Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Florian Hanke

Max-Planck-Institut für Astrophysik

INT-12-2a program "Core-Collapse Supernovae: Models and observable Signals", Seattle 04.07.2012

KORKARA KERKER DAGA

Current Status of Supernova Modelling Recent simulations with sophisticated neutrino transport in 2D

- \blacktriangleright can yield supernova explosions (Marek & Janka 2009; Müller et al. 2012)
- \blacktriangleright "marginal" explosions: relatively late and fairly underenergetic
- \blacktriangleright Burrows et al. (2006,2007): lack of neutrino-driven explosions

How does 3D change the fluid dynamics?

(Nordhaus 2010, Hanke 2011, Takiwaki 2011, Bruenn 2009, Liebendörfer 2010)**KORK ERKER ADAM ADA**

Inspired by results of Nordhaus et al. (2010)

 \triangleright based on the concept of a critical luminosity (Burrows & Goshy 1993)

 $2D - > 3D$: another reduction of threshold luminos[ity](#page-1-0) [b](#page-3-0)[y](#page-1-0)

 Ω

Numerical Setup

- \triangleright hydrodynamical simulations with PROMETHEUS Code
- \triangleright local source terms (Murphy & Burrows 2008; Nordhaus et al. 2010) for neutrino:

 \blacktriangleright heating

Q

$$
Q_{\nu}^{+} = 1.544 \cdot 10^{20} \left(\frac{L_{\nu_{e}}}{10^{52} \text{ erg s}^{-1}} \right) \left(\frac{T_{\nu_{e}}}{4 \text{ MeV}} \right)^{2}
$$

$$
\left(\frac{100 \text{ km}}{r} \right)^{2} (Y_{n} + Y_{p}) e^{-\tau_{\text{eff}}/2.7} \left[\frac{\text{erg}}{\text{g s}} \right],
$$

 \triangleright cooling

$$
Q_{\nu}^- = 1.399 \cdot 10^{20} \left(\frac{T}{2 \text{ MeV}}\right)^6 (Y_n + Y_p) e^{-\tau_{\text{eff}}/2.7} \left[\frac{\text{erg}}{\text{g s}}\right]
$$

.

- \triangleright collapse until 15ms post-bounce treated with full neutrino transport
- **I 15** *M***_O and 11.2** *M***_O progenitor star investigated
PRESERVED SERVERSE SERVE</sub>**

Numerical Setup

- \triangleright hydrodynamical simulations with PROMETHEUS Code
- \triangleright local source terms (Murphy & Burrows 2008; Nordhaus et al. 2010) for neutrino:
	- \blacktriangleright heating

$$
Q_{\nu}^{+} = 1.544 \cdot 10^{20} \left(\frac{L_{\nu_{e}}}{10^{52} \text{ erg s}^{-1}} \right) \left(\frac{T_{\nu_{e}}}{4 \text{ MeV}} \right)^{2}
$$

$$
\left(\frac{100 \text{ km}}{r} \right)^{2} (Y_{n} + Y_{p}) e^{-\tau_{\text{eff}}/2.7} \left[\frac{\text{erg}}{\text{g s}} \right],
$$

 \triangleright cooling

$$
Q_{\nu}^- = 1.399 \cdot 10^{20} \left(\frac{T}{2 \text{ MeV}} \right)^6 (Y_n + Y_p) e^{-\tau_{\text{eff}}/2.7} \left[\frac{\text{erg}}{\text{g s}} \right]
$$

.

KORK ERKER ADAM ADA

 \triangleright enhanced net cooling to reproduce values of Murphy & Burrows (2008)

Critical curves

1D -> 2D: critical luminosities reduced by 15-25% confirms Murphy & Burrows (2008), Nordhaus et al. (2010) 2D -> 3D: no more favorable conditions for explosions

Comparison to Nordhaus et al. (2010)

possible reasons for discrepancy

- \blacktriangleright different treatment of neutrino cooling
- \blacktriangleright different employed hydrodynamics scheme (PROMETHEUS vs. CASTRO)
- \blacktriangleright differences in the exact structure of infall region due to different treatment of collapse phase (full neutrino transport vs. simple deleptonization scheme)

KORK ERKER ADAM ADA

New results of Burrows et al. 2012

now: 2D -> 3D: reduction of threshold luminosity almost vanished

イロト イ押 トイヨ トイヨ トーヨー

 299

averaged entropy of gas in gain layer $\langle s(t) \rangle$

 \blacktriangleright Nordhaus et al. (2010): clear hierarchy in dimension

 \triangleright our results: no distinction between dimensions

averaged entropy of gas in gain layer $\langle s(t) \rangle$

- \blacktriangleright neutrino energy deposition rises entropy
- \blacktriangleright however, $\lt s(t)$ encompasses downdrafts with cool matter, much denser, hardly heated by neutrinos
- \triangleright not higher than 1D by convective overturn

 \triangleright our results: no distinction between dimensions

4 0 > 4 fl > 4 fl > 4 fl > 5

 $2Q$

dominant effect of multi-D?

- \blacktriangleright associated with inflation of shock radius and postshock layer
- \blacktriangleright driven by buoyant rise and expansion of plumes of neutrino-heated plasma
- more mass is heated, not same mass more heated!

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 $2Q$

B

dominant effect of multi-D?

- \blacktriangleright M_{gain} increases for models closer to explosion
- \blacktriangleright longer dwell times of matter in gain layer drives explosion
- \blacktriangleright better indicator of proximity to explosion

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \end{array} \right. \square \end{array} \right. \right. \end{array} \right. \end{array} \right.$ $2Q$

Effects of resolution

very interesting trend:

- \blacktriangleright higher angular resolution fosters explosions in 2D
- \blacktriangleright but delays or prevents explosions in 3D
- \blacktriangleright confirmation of our results with moderate resolution

Effects of resolution

very interesting trend:

- \blacktriangleright reflected in diagnostic quantities
- \triangleright 3D more similar to 1D with higher resolution

 $2Q$

2D-3D resolution dependence

convective structure of an $11.2 M_{\odot}$ explosion model

- \triangleright more fine structures on small spatial scales in 3D
- \triangleright no improved conditions for explosion

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

- \triangleright 2D: from small to large spatial scales
- \triangleright 3D: turbulent flow from large to small scales
- \triangleright consequence of opposite resolution dependence

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

 \triangleright decompostion of angular kinetic energy in spherical harmonics

 299

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

 \triangleright decompostion of angular kinetic energy in spherical harmonics

 299

Interpretation II

large-scale mass flows associated with strong SASI activity favorable for explosion

- no support by enhanced fragmentation of structures on small scales
- \blacktriangleright typical for strong SASI activity

Interpretation II

large-scale mass flows associated with strong SASI activity favorable for explosion

strength of SASI activity in 2D

increases with higher resolution correlated with earlier explosion!

- \blacktriangleright higher angular kinetic energy
- \blacktriangleright spiky maxima and minima

Summary

systematic study of post-bounce evolution of supernova cores

- \triangleright simple neutrino heating and cooling terms with varied values of driving luminosity
- \blacktriangleright 1D->2D: lowers driving luminosity
- \triangleright 2D->3D: no significant further reduction
- \triangleright resolution study: 2D models with higher resolution explode earlier,

3D models show opposite trend

 \triangleright connected to large-scale motions due to SASI activity in 2D,

3D models develop weaker low-order SASI modes

 \triangleright consequence of opposite turbulent energy cascades in 2D and 3D.

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

supernova physics in 3D is in its very infancy!