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Major Questions

 How does the “engine”
work? Do v-driven

explosions work or do we
need an alternative?

 \What can we observe?

Neutrinos — from bounce to
cooling

Gravitational waves (?)
Ejecta morphology
Pulsar kicks
Nucleosynthesis yields




Status of Neutrino-
Driven Explosions

e Axisymmetric multi-group
simulations by different groups
not yet in agreement
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Ingredients for v-driven s—r—f T -

— GR + simplified v rates

Explosions | —

E
+ Detailed neutrino physics & general 2™
relativity sometimes dismissed as S
unimportant, but tests in multi-D ij-
required! S

 Muller et al. (2012): Detailed |
comparison of four models using the O
15M _ progenitor of Woosley &

Weaver (1995) -

» Newtonian vs. GR

* Newtonian + “effective” pseudo-GR
potential vs. GR

« Up-to-date neutrino reaction rates vs.
simplified rates (e.g. no recoil energy
transfer in v-nucleon reactions)

explosion energy [1050 erg|

* Only GR model with up-to-date rates O A e e 0 08

eXp|OdeS —> GR and Y% rates can time after bounce [s]
make a difference!
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Systematic Differences in the Heating Conditions
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« Local heating rate ~L<Ev>2, but feedback effects

(stronger convection, larger shock radius)
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emission in cooling region — similar increase in
heating in gain region



The Role of Non-Isoenergetic
Neutrino-Nucleon Scattering
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GR and the
Gravitational Wave
Signals

 GRis important for the
dynamics, so what about the
gravitational wave signal?

* Opverall signal structure and
amplitudes similar in GR & in
the Newtonian approximation

« Signal from convection shows
stochastic amplitude variations
— model properties better
reflected in the spectra

« Reference scale: typical
frequencies vary by ~30% for
different equations of state
(Marek et al. 2008)
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After Shock Revival:
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Neutrino & Gravitational e L L
Wave Signals after Shock
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« Proton-rich ejecta at least for several 100ms

« Potential for vp-process (Frohlich et al. 2006, Pruet et al. 2006) to be

investigated
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Nucleosynthesis Conditions
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* Note: simple wind models inapplicable during this phase due to high accretion

luminosity & aspherical dynamics



Nucleosynthesis Conditions
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Proton-rich ejecta at least for several 100ms

Potential for vp-process (Frohlich et al. 2006, Pruet et al. 2006) to be
investigated

Note: simple wind models inapplicable during this phase due to high accretion
luminosity & aspherical dynamics

Pronounced difference between massive progenitors and low-mass
progenitors (for which case see Wanajo et al. 2011)



Convection vs. SASI and the
Possible Role of General Relativity
In the Debate
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Convection vs.
SASI

« Can we find conditions for strong
SASI growth In supernova
cores”?

« Recent relativistic 27M

explosion model (Muller et al.
2012) constitutes such a case

13

* |ncidentally: Explosions now also
with LS220 equation of state
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Convection vs.
SASI .

explosion model (Muller et al.
2012) constitutes such a case
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gain region
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Implications &
Questions

Compact proto-neutron stars with
strong gravitational field beneficial
for SASI growth (— short advection
time-scale)

General relativity, the progenitor
structure, the equation of state and a
correct neutrino treatment at high
optical depth (— PNS contraction)
may be crucial for vigorous SASI
activity

Is there an intermediate regime
(SASI+convection)?

Can “convectively-dominated” flows
become “SASI-dominated” as the
conditions change?

What happens in 3D? Comparable
or lower amplitudes? Spiral mode?

0.1

—-0.6
200

v [10°cm/s]

100 0
x [km]

100
§ [k,/nucleon]

13

—-0.4 10
—0.7
-1.0 7
-1.3
—1.6 4
200 100 0 100 200
v. [10°cm/s] x [km] s [k,/nucleon]



Summary

General relativity (GR) and a good neutrino treatment emerge as
important ingredients for successful explosions:

* Higher neutrino luminosities & mean energies due to hotter proto-neutron star
result in more heating in GR; effect outweighs different accretion shock
radius

« GR may even play a role for obtaining conditions conducive to strong SASI
growth (behaviour in 3D to be investigated)

« Seemingly minor rate effects (nucleon recoil in v-nucleon scattering) may
have an appreciable impact as well

Large (50%) systematic GR effect on the typical gravitational wave
frequency

Conclusion: GR (at least on the level of the “effective potential
approximation”) and up-to-date neutrino rates should be included for
correct dynamics & accurate signal predictions

Progress of explosion models: Growing set of progenitors, GW & neutrino
signal predictions beyond shock revival now available, better connection to
nucleosynthesis studies
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