu-
minosity. Within the framework of simplified modeling se-
tups, however, the question cannot be answered whether such
a persistent energy input can be maintained in the environ-
ment of the supernova core.
Following the previous investigations by

Murphy & Burrows (2008) and Nordhaus et al. (2010)
we performed hydrodynamical simulations that track the
post-bounce evolution of collapsing stars for different, fixed
values of the driving neutrino luminosity. Since the mass
accretion rate decreases with time according to the density
profile that is characteristic of the initial structure of the
progenitor core (see Fig. 1 for the 11.2 and 15M! stars
considered in this work), each model run probes the critical
value of Ṁexp at which the explosion becomes possible for
the chosen value of Lν = Lνe = Lν̄e . The collection of
value pairs (Ṁexp,Lνe) defines a critical curve Lν(Ṁ). These
are shown for our 1D, 2D, and 3D studies with standard
resolution for both progenitor stars in the left panel of Fig. 2
and in the case of the 15M! star can be directly compared
with Fig. 1 of Nordhaus et al. (2010). Table 1 lists, as a
function of the chosen Lνe , the corresponding times texp when
the onset of the explosion takes place and the mass accretion
rate has the value of Ṁexp. The post-bounce evolution of a
collapsing star proceeds from high to low mass accretion rate
(Fig. 1), i.e., from right to left on the horizontal axis of the
left panel of Fig. 2. When Ṁ reaches the critical value for
the given Lνe , the model develops an explosion. The right
panel of Fig. 2 visualizes the functional relations between the
neutrino luminosities Lνe and the explosion times texp for both
progenitors and for the simulations with different dimensions.

Hanke et al 2011
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CCSNE NEUTRINO MECHANISM EOS DEPENDENCE 5
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Figure 4. Neutrino luminosity versus mass accretion rate at time of explosion (left panel) and time of explosion (right panel) for the three EOS considered in this
work. Results from both 1D (dashed lines) and 2D (solid lines) are shown. For each EOS explosions are found more easily in 2D than in 1D. The Lattimer &
Swesty EOS result in easier explosions in both 1D and 2D than the Shen et al. EOS.
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Figure 5. Shock radii as a function of time for STOS, LS220, and LS180 in 1D (left) and 2D (right). Three different neutrino luminosities are plotted for each
EOS in each panel, as labeled.

that “outflow” boundary conditions can, in this way, suppress
explosions for neutrino luminosities near critical. For all of
our simulations, we use the 15 M� progenitor of Woosley &
Weaver (1995).

We have incorporated the finite temperature equation of state
routines of O’Connor & Ott (2010) into the FLASH frame-
work4. We use three different EOS models in our simulations,
the models of Lattimer & Swesty (1991) with incompressibil-
ity, K, of 180 MeV and 220 MeV and that of Shen et al. (1998).
Some parameters for these EOS are listed in Table 1.

3. RESULTS
3.1. Dependence on EOS

We ran a series of core collapse simulations in 1D and 2D in
which we varied the driving neutrino luminosity. For models
that explode, we measure the post-bounce time of the explo-
sion and the mass accretion rate at the time of explosion. We
consider a model to have exploded if the average shock radius
exceeds 400 km and does not subsequently fall back below
400 km. We measure the mass accretion rate at a radius of

4 These routines are available for download at stellarcollapse.org.

500 km in both 1D and 2D simulations, though the measured
mass accretion rates are identical since the 2D solution remains
spherically-symmetric outside of the shock. Figure 3 shows
our measured mass accretion rates as a function of time post-
bounce for the three EOS we consider. Our mass accretion rate
is very similar to that of Hanke et al. (2011) for their 15 M�
progenitor model. The differences in mass accretion history
between STOS and LS can be attributed to models using STOS
collapsing and bouncing a little faster than models using LS;
bounce occurs 50 ms earlier for STOS as compared to LS.
Table 2 summarizes the simulations we ran and the resulting
explosion times and mass accretion rates at the time of explo-
sion. In Figure 4 we plot the driving neutrino luminosities as a
function of explosion time and mass accretion rate at the time
of explosion.

Our results show that the Lattimer & Swesty EOS explode
more easily than that of Shen et al., with LS180 resulting in
the earliest explosions for a given neutrino luminosity (lowest
curves in Fig. 4). The results then follow a basic trend that the
stiffer the EOS, the harder it is to drive an explosion (LS180
being the softest EOS and STOS being the stiffest EOS we
consider). This trend holds in both 1D and 2D simulations. For

Couch 2012



Why is critical luminosity of 
multi-D simulations ~70% of 1D?



Comparison of Timescales
(Thompson et al. ‘00, Janka ’01, Thompson et al. ‘03, Murphy et al. ’08, 

Pejcha ’11, Fernandez ’12)

Mgain

τadv = vr

Δrgain

τq =
E
Q
.

τadv
τq

> 1~

Q
.



1D → one time
mulit-D → distribution of times
More heating?

ΔS ∝ Q
T

.



2D & 3D critical luminosity 
lower than 1D

Turbulence plays an important 
role!



M
.

Lν

A Theoretical Framework for 
Successful Explosions

+ Turbulence
Model
Murphy & Meakin 2011



M
.

Lν

A Theoretical Framework for 
Successful Explosions

+ Turbulence
Model

Calibrate with 3D
Simulations
Murphy et al. 2012, in prep
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Lν

A Theoretical Framework for 
Successful Explosions

+ Turbulence
Model



M
.

Lν

A Theoretical Framework for 
Successful Explosions

+ Turbulence
Model

1D Rad-hydro simulations
Realistic and quantitative explosions
Systematic exploration



N2 < 0, ∇s < 0
Convectively unstable

N2 > 0
N2 > 0
Stably stratified
(gravity waves)



b(r) = ∫ N2dr = buoyant accel.

N2 < 0
Convectively unstable

N2 > 0
N2 > 0
Stably stratified
(gravity waves)

Dp Over shoot



b(r) = ∫ N2dr = buoyant accel.

N2 < 0
Convectively unstable

N2 > 0
N2 > 0
Stably stratified
(gravity waves)

F = Frad + Fconv

F = Frad

Dp Over shoot

Fconv = Cpρ(v’T’)



F = Frad + Fconv

Fconv = Cpρ(v’T’)



Need a More General Turbulence Model
(Reynolds Decomposition)
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Back to the Beginning



Mean-Field Equations

37

Reynolds Decomposition

Hydro Equations

New steady-state solutions & Critical Curve
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Reynolds-Averaged Equations

Murphy & Meakin 2011
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Reynolds-Averaged Equations

Murphy & Meakin 2011
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Turbulent Moment Equations
Equations for 2nd order moments

and more ...
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Depends upon higher order moments 

Turbulent Moment Equations
Equations for 2nd order moments
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Turbulent Moment Equations
Equations for 2nd order moments

A Closure Problem!
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Local Algebraic Local Single-Point Global

Closure Strategies
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Local Algebraic Local Single-Point Global

Closure Strategies
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Local Algebraic Local Single-Point Global

Closure Strategies

MLT is a classic example
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Local Algebraic Local Single-Point Global

Closure Strategies

Local models for these
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Local Algebraic Local Single-Point Global

Closure Strategies
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Global Closure Examples
Earth’s Atmospheric Convective Layer

Tennekes 1973
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Global Closure Examples
Stellar Convection

Turbulent Stellar Convection 3

Table 1 Selected Simulation Model Parameters

Model ID ∆θ,∆φa Zoning tavg
b Comments

[deg.] [nr × nθ × nφ] [s]
h1 30,30 200×50×50 [300, 500] narrow, static heating profile
h1.z2 30,30 400×100×100 - model h1 with moderate resolution increase
h1.z1 30,30 800×200×200 - model h1 with high resolution
h3 30,30 200×50×50 [375, 575] broad, static heating profile
c1 30,30 200×50×50 [200, 400] static top cooling profile

aThe computational domain is centered on the equator so that the domain extends ∆θ/2 degrees above and below the equator.
bProvided is the time interval over which averages are performed.

Fig. 1 (left) Heating / cooling profiles for the models listed in Table 1. (right) The time evolution of the total kinetic
energy in the simulation domain. The two additional high resolution models h1.z1 and h1.z2 are indicated by the magenta
crosses and the orange line, respectively.

Fig. 2 Convective flux: (left) time averaged simulation data and (right) calculated from the background structure as
described by Eq. 3.

Meakin & Arnett 2010
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Global Closure For CCSNe

Use

And simulations to inform assumptions 
about profiles



Comparison of Timescales

Mgain

Q
.

Heuristic & Emperical
See...
Thompson et al. ’00
Janka ’01
Thompson et al. ’03
Murphy et al. ’08
Buras ’06
Pejcha ’11
Fernandez ’12



Comparison of Timescales

Mgain

Q
.



Comparison of Timescales



Comparison of Timescales



Comparison of Timescales
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Figure 13. Radial profiles of entropy change in units of Ṁ∆s. The solid lines
represent 2D simulation results, and the dashed lines are the results of the
global model, Model 4. The integrated neutrino heating and cooling (blue line)
and turbulent dissipation (green dot-dashed line) are evaluated from r to the
shock radius, Rs. The modeled entropy difference (red dashed line) is a sum of
the integrated neutrino heating and cooling (blue line), the modeled integrated
turbulent dissipation (green dashed line), and the modeled convective entropy
luminosity, Ls (green dot-dashed line). The entropy difference derived using the
global model (red dashed line) shows the same scale, radial profile, and temporal
evolution as the 2D simulation data (red solid line). Convection (Ls > 0) fills the
region where the integrated neutrino heating and cooling (blue line) is greater
than zero. The 2D simulated Ls profile (black dashed line) is self-similar and
can be modeled by a piecewise linear, pointed hat.
(A color version of this figure is available in the online journal.)

Figures 10–12, Rrr and T0Fs matter most in the background
equations, Equations (4)–(6), and they show the best correlation
with 2D simulations. On the other hand, while the algebraic
model gives the correct scale for the entropy variance, Q, the
algebraic model does not match exactly the 2D profiles. For-
tunately, the entropy variance does not directly influence the
background equations and so in practice this discrepancy can
be ignored. Nonetheless, this failure should be a clue to what is

Figure 14. Convective kinetic energy flux, FK , at 404 ms, 518 ms, and 632 ms
after bounce as a function of radius. The results of the global model (Model 4,
dashed lines) reproduce the scale, general profile, and temporal evolution of the
2D data (solid lines).
(A color version of this figure is available in the online journal.)

missing. Furthermore, we note that the profiles for Rrr and T0Fs

match the 2D results only in the heating region, where convec-
tion is actively driven. Below the heating region (r ! 100 km),
we set the values to zero because it is not clear how to model
this region with the algebraic model where positive buoyancy
decelerates the convective plumes. Finally, as we discuss in
Section 4.5, the success of this model implies that core-collapse
turbulence is best characterized by low entropy plumes that are
initiated at the shock, the acceleration of these plumes through
the heating region, and the deceleration of these plumes at the
lower boundary by stabilizing gradients.

Model 4 comparison (Section 4.6). Figures 11–14 show that
the global model (Model 4) provides the most accurate turbulent
correlations. The Reynolds stress, Rrr, and enthalpy flux, T0Fs ,
(red solid lines in Figures 11 and 12) derived from Model 4 have
profiles that match the 2D simulation data in scale, shape, and
temporal evolution.

Figure 13 compares the terms in the entropy equation,
Equation (52), of Model 4 with 2D simulation data, and once
again, this plot shows that Model 4 accurately reproduces the
2D data. The solid blue line represents the change in entropy (in
units of Ṁ∆s0) due to neutrino heating and cooling alone. We
find that convection fills the region where this integral is greater
than zero. In the convective region, the neutrino heating and
cooling curve accounts for only half of the total entropy change
at 404 ms and only one-third of the entropy change at 632 ms.
Heating by turbulent dissipation and redistribution by Ls account
for the rest. The total entropy change, Ṁ∆s0, from Model 4 (red
dashed line) is computed by summing the neutrino heating and
cooling integral (blue line), the modeled turbulent dissipation
integral (green dashed line), and the modeled convective entropy
luminosity (black dashed line). The modeled entropy difference
is only slightly larger than the 2D simulation results (red solid
line) and reproduces the general radial profile and temporal
evolution.

In Section 4.6, we argue that the global constraints of
convection and similarity in driving, distribution, and dissipation
mechanisms suggest self-similar profiles for Ls. Indeed, the
correspondence between our modeled Ls (green dot-dashed line)
and the 2D data (black dashed line) confirms this assumption.
Moreover, this shape is simply modeled as a piecewise linear,

17



60

“What about the SASI?”
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What dominates the post shock flow?
Convection, SASI... both?
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Compare nonlinear theories for convection 
and SASI with post shock flow

SASI nonlinear theory

?
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Compare nonlinear theories for convection 
and SASI with post shock flow

Convection nonlinear theory
100+ years
In CCSN...Murphy & Meakin 2012
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Compare nonlinear theories for convection 
and SASI with post shock flow

Convection nonlinear theory
100+ years
In CCSN...Murphy & Meakin 2012

We can test this theory with 3D simulations
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Nonlinear Convection is Consistent 
with Post Shock Flow

1. Consistent buoyancy flux profile
2. Consistent Reynolds stresses
3. Buoyant driving balances dissipation
4. Analytic scaling between buoyant flux and neutrino driving
5. Expansion of shock due to turbulent ram pressure



Nonlinear Convection is Consistent 
with Post Shock Flow

But what about the SASI?



A theory for neutrino-driven 
explosions

A turbulence model for CCSNe

Post shock flow is consistent with 
nonlinear convection theory 


