Diffuse SN Neutrino Background (DSNB)

What can we learn? Ideas under construction

Cecilia Lunardini – Arizona State University RIKEN – BNL Research Center

- introduction: motivation and facts
- detection potential
- What can we learn?
 - neutrino spectrum extraction
 - broadening the scope: miscellaneous ideas
- final remarks

Introduction

Neutrinos from cosmological SNe

- diffuse flux from all supernovae
 - ~ 40%
 cosmological
 contribution
- detectable above (irreducible) backgrounds

Different from a nearby SN

- *o* guaranteed flux, no wait
- cosmological flux
 - longest propagation length
 - clean tracer of cosmological collapse rate (no extinction, no impostors ...)
- image of SN population
 - What's typical?
 - SN types, progenitor dependence, etc.

Ando & Sato, 2004, New J. Phys. 6, 170 , Lunardini arXiv:1007.3252, Beacom Ann.Rev.Nucl.Part.Sci. 60 (2010)

SN rate: grows with z

proportional to ~ (1+z)^{3.6} for z<1
 flattens at z>1

Hopkins & Beacom, 2006, Astrophys. J. 651, 142;, Horiuchi, Beacom & Dwek, 2009, Phys. Rev. D79, 083013

- factor ~ 2
 normalization
 uncertainty
 - direct counting vs star formation rate estimate

Flux at production

o alpha-spectrum:

$$\frac{dN}{dE} \simeq \frac{(1+\alpha)^{1+\alpha}L}{\Gamma(1+\alpha)E_0^2} \left(\frac{E}{E_0}\right)^{\alpha} e^{-(1+\alpha)E/E_0}$$

 $\alpha_w \sim 2-5$

hierarchy of spectra :

 $E_{0e} < E_{0\bar{e}} < E_{0x}$

Keil, Raffelt & Janka, 2003, Astrophys. J. 590, 971

Oscillations

spectrum swap (time-integrated):

 $F_{e} = pF_{e}^{0} + (1-p)F_{x}^{0}$ $F_{\bar{e}} = \bar{p}F_{\bar{e}}^{0} + (1-\bar{p})F_{x}^{0}$

probabilities: matter (MSW) driven

	bar-p	р
$\Delta m^2_{31} > 0$	~ 0.68	0
$\Delta m^2_{31} < 0$	0	~ 0.32

C.L. & I. Tamborra, JCAP 1207 (2012) 012

Uncertainties, degeneracies

	Large (~100% or more)	small (~ 10% or less)	Degenerate?
Avg. energy E ₀	X		with α (quasi)
luminosity	X		With SNR norm.
α parameter	X		with E _o (quasi)
mass hierarchy	X		with E _o (quasi)
SNR power law		X	
SNR normaliz.	X		With luminosity
Prog. dependence		X (?)	
Collective oscill.		X	
Shock oscill. effect		X	

C.L., Phys.Rev. D75 (2007) 073022

Detection potential

Current: SuperKamiokande

Observed events / 1496 days / 22.5 kton / 4 MeV $\bar{\nu}_e + p \rightarrow e^+ + n$ high background Max. D\$NB o anti-nu_e limit : φ(E>17.3 MeV)< 2.8 - 3 cm⁻ ² s⁻¹ (90% C.L.) Energy (MeV) Malek et al., Phys.Rev.Lett. 90 (2003) 061101

Bays et al., Phys.Rev. D85 (2012) 052007

Near future detectors

small, low background, low threshold

technology	mass	Reaction	Energy window	Events/(5 yrs)
Water + Gadolinium (GADZOOKS)	22.5 kt	Anti-nue, inverse beta (90% eff.)	11 - 40 MeV	4 - 17
Liquid Scintillator (LENA)	50 kt	Anti-nue, inverse beta (100% eff.)	11 - 40 MeV	8 - 35

Future detectors

Iarge, high background, high threshold

technology	Mass	Reaction	Energy window	Events/(5 yrs)
Water Cherenkov (HyperK.,MemP HYS,DUSEL,)	0.4 Mt	Anti-nue, inverse beta, (90% eff.)	19 - 40 MeV	27 - 227
Liquid Argon (LANDD, Glacier/Laguna)	0.1 Mt	nue + Ar, CC (100% eff.)	19 - 40 MeV	6 - 28

References

GADZOOKS: Beacom, J. F., and M. R. Vagins, 2004, Phys. Rev. Lett. 93, 171101.

LENA: Wurm, M., et al., 2007, Phys. Rev. D75, 023007.

HyperKamiokande: Nakamura, K., 2003, Int. J. Mod. Phys. A18, 4053.

MEMPHYS: Bellefon, A., et al., 2006, eprint hep-ex/0607026

LANDD : Cline, D. B., F. Raaelli, and F. Sergiampietri, 2006, JINST 1, T09001.

GLACIER: Ereditato, A., and A. Rubbia, 2006, Nucl. Phys. Proc. Suppl. 155, 233.

More on statistics

• inverse beta decay detectors : $\bar{\nu}_e + p \rightarrow e^+ + n$

- Iiquid scintillator ≈ water + Gd (background reduction)
- HyperK (pure) : SuperK $\approx 20:1$
- HyperK+Gd : LENA : GADZOOKS ≈ 20 : 2 : 1
- ✓ 1 HyperK/year \approx 10 LENA/year \approx 20 GADZ./year

Background at LENA

- reactor antineutrinos
- atmospheric antineutrinos
- energy window(S>B): ~ 10 30 MeV

Wurm et al., Phys.Rev. D75 (2007) 023007

Background in water

- spallation
- invisible muons
- Backgrounddominated!

Fogli, et al., 2005, JCAP 0504, 002

Background at LAr

- solar, atmospheric neutrinos
- other..? Work in progress

Cocco et al., 2004, JCAP 0412, 002

What can we learn? Neutrino spectrum extraction

Model discrimination at LENA

- probability of assignment to wrong model
 - number of events
 in 2 bins
 - fixed normalization
 - 30 years needed for 3 σ

FIG. 8: Exclusion plot for the assignment of a simulated event spectrum in LENA to a wrong DSN model. A value of

Wurm et al., Phys.Rev. D75 (2007) 023007

Extract spectrum

- Ø Best case scenario: Mt water + Gd
 Ø Iow bkg + high stat.
- spectral indicator :

$$r \equiv \frac{N(10 \le E_{e^+}/\text{MeV} < 15)}{N(15 \le E_{e^+}/\text{MeV} < 20)}$$

C.L., Phys.Rev. D75 (2007) 073022

 probe effective (post-oscillations) spectral parameters

 ${\it o}$ α , E₀ (degenerate)

Mt mass, pure water

very limited by background!

poor spectrum reconstruction

Example of data fit

- Ø Best case: Mt + Gd
 - E> 10 MeV, 10
 yrs

assume known

- Background
- SN rate evolution
- marginalized over normalization

 \circ α - E_0 degeneracy!

C.L., work in progress

- Realistic case:
 LENA
 - 10 MeV thresh. ,10 yrs running
 - assume known
 - Background
 - Supernova rate
 - marginalized over normalization

background is severe limitation

- high background level in widow
- \circ small energy window $\rightarrow \alpha E_0$ degeneracy
- Iow threshold, Iow background detectors best
 - Liquid scintillator, Water+ Gd

What can we learn? Broadening the scope: miscellaneous ideas

Is it SN or...?

what could an excess be?

0

- Dark matter annihilation
- Solar antineutrinos (resonant spin flavor oscillations)

Raffelt & Rashba, Phys.Atom.Nucl. 73 (2010) 609-613 Palomares Ruiz& Pascoli, Phys.Rev. D77 (2008) 025025

Do SNe emit neutrinos?

- only antineutrinos seen from SN1987A
- o possible first nu_e detection with LAr
 - o spectrum, luminosity, ...
 - comparison with anti-nue from 1987A : spectral hierarchy, lepton number, ..

Is it local or cosmological?

- could be first observation :
 - of cosmological neutrinos
 - of redshift phenomenon on neutrinos

Are there any SNe beyond z>1?

- SN counting reach
 z ~ 1
- possible direct test of core collapse at z > 1

Melinder et al., arXiv:1206.6897

- can be mimicked by full population
 - with extreme spectral parameters

z-evolution of collapse rate?

- o untested with neutrinos
 - complementary to resolve uncertainties

Failed Sne?

Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008)

Spectrum tail ?

no SN1987A data at E> 40 MeV

Normalization

degeneracies:

- Iuminosity / SN rate (IMF, minimum mass, ..)
- extreme combinations of parameters might be excluded

Final remarks

Extraction of neutrino spectrum

- Iimited by backgrounds:
 - high background level in widow
 - \circ small energy window $\rightarrow \alpha E_0$ degeneracy
- Iow threshold, Iow background detectors best
 - Liquid scintillator, Water+ Gd
- external info needed to resolve degeneracy
 - theory priors

Think in other directions..

- Test theory that is usually taken for granted
 cosmological neutrino propagation
- cosmological population of collapsing stars
 - different, rare SN types (failed SNe)
 - redshift evolution of rate
 - rate normalization (IMF, minimum mass, ..)
 - complementary to astronomy

shift of perspective :

 eventually we will have a Galactic supernova and fully consistent SN models

enhance DSNB potential:

Multi SN data - single SN data/models = SN population, history, etc.

Backup

Successful vs failed SNe

- NS-forming collapse
 - energetics:

 $E_{0\bar{e}} = 15 \text{ MeV}$ $E_{0x} = 18 \text{ MeV}$

 $L_{\bar{e}} = L_x = 5 \cdot 10^{52} \text{ ergs}$ $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau} = \nu_x$

- anti-v_e survival probability:

$$\bar{p} = 0 - \cos^2 \theta_{12} \simeq 0 - 0.68$$

Keil, Raffelt, Janka, Astrophys. J. 590, 971 (2003) S. Chakraborty, et al., JCAP 0809, 013 (2008)

- Direct BH-forming collapse:
 - Higher energies:
 - For all flavors $E_0 \sim 20-24~{
 m MeV}$
 - Due to rapid contraction of protoneutron star before BH formation
 - Electron flavors especially luminous
 - (electron and positron captures)
 - Same interval of \bar{p}

Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, 091101 (2006), T. Fischer et al., (2008), 0809.5129, K. Nakazato et al., PRD78, 083014 (2008)

- Progenitor: M=40 M_{sun}, from Woosley & Weaver, 1995
- "stiffer" eq. of state (EoS) \rightarrow more energetic neutrinos

Lattimer-Swesty. (LS) EoS

C.L., arXiv:0901.0568, to appear in PRL

$$\Phi(E) = \frac{c}{H_0} \int_0^{z_{max}} R_{cc}(z) \left[f_{NS} F_{\bar{e}}^{NS}(E(1+z)) + (1-f_{NS}) F_{\bar{e}}^{BH}(E(1+z)) \right]$$

$$\times \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$$

$$f_{NS} = 0.78 - 0.91,$$

$$\bar{p} = 0 - \cos^2 \theta_{12} \simeq 0 - 0.68$$

$$\Omega_m = 0.3$$
 and $\Omega_\Lambda = 0.7$

anti- v_e survival probability (time averaged, constant in energy)

<u>Results</u>

• Best case: S EOS, maximum \bar{p}

SuperK : 19.3 - 35 MeV

Pure water:

fNS	flux NS	flux BH	flux total
0.78	0.32	0.46	(0.78)*
0.91	0.37	0.19	0.56

Water + Gd: (better bkg.reduction) Beacom & Vagins, PRL 93, 2004

GADZOOKS: 11.3 - 35 MeV

fNS	flux NS	flux BH	flux total
0.78	1.84	1.4	3.24
0.91	2.15	0.57	2.72

Number of events in water

Significance above background?

- Typical case: 100% excess due to BH in 30-35 MeV bin
 - Water: buried by invisible muon bkg. G. L. Fogli et al., JCAP 0504, 002 (2005)
 - not statistically significant in single bin
 - Spectral fit might work
 - Water+Gd: invisible muons rejected
 - 12 Mt yr exposure needed for 3 sigma significance in single bin

FAQS

- Sensitivity to beta?
- Spallation, inv. Muons in Lar?
- SN1987A fit of spectrum?
- how solid is SNR evolution?
- How is SNR measured?
- How is SFR measured?
- Mini-burst from local Sne?

alp