Neutrino Signatures of Supernova SASI

 $\boldsymbol{\mathcal{V}}$

Collaborators: H.-Th. Janka, G. Raffelt, A. Wongwathanarat, A. Marek, C. Lunardini, E. Müller INT 12-2a "Core-Collapse Supernova: Models and observable signals" July 23rd, 2012 Tina Lund

Standing Accretion Shock Instability

Shock stalls.

- Neutrino heating to revive.
- Aid needed.
- SASI → infalling material longer time in heating area → more energy → shock wave revived → final explosion.
 - SASI:
 - time scales.
 - spherical harmonics.

Movie of 11.2 M_{sun} 2D simulation

[R.Buras, A.Marek, H.Th.Janka]

SASI – in 2D

Non-rotating 15 M_{sun}

Rotating 15 M_{sun}

[[]A. Marek, H.-Th. Janka & E. Müller, 2009]

[[]A. Marek & H.-Th. Janka, 2008]

Effects of SASI

Non-rotating 15 M_{sun}

[Lund et al., 2010]

IceCube – Cherenkov telescope

 Digital Optical Modules with photo-multiplier tubes.

$$\bar{\nu}_e + p \to n + e^+$$

- Optimized for energy range: $1 \text{ TeV} \le E \le 1 \text{ PeV}$
- SN $\overline{\nu}_{e}$ energy:
 - E ~ 12 18 MeV
- Not entire Cherenkov cone only one photon per interaction → diffuse blue glow of the ice.

IceCube – superiority

- For entire duration (t~10 s) of SN we expect ~10⁶ events.
- Factor of 100 more than expected in SuperKamiokande.
- Instantaneous rate for 2D:

 $\Gamma_{_{\rm SN}} \sim 900~{\rm ms}^{\text{-1}}$

Dark Current noise in IceCube:

 $\Gamma_{\rm noise} \approx 1340 \ {\rm ms}^{-1}$

Looking at time structure of the increased noise.

Calculations

Expected eventrate in IceCube:

$$R_{\bar{\nu}_e} = 114 \text{ ms}^{-1} \frac{L_{\bar{\nu}_e}}{10^{52} \text{ erg s}^{-1}} \left(\frac{10 \text{ kpc}}{D}\right)^2 \left(\frac{E_{\text{rms}}}{15 \text{ MeV}}\right)^2 \qquad \qquad E_{\text{rms}}^2 = \frac{\langle E^3 \rangle}{\langle E \rangle}$$

 Energy and luminosity data from numerical simulations by A. Marek and H.-Th. Janka.

2D:

- Progenitor star; 15 M_{\odot} , non-rotating, soft and stiff EoS.
- Progenitor star; 11.2 M_{\odot} , non-rotating, 3 EoS.

3D:

• Progenitor star: non-rotating, 2 models with 15 M_{\odot} , and 1 model with 20 M_{\odot} .

IceCube event rates

[Lund et al., 2010.]

 Instantaneous rate for 2D at 10 kpc:

$$\Gamma_{_{\rm SN,\,2D}}$$
 ~ 900 ms⁻¹

- [Lund et al., 2012, in preparation.]
- Instantaneous rate for 3D at 1 kpc:
 - $\Gamma_{\rm SN, 3D} \sim 55000 \, {\rm ms}^{-1}$

Power spectrum

- Fourier transform to investigate features in the time signal.
- Nyquist frequency is 300 Hz due to IceCube binning.
- Used Hann window to avoid edge effects.

[xkcd.com]

Restating our question before we answer it:

Are SASI imprints observable in IceCube?

Results - 2D

Results – 2D

Equation of State dependence

Lattimer & Swesty EoS:

- More compact NS: R = 12 km
- Larger envelope

Hillebrandt & Wolff EoS:

- Less compact NS: R = 14 km
- Smaller envelope

EoS dependence II

Lattimer & Swesty EoS

Hillebrandt & Wolff EoS

EoS dependence III

Windows of 126 ms length.

Lattimer & Swesty EoS

Hillebrandt & Wolff EoS

Time evolution of frequencies

Non-rotating 15 M_{sun}

HW EoS

LS EoS

11.2 M_{sun} model

LS EoS, 10 kpc explodes quickly weak SASI HW EoS, 10 kpc non - exploding Shen EoS, 5 kpc explodes quickly weak SASI long time run

Caveat

- Collective flavor oscillations not included.
- May swap the energy spectra of $\overline{\nu}_{e}$ and $\overline{\nu}_{x}$ flavors.

[Fogli et al., 2006]

Flavor comparison

Summary of 2D

- SASI imprints on neutrino signal observable in IceCube.
- Beneficial to investigate both long and short time segments.
- Power spectrum features depend on EoS, rotation, mass and viewing direction.

SASI - 3D

11.2 M_{sun} , illustrational pupose only.

[Hanke et al, 2011]

SASI not as strong.

Our models:

- Yin-Yang grid.
- PNS excised.
- 15 M_{sun}, Woosley & Weaver.
- 15 M_{sun}, Limongi et al.
- 20 M_{sun}, Nomoto et al.

SASI – 3D

W15-4

L15-3

[E. Müller, H.-Th. Janka & A. Wongwathanarat, 2011]

Rates in 3D

At 1 kpc

Results - 3D

At 1 kpc

[Lund et al, 2012, in preparation.]

Stastistical effects

N20 at 2 kpc

 Statistical fluctuations of the observed signal:

 $N = \sqrt{R}$

- Was ~ 3 % in 2D, compared to 18 % for SASI induced.
- At 10 kpc for 3D would have been ~ 4 %, compared to 1-2% for SASI induced.
- Scales with 1/D, thus less than 1 % at 2 kpc.

Stastistical effects

- With given probilities a peak caused purely by statistical fluctuations will fall below gray line levels.
- Peaks reaching above cannot be caused purely by statistics.

[Lund et al, 2012, in preparation.]

Conclusions

- IceCube usefull despite lacking energy information.
- SASI effects observable in IceCube → better understanding of SN.
- If observed short-lived mechanisms ruled out.
- Signal depends on mass, EoS, rotation, viewing direction and flavor.
- Weaker SASI in 3D models.

Need new Milky Way SN.

Rotating 15 M_{sun} model

non-rotating, LS EoS

rotating, LS EoS