Type lb/c Supernovae and GRBs

Paolo A. Mazzali

&

INAF, Padova Astron. Obs.

<u>Most nearby long-soft GRBs come</u> <u>with a Supernova</u> <u>GRB980425: the optical counterpart</u>

CC SNe, INT, UW

GRB/SNe are Broad-lined SNe Ic

A spectral primer: SNe lb/c and HNe

Ib: Helium lines visible Ic: no Helium weak/no Si line

SNe Ic/BL: Hypernovae: broad features, blended lines "Large mass at high velocities"

Core-Collapse SNe

Massive Star (> $8M_{\odot}$)

- Si burning \rightarrow NSE \rightarrow ⁵⁶Ni (~0.1-1M_{\odot})
- Core collapse
- Compact object (NS/BH)
- V emission
- KE deposited
- envelope ejection

Significance of spectrum

GRB/SNe are luminous

- SN1998bw was as bright as a SN la
- It produced much more 56Ni than `normal' corecollapse SNe (~ 0.5 M⊙)

GRB/SNe are highly energetic

- GRB/SNe have very high expansion velocities (optical velocities up to 0.1c track relativistic properties)
- XRF/SNe have lower velocities

after Pian et al. 2006, Nature

16 - 20 July, 2012

A "typical" (?) SN Ic: SN1994I

- Fit spectrum with a classical model:
- Mej ~ 1 M⊙, KE~10⁵¹ erg (1 foe)
- Abundances dominated by O, Si
- M(⁵⁶Ni) ~ 0.1 M⊙

Sauer et al. 2006

SN 1998bw: modelling

GRB/SNe are highly aspherical

 Evidence in nebular spectrum (Oxygen line broader than Fe lines, flux Mazzali et al. 2001) but also in light curve (Maeda et al. 2003)

16 - 20 July, 2012

Prediction from asphericity: off-axis GRB/SNe

- Double-peaked [O I] line indicates edge-on SN
- SN Ic 2003jd had broad lines was luminous, and showed a doublepeaked [O I] line
- but the presence of an off-axis GRB seems to be ruled out by radio limits (Soderberg)
- So, something's missing CC SNe, INT, UW

6600

<u>Was SN 2003jd = SN1998bw?</u>

- It was almost as bright at peak as SN1998bw (Mv = -18.7)
- Early-time spectra had broad lines, but closer to SN2002ap

Mazzali et al. (2005)

How common is asphericity?

- SNe lb/c are consistent with being aspherical
- BL-SNe are the most aspherical
- They have the widest range of nebular properties (Maeda et al. 2008, Tanaka et al. 2009): even double peaks have wider separation

Asphericity?

- BL-SNe (red crosses) 6000 are the most aspherical 5000
- They have the widest range of nebular properties (Tanaka et al. 2009)
- No relation between core velocity and mass, 56Ni mass or KE (Maurer et al. 2010)

Going down in energy.....

X-ray Flashes (XRF): weak, soft equivalent of long GRBs

SN Ic 2006aj: Bolometric Light Curve

SN2006aj, a BL-SN Ic, was dimmer than GRB/SNe (98bw, 03dh, 03lw)

Light curve similar to non-GRB broad-lined SN Ic 2002ap, but brighter

Estimate ~ $0.2M_{\odot}$ of ⁵⁶Ni

Rapid LC evolution: $\rightarrow Mej^3/E$ is small

SN 2006aj/XRF060218, nebular phase

• CO core mass (2 M☉) small for BH remnant

• NS more likely: did a Magnetar power the explosion?

 Nebular analysis confirms values, finds little asphericity, as in SN2002ap

(Mazzali et al. 2008)

16 - 20 July, 2012

A Magnetar in SN lb 2005bf

The type Ib SN 2005bf (Tominaga et al. 2007) showed a bright, late 2nd LC peak

Role of Magnetar

- Nebular lines offset by a few 1000 km/s
- Magnetar activity may have been responsible for the rebrightening (Maeda et al. 2007)

All GRB/XRF SNe are Ic SNe Ib v. Ic: Helium

Strongest HeI lines in IR. 1 μ can cause confusion, 2 μ line unique

16 - 20 July, 2012

It takes little He to make a SN lb

- Hel requires non-thermal
- processes SNe lb: M(He) >~ 0.1 M SNe llb: • SNe lb:
- SNe IIb: M(H)~0.02M
- **Different spectral** subclasses are sharply separated

What happens in SNe Ib? SN2008D: breakout?

SN2008D / XRF080109: the nebular phase

CC SNe, INT, UW

- [O I] line has double-peaked profile, like SN2003jd
- An energetic, highly aspherical explosion, viewed far from the polar axis
- He shell blocked any jet

$$KE = 7 \times 10^{51} erg \ M_{ej} \approx 6 M_{\odot}$$

 $M_{ZAMS} \sim 30 M_{\odot}$

A normal SN IIb: 2008ax

20000

20000

20000

20000

12000

λ[Å]

λ[Å]

λ[Å]

λ[Å]

λ[Å]

Aside: H emission in SNe IIb

 depending on mixing of H into He, Hα emission may be seen (H is ionised by UV photons emitted by non-thermally ionised He and by non-thermal electrons)

SN IIb HNe: 2003bg -18 (a) 2003 Dec 16 -17 -16 [0 1] 5577 Bolometric magnitude -15 30 40 50 Days since 2003 Feb. 25 [0 1] 6300. 6363 Ca II] 7292, 7324 -14 6000 7000 Rest wavelength [Å] ★ Bol. mag. of model spectra (c) 2003 Dec 23 Bol. mag. from obs. photometry -13 Rest wavelength [1] Real wavelength [1] LC w. adjusted Ni dist. [0 1] 5577 LC w. spec.-model Ni dist. -12 LC w/o a dense core 150 200 250 300 50 100 Davs since 2003 Feb. 25 [0, 1] 6300, 6363 6000 700 Rest wavelength [Å] $KE = 5 \times 10^{51} erg$ Rest wavelength [1] Rest wavelength (1)

 $M_{ej} \approx 4 M_{\odot}$ $M(^{56}\text{Ni}) = 0.20 M_{\odot}$

Again, nebular analysis finds little asphericity (Mazzali et al. 2009)

Aside: "narrow" double peaks

- Several SNe lb/c show a split in the [O
 I] line, but the wavelength separation of the peaks is almost always quite small
- One possibility is asphericity in the inner ejecta
- Another is the effect of Ha absorption (Maurer et al. 2010): this is often seen in SNe IIb and occurs for v(H) ~ 12000km/s:

 $\lambda(H\alpha) \rightarrow \lambda(O I)$ This is more likely in SNe IIb

Recent events: SN2010bh/XRF100316D

- A Type Ic SN, not very bright, but with very high velocities
- Estimate M(56Ni) ~0.1 M☉, Mej~3 M☉, KE~10⁵²erg
- So KE is high, but mass is not

SN2010ah/PTF10bzf

• A rather bright SN Ic. No GRB/XRF.

Corsi et al. 2011

- Luminosity, velocities, line broadening intermediate between SNe 1997ef and 1998bw
- Estimate M(56Ni) ~0.2 M☉, Mej~3-5 M☉, KE~1-1.5 10⁵²erg
- So KE is high, Mej not small: not large enough for a GRB?

SN2012bz/GRB120422A

- Redshift z=0.28
- Similar in LC and spectra to SN1998bw, SN2003dh, confiming trend

Modelling results

Kin En and ejected mass seem to be correlated, ⁵⁶Ni less so

Props of SNe lbc as f(prog. mass)

A minimum mass and energy seem to be required for GRBs

16 - 20 July, 2012

The Grand Scheme

- Collapse of very massive (~35-50 M_☉), stripped stars to BHs makes aspherical GRB-HN (GRB can be very different, HN much less).
- Collapse of less massive star (~ 20 M_{\odot}) to NS can cause a less energetic, less aspherical SN and an XRF (via magnetic activity ?).
- Presence of too much He prevents GRB, still allows XRF (fast/aspherical breakout)
- ・ブラディ ヘル !!!