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Major Questions
● How does the “engine” 

work? Do -driven 
explosions work or do we 
need an alternative?

● What can we observe?
● Neutrinos – from bounce to 

cooling

● Gravitational waves (?)

● Ejecta morphology

● Pulsar kicks

● Nucleosynthesis yields



  

● Axisymmetric multi-group 
simulations by different groups 
not yet in agreement

● Concerns: only few weak & late 
explosions, limited range of 
progenitors

● Potential ingredients for 
neutrino-driven explosions to be 
investigated in more detail:

● General relativity

● Neutrino physics

● 3D effects

● Equation of state

Status of Neutrino-
Driven Explosions

Marek & Janka (2009)

Burrows et al. 2006: explosion not by -
heating, but by “acoustic mechanism”

Bruenn et al. (2009)
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not yet in agreement
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progenitors
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talk this afternoon
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Ingredients for -driven 
Explosions

GR run

● Detailed neutrino physics & general 
relativity sometimes dismissed as 
unimportant, but tests in multi-D 
required!

● Müller et al. (2012): Detailed 
comparison of four models using the 
15M

⊙
 progenitor of Woosley & 

Weaver (1995)

● Newtonian vs. GR

● Newtonian + “effective” pseudo-GR 
potential vs. GR

● Up-to-date neutrino reaction rates vs. 
simplified rates (e.g. no recoil energy 
transfer in -nucleon reactions)

● Only GR model with up-to-date rates 
explodes → GR and  rates can 
make a difference!
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● Increased electron (anti-)neutrino luminosity L 
and mean energies 〈E


〉 in GR (hotter neutron 

star surface)

● Local heating rate ~L〈E

〉2, but feedback effects 

(stronger convection, larger shock radius) 
further increase the integrated heating rates (up 
to ~100%)

● Improved microphysics: energy transfer from 


/
 to the medium allows stronger (anti-)

e
 

emission in cooling region → similar increase in 
heating in gain region

Systematic Differences in the Heating Conditions

Fraction of binding energy 
pumped into accreted material 
before it leaves the gain region

≈1MeV



  

The Role of Non-Isoenergetic 
Neutrino-Nucleon Scattering

“radiative equilibrium
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GR and the 
Gravitational Wave 

Signals
● GR is important for the 

dynamics, so what about the 
gravitational wave signal?

● Overall signal structure and 
amplitudes similar in GR & in 
the Newtonian approximation 

● Signal from convection shows 
stochastic amplitude variations 
→ model properties better 
reflected in the spectra

● Reference scale: typical 
frequencies vary by ~30% for 
different equations of state 
(Marek et al. 2008)
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● Frequency shift in the GW energy spectra 
depending on the GR treatment 
(measured by the median)

● GR: 900Hz

● Newtonian: 500 Hz (woefully low...)

● effective potential: 1100Hz (accurate to ~20%)

● Comparable to EoS effects!

● Result of different buoyancy frequency in 
neutron star surface region: This is a 
systematic effect!

Gravitational wave energy spectrum 
for the first 500ms.

GR

Newtonian



  
For comparison: artifical 1D explosion from 

Fischer et al. 2010

abrupt 
drop

continued accretion → 
high electron 

(anti-)neutrino in post-
explosion phase

After Shock Revival: 
The Neutrino Signal
● Accretion can subsist long 

after the shock has been 
revived

● Decay of e and anti-e 
luminosities is slow – no 
abrupt drop

see Müller et al. (2012) in  Proceedings 
of Hase Workshop 2011



  

Neutrino & Gravitational 
Wave Signals after Shock 

Revival

prompt convection 
& SASI

proto-neutron star 
convection

anisotropic -
emission

11.2M8

excitation of g-
modes by newly-
formed downflows

accretion 
slowly 

subsiding
new downflows 

developing

490ms

see Müller et al. (2012) in  Proceedings 
of Hase Workshop 2011
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Wave Signals after Shock 
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Nucleosynthesis Conditions

electron 
fraction

electron 
fraction

densitydensity

● Proton-rich ejecta at least for several 100ms

● Potential for p-process (Fröhlich et al. 2006,  Pruet et al. 2006) to be 
investigated

● Note: simple wind models inapplicable during this phase due to high accretion 
luminosity & aspherical dynamics

11.2M⊙ 15M⊙

proton-
rich

neutron-
rich



  

Nucleosynthesis Conditions
electron 
fraction

density

● Proton-rich ejecta at least for several 100ms

● Potential for p-process (Fröhlich et al. 2006,  Pruet et al. 2006) to be 
investigated

● Note: simple wind models inapplicable during this phase due to high accretion 
luminosity & aspherical dynamics

● Pronounced difference between massive progenitors and low-mass 
progenitors (for which case see Wanajo et al. 2011)

15M⊙

8.8M8 progenitor with O-Ne-Mg-core: 
neutron-rich plumes (Wanajo et al. 2011)



  

Convection vs. SASI and the 
Possible Role of General Relativity 

in the Debate



  

Convection vs. 
SASI

● Instabilities well-
distinguished in linear 
regime only

● Large-scale structures and 
kinetic energy of convection 
may be reduced in 3D due 
to turbulent cascade (Hanke 
et a. 2012)

● But: large-scale modes may 
be important for explosion 
(more energy stored)

● Convection usually grows 
first
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Convection vs. 
SASI

● Can we find conditions for strong 
SASI growth In supernova 
cores?

● Recent relativistic 27M8 
explosion model (Müller et al. 
2012) constitutes such a case

● Incidentally: Explosions now also 
with LS220 equation of state
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SASI growth In supernova 
cores?

● Recent relativistic 27M8 
explosion model (Müller et al. 
2012) constitutes such a case

● Incidentally: Explosions now also 
with LS220 equation of state

● Regular oscillatory behaviour 
maintained well into the linear 
phase

● Suppression of convection due 
to fast advection through the 
gain region

Decomposition of the shock 
surface into spherical harmonics

l=1, 
semilogarithmic 

scale
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lateral velocity in equatorial 
plane revealing vorticity 

perturbation in SASI cycle

critical parameter   for 
growth of convection
(~buyoancy time 
scale/advection time 

scale)
<3: suppression

8.1M8: convection 
growing first

comparison of density profiles 

edge of Fe core

O burning



  

Implications & 
Questions

● Compact proto-neutron stars with 
strong gravitational field beneficial 
for SASI growth (→ short advection 
time-scale)

● General relativity, the progenitor 
structure, the equation of state and a 
correct neutrino treatment at high 
optical depth (→ PNS contraction) 
may be crucial for vigorous SASI 
activity

● Is there an intermediate regime 
(SASI+convection)?

● Can “convectively-dominated” flows 
become “SASI-dominated” as the 
conditions change?

● What happens in 3D? Comparable 
or lower amplitudes? Spiral mode?



  

Summary
● General relativity (GR) and a good neutrino treatment emerge as 

important ingredients for successful explosions:

● Higher neutrino luminosities & mean energies due to hotter proto-neutron star 
result in more heating in GR; effect outweighs different accretion shock 
radius

● GR may even play a role for obtaining conditions conducive to strong SASI 
growth (behaviour in 3D to be investigated)

● Seemingly minor rate effects (nucleon recoil in -nucleon scattering) may 
have an appreciable impact as well

● Large (50%) systematic GR effect on the typical gravitational wave 
frequency

● Conclusion: GR (at least on the level of the “effective potential 
approximation”) and up-to-date neutrino rates should be included for 
correct dynamics & accurate signal predictions

● Progress of explosion models: Growing set of progenitors, GW & neutrino 
signal predictions beyond shock revival now available, better connection to 
nucleosynthesis studies
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