Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Florian Hanke

Max-Planck-Institut für Astrophysik

INT-12-2a program "Core-Collapse Supernovae: Models and observable Signals", Seattle 04.07.2012

(ロ) (同) (三) (三) (三) (○) (○)

Current Status of Supernova Modelling Recent simulations with sophisticated neutrino transport in 2D

- can yield supernova explosions (Marek & Janka 2009; Müller et al. 2012)
- "marginal" explosions: relatively late and fairly underenergetic
- Burrows et al. (2006,2007): lack of neutrino-driven explosions

How does 3D change the fluid dynamics?

(Nordhaus 2010, Hanke 2011, Takiwaki 2011, Bruenn 2009, Liebendörfer 2010)

Inspired by results of Nordhaus et al. (2010)

 based on the concept of a critical luminosity (Burrows & Goshy 1993)

2D -> 3D: another reduction of threshold luminosity by 15-25%

Numerical Setup

- hydrodynamical simulations with PROMETHEUS Code
- local source terms (Murphy & Burrows 2008; Nordhaus et al. 2010) for neutrino:

heating

$$\begin{aligned} Q_{\nu}^{+} &= 1.544 \cdot 10^{20} \left(\frac{L_{\nu_{e}}}{10^{52} \, \mathrm{erg} \, \mathrm{s}^{-1}} \right) \left(\frac{T_{\nu_{e}}}{4 \, \mathrm{MeV}} \right)^{2} \\ & \left(\frac{100 \, \mathrm{km}}{r} \right)^{2} \left(Y_{n} + Y_{p} \right) \, e^{-\tau_{\mathrm{eff}}/2.7} \left[\frac{\mathrm{erg}}{\mathrm{g} \, \mathrm{s}} \right], \end{aligned}$$

cooling

$$Q_{\nu}^{-} = 1.399 \cdot 10^{20} \left(rac{T}{2\,\text{MeV}}
ight)^{6} \left(Y_{n}+Y_{
ho}
ight) \, e^{- au_{ ext{eff}}/2.7} \left[rac{ ext{erg}}{ ext{g s}}
ight]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- collapse until 15ms post-bounce treated with full neutrino transport
- 15 M_{\odot} and 11.2 M_{\odot} progenitor star investigated

Numerical Setup

- hydrodynamical simulations with PROMETHEUS Code
- local source terms (Murphy & Burrows 2008; Nordhaus et al. 2010) for neutrino:
 - heating

$$\begin{aligned} Q_{\nu}^{+} &= 1.544 \cdot 10^{20} \left(\frac{L_{\nu_{e}}}{10^{52} \, \mathrm{erg \, s^{-1}}} \right) \left(\frac{T_{\nu_{e}}}{4 \, \mathrm{MeV}} \right)^{2} \\ & \left(\frac{100 \, \mathrm{km}}{r} \right)^{2} \left(Y_{n} + Y_{p} \right) \, e^{-\tau_{\mathrm{eff}}/2.7} \left[\frac{\mathrm{erg}}{\mathrm{g \, s}} \right], \end{aligned}$$

cooling

$$Q_{\nu}^{-} = 1.399 \cdot 10^{20} \left(\frac{T}{2 \,\text{MeV}}\right)^{6} (Y_{n} + Y_{p}) \ e^{-\tau_{\text{eff}}/2.7} \left[\frac{\text{erg}}{\text{g s}}\right]$$

 enhanced net cooling to reproduce values of Murphy & Burrows (2008)

Critical curves

1D -> 2D: critical luminosities reduced by 15-25% confirms Murphy & Burrows (2008), Nordhaus et al. (2010) 2D -> 3D: no more favorable conditions for explosions

Comparison to Nordhaus et al. (2010)

possible reasons for discrepancy

- different treatment of neutrino cooling
- different employed hydrodynamics scheme (PROMETHEUS vs. CASTRO)
- differences in the exact structure of infall region due to different treatment of collapse phase (full neutrino transport vs. simple deleptonization scheme)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

New results of Burrows et al. 2012

now: 2D -> 3D: reduction of threshold luminosity almost vanished

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

averaged entropy of gas in gain layer <s(t)>

 Nordhaus et al. (2010): clear hierarchy in dimension our results: no distinction between dimensions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ●

averaged entropy of gas in gain layer <s(t)>

- neutrino energy deposition rises entropy
- however, <s(t)> encompasses downdrafts with cool matter, much denser, hardly heated by neutrinos
- not higher than 1D by convective overturn

 our results: no distinction between dimensions

・ コット (雪) (小田) (コット 日)

dominant effect of multi-D?

- associated with inflation of shock radius and postshock layer
- driven by buoyant rise and expansion of plumes of neutrino-heated plasma
- more mass is heated, not same mass more heated!

・ロット (雪) (日) (日)

ъ

dominant effect of multi-D?

- M_{gain} increases for models closer to explosion
- longer dwell times of matter in gain layer drives explosion
- better indicator of proximity to explosion

・ロト・西ト・西ト・西ト・日・ シック・

Effects of resolution

very interesting trend:

- higher angular resolution fosters explosions in 2D
- but delays or prevents explosions in 3D
- confirmation of our results with moderate resolution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Effects of resolution

very interesting trend:

- reflected in diagnostic quantities
- 3D more similar to 1D with higher resolution

∃ ∽へぐ

2D-3D resolution dependence

convective structure of an 11.2 M_{\odot} explosion model

- more fine structures on small spatial scales in 3D
- no improved conditions for explosion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

- 2D: from small to large spatial scales
- 3D: turbulent flow from large to small scales
- consequence of opposite resolution dependence

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

 decomposition of angular kinetic energy in spherical harmonics

Interpretation I

turbulent energy cascade: redistributes energy into the flow in opposite direction in 2D and 3D

 decomposition of angular kinetic energy in spherical harmonics

Interpretation II

large-scale mass flows associated with strong SASI activity favorable for explosion

- no support by enhanced fragmentation of structures on small scales
- typical for strong SASI activity

Interpretation II

large-scale mass flows associated with strong SASI activity favorable for explosion

strength of SASI activity in 2D

increases with higher resolution correlated with earlier explosion!

- higher angular kinetic energy
- spiky maxima and minima

ロト・個ト・ヨト・ヨト ヨーのくの

Summary

systematic study of post-bounce evolution of supernova cores

- simple neutrino heating and cooling terms with varied values of driving luminosity
- 1D->2D: lowers driving luminosity
- 2D->3D: no significant further reduction
- resolution study: 2D models with higher resolution explode earlier,
 2D models show appecite trend

3D models show opposite trend

connected to large-scale motions due to SASI activity in 2D,

3D models develop weaker low-order SASI modes

 consequence of opposite turbulent energy cascades in 2D and 3D.

・ロト・日本・日本・日本・日本

supernova physics in 3D is in its very infancy!