Neutrino oscillations and nucleosynthesis from supernovae and black hole accretion disks Annie Malkus & Gail McLaughlin North Carolina State University

- General remarks about neutrinos from hot dense environments
- Neutrino flavor transformation
- Nucleosynthesis winds
- The nucleosynthesis neutrino oscillation connection

Supernova Neutrinos

All types of neutrinos emanate from the proto-neutron star core. They travel through the outer layers of the SN, then to earth.

SN neutrinos:

- may be detected
- oscillate
- nucleosynthesis
- explosion dynamics

Neutrinos from Proto-Neutron Stars

Characteristics

- All flavors of neutrinos and antineutrinos
- u_e has lowest temperature, followed by $\bar{
 u}_e$
- ν_{μ} , $\bar{
 u}_{\mu}$, $\nu_{ au}$, $\bar{
 u}_{ au}$
- emission surface for all types of ν s is $very \ similar$
- neutrino flux slightly larger than antineutrino flux (deleptonizing)

Neutrinos from the disk may provide some of the energy required to power the jet.

Accretion Disk ν_e temperatures

Caballero et al

Explosions of Massive Stars: What's happening at the Center?

Standard core core collapse SN

accretion disk - black hole

Explosions of Massive Stars: Where is the nuclear-neutrino physics?

Standard core core collapse SN

accretion disk - black hole

Neutrino surfaces:

Neutrino Oscillations

After neutrinos are emitted, they undergo flavor transformation.

Neutrino Oscillations

Neutrino propagation in matter: forward scattering on electrons, neutrinos leads to effective potential

$$V_e = \frac{V_{\nu_e, e} - V_{\nu_x, e}}{2} = 2\sqrt{2}G_F N_e(r)$$

electron density $N_e(r)$

$$V_{\nu} = V_{\nu,\nu} - V_{\nu,\bar{\nu}}$$

similar idea for ν - ν s

Modified wave equation

$$i\hbar c \frac{d}{dr}\psi_{\nu} = \begin{pmatrix} V_e + V_{\nu}^a - \frac{\delta m^2}{4E}\cos(2\theta) & V_{\nu}^b + \frac{\delta m^2}{4E}\sin(2\theta) \\ V_{\nu}^b + \frac{\delta m^2}{4E}\sin(2\theta) & -V_e - V_{\nu}^a + \frac{\delta m^2}{4E}\cos(2\theta) \end{pmatrix} \psi_{\nu}$$

Neutrino Oscillations: scales

Modified wave equation

$$i\hbar c \frac{d}{dr}\psi_{\nu} = \begin{pmatrix} V_e + V_{\nu}^a - \frac{\delta m^2}{4E}\cos(2\theta) & V_{\nu}^b + \frac{\delta m^2}{4E}\sin(2\theta) \\ V_{\nu}^b + \frac{\delta m^2}{4E}\sin(2\theta) & -V_e + -V_{\nu}^a + \frac{\delta m^2}{4E}\cos(2\theta) \end{pmatrix} \psi_{\nu}$$

Scales in the problem:

- vacuum scale $\frac{\delta m^2}{4E}$
- matter scale $V_e \propto G_F N_e(r)$
- neutrino self-interaction scale $V_{\nu} \propto G_F N_{\nu} * \text{angle} G_F N_{\bar{\nu}} * \text{angle}$

 V_{ν} has some subtleties. For proto-neutron star neutrinos V_{ν} term declines roughly as $1/r^4$

PNS neutrino transition regions

Type I - Matter enhanced region

- Traditional MSW region
- vacuum interaction strength is the same size as matter potential
- neutrino self interaction strength is small
- i.e $\delta m_{ij}^2/E_{\nu} \sim \sqrt{2}G_F N_e << V_{\nu\nu}$

Type II - nutation/bipolar

- "Traditional" nutation in NFIS picture (also called bipolar)
- $\delta m_{ij}^2/E_\nu \sim V_\nu$
- occurs closer to proto-neutron star than Type I regions
- occurs when matter potential is both large and small

PNS neutrino transition regions

Type I - Matter enhanced region

- Occurs in outer layers of the star (He layer or a somewhat before)
- Straightforward to calculate (same thing that happens in the sun)
- (recall: neutrino self interaction strength is small)
- does not influence most nucleosynthesis

Type II - nutation/bipolar

- occurs closer to PNS than Type I regions $\sim 100\,\rm km$
- neutrinos in this region can moderately influence some nucleosynthesis

Electron Neutrino and antineutrino capture rates

Shows the influence of Type II (nutation/bipolar) oscillations

 ν_e s are exchanging with ν_μ s, ν_τ s $\bar{\nu}_e$ s are exchanging with $\bar{\nu}_\mu$ s, $\bar{\nu}_\tau$ s

Neutrinos from ν_e and $\bar{\nu}_e$ emitting disks

Characteristics

- primarily ν_e and $\bar{\nu_e}$ (PNS has all flavors: ν_e , $\bar{\nu}_e$, ν_{μ} , $\bar{\nu}_{\mu}$, ν_e , $\bar{\nu}_e$)
- similar spectra
- emitted from a fairly different geometry
- emission surface for neutrinos is much larger than for antineutrinos
- antineutrinos have higher temperature than neutrinos

Vanilla Model

- flat disk approximation
- antineutrino flux dominates over neutrino flux close to the emission point, but neutrino flux dominates over antineutrino flux farther out (new!, doesn't happen in PNS)

Accretion disk neutrino transition regions

Type I - Matter enhanced region

- Traditional MSW region
- vacuum interaction strength is the same size as matter potential
- neutrino self interaction strength is small
- i.e $\delta m_{ij}^2/E_{\nu} \sim \sqrt{2}G_F N_e << V_{\nu\nu}$

Type II - nutation/bipolar

- "Traditional" nutation in NFIS picture (also called bipolar)
- $\delta m_{ij}^2/E_\nu \sim V_\nu$
- occurs closer to PNS than Type I regions
- occurs when matter potential is both large and small

Accretion disk transition regions

Type III "Neutrino - Matter enhanced" New!

- Self-interaction potential \sim matter potential
- vaccuum interaction strength is small
- i.e. $\delta m_{ij}^2/E_{\nu} << \sqrt{2}G_F N_e \sim V_{\nu\nu}$
- potentials have opposite signs! cancellation!
- occurs in both hierarchies
- not a usual situation in supernovae

Disks that emit $\nu_e s$ and $\bar{\nu}_e s$

Vanilla Model

- Antineutrino flux dominates over neutrino flux near disks
- Farther away, neutrino flux dominates over antineutrino flux
- $T_{\nu_e}=3.2~{\rm MeV}$, $T_{\bar{\nu}_e}=4.1~{\rm Mev}$
- $R_{\nu_e}=150~{\rm km},~R_{\bar{\nu}_e}=100~{\rm km}$
- $\bullet\,$ Black hole is 3 ${\rm M}_\odot$

Details of calculation

- "single angle" calculation
- three neutrino calculation
- disks have holes in the center
- radial trajectory

Inverted hierarchy, $\bar{\nu}$ dominated first, ν later

Model Vanilla figure from Malkus et al, in prep

Upper panel: solid red - electron neutrino survival probability Upper panel: dashed red - electron antineutrino survival probability

Consequences for wind nucleosynthesis

The early the oscillation starts, the more important the consequences

Nucleosynthesis in Winds

Three types of environments

- proto-neutron star supernovae
- accretion disk supernovae
- compact object mergers

Three types of nucleosynthesis

- r-process
- p-process
- ⁵⁶Ni an ingredient in light curves

Nucleosynthesis in Hot Outflows

 $n,p \rightarrow^4 He \rightarrow iron peak nuclei \rightarrow heavier nuclei$

Nucleosynthesis in hot outflows

Electron fraction, i.e neutron to proton ratio, is set by the weak interactions:

 $\nu_e + n \leftrightarrow p + e^-, \ \bar{\nu}_e + p \leftrightarrow n + e^+$

Neutrino Flavor Transformation in Winds

Where does the oscillation start? Figure from Duan et al

- stages of nucleosynthesis are shown
- $\mathbf{E}_{\nu_e} < \mathbf{E}_{\nu_x}$
- oscillation often moves material toward $Y_e = 0.5$

Electron neutrino and antineutrino capture rates

Recall the effect of oscillations on SN-like neutrinos Duan et al

Shows the influence of Type II (nutation/bipolar) oscillations

 ν_e s are exchanging with ν_μ s, ν_τ s $\bar{\nu}_e$ s are exchanging with $\bar{\nu}_\mu$ s, $\bar{\nu}_\tau$ s

Neutrino Flavor Transformation + Nucleosynthesis

Supernovae neutrinos

- In the SN, oscillations tend to occur after the most important point for wind nucleosynthesis
- In the SN, oscillations increase ν_e , $\bar{\nu}_e$ capture rates
- There is some re-arrangement of the abundance pattern

Neutrino Flavor Transformation + Nucleosynthesis

Supernovae Neutrinos

- In the SN, oscillations tend to occur after the most important point for wind nucleosynthesis
- In the SN, oscillations increase ν_e , $\bar{\nu}_e$ capture rates
- There is some re-arrangement of the abundance pattern

Accretion disk neutrinos

- In the accretion disk, they occur earlier, because of the Type III transition
- In the accretion disk, oscillations decrease ν_e , $\bar{\nu}_e$ capture rates
- One expects significant changes the abundance pattern

Accretion disk neutrino capture rate, mass fractions

red - without oscillations blue - with oscillations upper panel: ν_e capture lower panel: fract. of n, α

figure from Malkus et al, in prep

Accretion Disk Nucleosynthesis

red - no oscillations, blue - oscillations s/k = 50, $\beta = 1.4$ (moderate acceleration) figure from Malkus et al, in prep

Conclusions

- Disks which are always ν_e dominated are in many ways qualitatively similar to SN
- One difference is that many disks emit primarily ν_e and $\bar{\nu_e}$
- Another is that close to the emission surface the neutrino potential can be $\bar{\nu}$ dominated
- Disks which begin $\bar{\nu}$ dominated exhibit a (new type of) flavor transition at the crossover point
- This transition can change the result of wind nucleosynthesis dramatically
- More to be considered, e.g. multi-angle effects, 3-D disk emission surfaces