Symmetry Energy Parameters and How the EOS is Taking Shape

J. M. Lattimer

Department of Physics & Astronomy Stony Brook University

July 2, 2012

;Collaborators: E. Brown (MSU), K. Hebeler (OSU), C.J. Pethick (NORDITA), M. ;Prakash (Ohio U.), A. Schwenk (TU Darmstadt), A. Steiner (INT), Y. Lim (SBU)

> INT Supernova and Nucleosynthesis Workshop Seattle 25 June – 27 July, 2012

つへへ

Outline

- ► Why the Symmetry Energy is Important for Neutron Stars
- ▶ Constraints on Symmetry Parameters from Nuclear Experiments
	- \blacktriangleright Binding Energies
	- \blacktriangleright Heavy ion Collisions
	- **Neutron Skin Thicknesses**
	- \blacktriangleright Dipole Polarizabilities
	- \triangleright Giant (and Pygmy) Dipole Resonances
- ▶ Theoretical Calculations of Pure Neutron Matter and Their Predictions for the Symmetry Energy
- \triangleright Astrophysical Observations
	- **I** Mass Measurements of Neutron Stars in Binaries
	- \triangleright Simultaneous Mass and Radius Measurements
		- ▶ Thermal Emission from Cooling Neutron Stars
		- ▶ Photospheric Radius Expansion X-Ray Bursters
		- ▶ Pulse Shape Modeling of Accreting Millisecond Pulsars
	- \triangleright The Inferred Universal Mass-Radius Relation and the Neutron Star EOS

つへへ

Mass-Radius Diagram and Theoretical Constraints

The Radius – Pressure Correlation

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

$$
\frac{dp}{dr} = -\frac{G}{c^4} \frac{(mc^2 + 4\pi pr^3)(\varepsilon + p)}{r(r - 2Gm/c^2)}; \quad \frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2
$$
\nNewtonian Polytropes: $p = K\varepsilon^\gamma$; $M \propto K^{1/(2-\gamma)} R^{(4-3\gamma)/(2-\gamma)}$

 $2Q$

Nuclear Symmetry Energy

Defined as the difference between energies of pure neutron matter $(x = 0)$ and symmetric $(x = 1/2)$ nuclear matter

$$
S(\rho) = E(\rho, x = 0) - E(\rho, x = 1/2)
$$

Expanding around saturation density (ρ_s) and symmetric matter

$$
E(\rho, x) = E(\rho, x = 1/2) + (1 - 2x)^2 E_{sym}(\rho) + \dots
$$

\n
$$
E_{sym}(\rho) = S_v + \frac{L}{3} \frac{\rho - \rho_s}{\rho_s} + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_s}{\rho_s}\right)^2 + \dots
$$

\n
$$
S_v = \frac{1}{8} \frac{\partial^2 E}{\partial x^2}\Big|_{\rho_s, 1/2}, \quad L = \frac{3}{8} \frac{\partial^3 E}{\partial \rho \partial x^2}\Big|_{\rho_s, 1/2}, \quad K_{sym} = \frac{9}{8} \frac{\partial^4 E}{\partial \rho^2 \partial x^2}\Big|_{\rho_x, 1/2}
$$

Thus, $E_{sym}(\rho) \simeq S(\rho)$ if higher-than-quadratic terms are small. Can be connected to neutron matter:

> $\mathcal{S}(\rho_\mathsf{s}) = \mathcal{E}(\rho_\mathsf{s}, x=0) + B \approx \mathcal{S}_\mathsf{v}, \qquad p(\rho_\mathsf{s}, x=0) \approx \mathcal{L}\rho_\mathsf{s}/3$ $R \propto p(\rho_s-2\rho_s,x=0)^{1/4}$ (Lattimer [&](#page-4-0) [P](#page-6-0)[ra](#page-4-0)[ka](#page-5-0)s[h](#page-0-0) [20](#page-22-0)[01](#page-0-0)) Ω

Nuclear Binding Energies

 $E_{sym}(N, Z) = I^2(S_vA - S_sA^{2/3})$ $\chi^2 = {\cal N}^{-1} \sum_i (\mathit{E}_{\mathsf{ex},i} - \mathit{E}_{\mathsf{sym},i})^2 / \sigma_i^2$ $\chi_{\scriptscriptstyle {\it VV}} = \frac{2}{N} \sum_i I_i^4 A_i^2$ $\chi_\mathsf{ss} = \frac{2}{\mathcal{N}} \sum_i \mathsf{I}^4_i A^{4/3}_{\mathsf{I}_{\mathsf{S}^4}}$ i $\chi_{\mathsf{vs}} = \frac{2}{\mathcal{N}} \sum_i \mathsf{I}^4_i \mathsf{A}^{5/3}_i$ i $\sigma_{S_v} = \sqrt{\frac{2\chi_{ss}}{\chi_{\rm tot}\chi_{\rm sc} - \chi_{\rm sc}}}$ $L (Mev)$ $\chi_{VV}\chi_{\sf ss}$ − $\chi^2_{\sf sv}$ $\sigma_{S_s} = \sqrt{\frac{2\chi_{VV}}{\chi_{V\sim V}}S_{ss} - \frac{2\chi_{VV}}{\chi_{V\sim V}}}.$ χ vv χ ss $-\chi^2_{\mathsf{sv}}$ $\alpha = \frac{1}{2}$ $\frac{1}{2}$ tan $\frac{1}{\chi_{\rm{vv}} - \chi_{\rm{ss}}}$ $r_{vs} = -\frac{\chi_{vs}}{\sqrt{\chi_{vs}}}$ $\overline{\chi_{\nu\nu}\chi_{\rm ss}}$ $S_c \approx 0.95S_v + 0.65L$ $E_{sym}(N,Z) = \frac{S_v A I^2}{1 + (S_s/S_v)A^{-1/3}}$

Nuclear Binding Energies

J. M. Lattimer [Symmetry Energy Parameters and How the EOS is Taking Shape](#page-0-0)

つへへ

Comparison of Microscopoic and Liquid Droplet Mass Fits

Neutron Skin Thickness

 $R_n - R_p \simeq \sqrt{3/5} t_{np}$

 $t_{np} = \frac{2r_o}{3}$ 3 $\frac{|S_s|}{|S_s|}$ $S_v + S_s A^{-1/3}$

 $2Q$

Heavy Ion Collisions

J. M. Lattimer [Symmetry Energy Parameters and How the EOS is Taking Shape](#page-0-0)

 $2Q$

Giant Dipole Resonances

 Ω

Dipole Polarizability

 α_D and $R_n - R_p$ in ²⁰⁸Pb are 98% correlated

Reinhard & Nazawericz (2010)

Data from Tamii et al. (2011)

Pygmy Dipole Resonances

J. M. Lattimer [Symmetry Energy Parameters and How the EOS is Taking Shape](#page-0-0)

 $2Q$

Theoretical Neutron Matter Calculations

Simultaneous Mass/Radius Measurements

 \blacktriangleright The measurement of flux and temperature yields an apparent angular size (pseudo-BB):

$$
\left(\begin{matrix} 1 \\ 1 \\ 2 \end{matrix}\right)
$$

つへへ

$$
\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - 2GM/Rc^2}}
$$

 \triangleright Observational uncertainties include distance, interstellar absorption (UV and X-rays), atmospheric composition

Best chances for accurate radius measurement:

- \triangleright Nearby isolated neutron stars with parallax (uncertain atmosphere)
- \triangleright Quiescent X-ray binaries in globular clusters (reliable distances, low B H-atmosperes)
- \triangleright Bursting sources with peak fluxes close to Eddington limit (where gravity balances radiation pressure)

$$
F_{Edd} = \frac{cGM}{\kappa D^2}
$$

$M - R$ Probability Estimates

Bayesian TOV Inversion

- \triangleright ε < 0.5 ε ₀: Known crustal EOS
- \blacktriangleright 0.5 $\varepsilon_0 < \varepsilon < \varepsilon_1$: EOS parametrized by $K,K',\mathcal{S}_{\nu},\gamma$
- **Polytropic EOS:** $\varepsilon_1 < \varepsilon < \varepsilon_2$: n_1 ; $ε > ε₂: n₂$
- ► EOS parameters $K, K', S_v, \gamma, \varepsilon_1$, n_1, ε_2, n_2 uniformly distributed
- $M_{\text{max}} \geq 1.97 \text{ M}_{\odot}$, causality enforced
- \blacktriangleright All sources equally weighted

J. M. Lattimer [Symmetry Energy Parameters and How the EOS is Taking Shape](#page-0-0)

Pulse Shape Modeling

Astronomical Observations

Combined Constraints

J. M. Lattimer [Symmetry Energy Parameters and How the EOS is Taking Shape](#page-0-0)

 290

Consistency with Neutron Matter and Heavy-Ion Collisions

