Hydrodynamics of CCSNe at the Transition to Explosion

Rodrigo Fernández Einstein Fellow - Institute for Advanced Study

Stalled Shock

No Explosion in Spherical Symmetry

Liebendörfer et al. (2001)

Multidimensional Effects

 v_r [10⁸ cm s⁻¹]

Buras et al. (2006)

More Efficient with Increasing Dimensionality?

In disagreement with Hanke et al. (2011)

Parametric Hydrodynamic Study

• Identify hydrodynamic processes responsible for converting accretion flow into explosion

• Understand their dependence on system parameters and dimensionality

• Assess the effect of hydrodynamic instabilities on explosion mechanism (magnitude and robustness)

Method

- Time-dependent Hydrodynamic Simulations (FLASH3.2, modified grid)
- Steady-state initial and boundary conditions (stalled shock)
- H. Shen (1998) EOS via O'Connor & Ott (2010) implementation
- Bruenn (1985) weak interaction rates, lightbulb heating
- Point-mass gravity (time-independent)
- Begin with spherical symmetry (no turbulence)
- Equations solved:

$$
\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v_r) = 0 \qquad \frac{\partial (\rho e)}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (v_r [\rho e + p]) + \rho v_r \frac{GM}{r^2} = \mathcal{L}_{\text{net}}
$$

$$
\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{GM}{r^2} = 0 \qquad \frac{\partial Y_e}{\partial t} + v_r \frac{\partial Y_e}{\partial r} = \Gamma_{\text{net}}.
$$

RF (2012)

Limiting Cases (1D)

1) No Heating: Accretion Shock

2) Strong Heating: Sedov-like explosion

$$
L_{\nu} \left(\frac{\sigma_{\nu}}{r_g^2} \right) \left(\frac{M_{\rm g}}{m_n} \right) t_{\rm dyn} \gg E_{\rm g}
$$

$$
t_{\rm dyn} \gg t_{\rm heat}
$$

Limiting Luminosity in Steady-State

(Burrows & Goshy 1993)

Burrows & Goshy (1993)

BG 93 conjecture I: explosion involves global instability of accretion flow

BG93 conjecture II: instability threshold lies at the limiting luminosity

Limiting Luminosity in Steady-State

Antesonic condition:

 c_s^2 $v_{\rm esc}^2$ $\simeq 0.2$

Assumes fixed boundary conditions at neutrinosphere and upstream flow

$$
x = \frac{rc_T^2}{2GM} \qquad \mathcal{M} = \frac{v_r}{c_T}
$$

(Pejcha & T.Thompson 2012)

Limiting Luminosity in Steady-State

Transition to Explosion

Linear instability bifurcation predicted by Yamasaki & Yamada (2007)

 $R_\nu = 30 \; \mathrm{km}$ Yamasaki & Yamada (2007)

 $t_{\rm dyn} \sim 2 \text{ ms}$ *t*_{heat} ~ 10 ms

Fiducial model: $\dot{M} = 0.3 M_{\odot}\; \rm s^{-1}$

Work Integral

From stellar pulsation theory (Eddington 1926):

$$
W = \oint \frac{dE}{dt} dt
$$

If $W > 0$, driving

If $W < 0$, damping

Positive work leads to increase in pulsation kinetic energy

(e.g., Cox 1974)

Work Integral in CCSNe

- Include region in sonic contact
- Neither mass nor volume are constant

$$
\frac{\partial E}{\partial t} = \int d^3x \frac{\partial (\rho e_{\text{tot}})}{\partial t} + 4\pi R_s^2 \dot{R}_s (\rho e_{\text{tot}})|_{R_s} \equiv \dot{E}_{\text{tot}}
$$

$$
e_{\rm tot} = \frac{1}{2}v^2 + e_{\rm int} - \frac{GM}{r}
$$

Energy equation

$$
\frac{\partial}{\partial t} \left(\frac{1}{2} \rho v_r^2 + \rho e_{\text{int}} \right) + \nabla \cdot \left(\rho \mathbf{v} \left[\frac{1}{2} v_r^2 + e_{\text{int}} + \frac{p}{\rho} \right] \right) + \rho v_r \frac{GM}{r^2} = \mathcal{L}_{\text{net}}
$$
\n\nEulerian Rate of Change

\nEnergy Flux

\nGravity

\nSource Terms

If point mass is time-independent:

 $(\rho e_{\text{tot}}) + \nabla \cdot$

 $\sqrt{ }$

 $\rho \mathbf{v}$

 $\left[e_{\text{tot}} + \frac{p}{q}\right]$

 ρ

 $\Big| \Big) =$

 ∂

∂*t*

$$
\rho v_r \frac{GM}{r^2} = \rho \mathbf{v} \cdot \nabla \left(-\frac{GM}{r} \right) = \nabla \cdot \left(\rho \mathbf{v} \left[-\frac{GM}{r} \right] \right) - \nabla \cdot (\rho \mathbf{v}) \left[-\frac{GM}{r} \right]
$$

to energy flux

$$
+ \frac{\partial \rho}{\partial t} \left[-\frac{GM}{r} \right] = \frac{\partial}{\partial t} \left(-\rho \frac{GM}{r} \right)
$$

to rate of change

$$
e_{\text{tot}} = \frac{1}{2}v^2 + e_{\text{int}} - \frac{GM}{r}
$$

Driving and Damping: Oscillatory Mode

Change of Total Energy (Work Integral)

$$
e_{\text{tot}} = \frac{1}{2}v^2 + e_{\text{int}} - \frac{GM}{r}
$$

$$
\frac{\partial E}{\partial t} = \int d^3x \frac{\partial (\rho e_{\text{tot}})}{\partial t} + 4\pi R_s^2 \dot{R}_s (\rho e_{\text{tot}})\Big|_{R_s} \equiv \dot{E}_{\text{tot}}
$$

$$
= \dot{E}_{\text{N}} - \dot{E}_{\text{up}} + \dot{E}_{\text{dn}} + \dot{E}_{\text{s}},
$$

$$
\vec{E}_{\text{N}} = \int_{R_{\text{in}}}^{R_s} 4\pi r^2 dr \mathcal{L}_{\text{net}}
$$
\n
$$
\vec{E}_{\text{up}} = 4\pi R_s^2 \left[v_r (\rho e_{\text{tot}} + p) \right] \Big|_{R_s}
$$
\nCancel out
\n
$$
\vec{E}_{\text{dn}} = 4\pi R_{\text{in}}^2 \left[v_r (\rho e_{\text{tot}} + p) \right] \Big|_{R_{\text{in}}}
$$
\n
$$
\vec{E}_{\text{s}} = 4\pi R_s^2 \vec{R}_s (\rho e_{\text{tot}}) \Big|_{R_s},
$$
\nL₂

Driving: positive energy generation Damping: negative energy generation

Driving and Damping: Non-Oscillatory Mode

Driving: positive energy generation Damping: negative energy generation

Radial instability leads to Explosion (1D)

$$
\vec{E}_{\text{N}} = \int_{R_{\text{in}}}^{R_s} 4\pi r^2 dr \mathcal{L}_{\text{net}}
$$
\n
$$
\vec{E}_{\text{up}} = 4\pi R_s^2 [v_r (\rho e_{\text{tot}} + p)] \Big|_{R_s}
$$
\n
$$
\vec{E}_{\text{dn}} = 4\pi R_{\text{in}}^2 [v_r (\rho e_{\text{tot}} + p)] \Big|_{R_{\text{in}}}
$$
\n
$$
\vec{E}_{\text{s}} = 4\pi R_s^2 \vec{R}_s (\rho e_{\text{tot}}) \Big|_{R_s},
$$

- Does not decrease if heating by accretion neglected and neutrinospheric parameters are constant
- Positive, and largely exceeds $\,\dot{E}_{\rm up}$
- Only source of damping, decreases in magnitude due to nuclear recombination

3D Hydrodynamic Studies

Approximate Instability Criteria (1D)

Oscillatory: Non-Oscillatory: *t*adv−^g *> t*heat−^e $t_{\text{adv-g}} > t_{\text{adv-e}}$

$$
t_{\rm adv}(r_1, r_2) = \int_{r_1}^{r_2} \frac{dr}{|v_r|} = \frac{M(r_1, r_2)}{\dot{M}}
$$

$$
t_{\text{adv-g}} = \int_{R_g}^{R_s} \frac{\text{d}r}{|v_r|} \qquad R_g = \text{gain radius}
$$

 $r_{\text{adv-e}} = \int_{r_a}^{R_g} \frac{dr}{|v_r|}$ $r_e =$ "phase shift" radius

$$
t_{\text{heat-g}} = \frac{\int_{R_g}^{R_s} \mathrm{d}^3 x (\rho e_{\text{tot}})}{\int_{R_g}^{R_s} \mathrm{d}^3 x \mathcal{L}_{\text{net}}}
$$

Threshold Luminosities for Instability (1D)

Implications for Multi-Dimensional Case

1. Unstable oscillatory modes in multi-D (SASI) do not explode the system by themselves. (e.g., Iwakami et al. 2008)

2. Non-oscillatory modes of high angular degree associated with ${\sf convection}$ $(\ell \gtrsim 5)$ (Yamasaki & Yamada 2007)

Implications for Multi-Dimensional Case

3. Hence, multi-D explosion mediated by either:

a) Unstable spherical mode (oscillatory and/or non-oscillatory), and possibly

b) Unstable non-oscillatory mode of low angular degree ($\ell=1,2$)

Will **couple non-linearly** to $\ell = 0$

4. Background flow is turbulent in multi-D, thus instability thresholds will change.

A semi-analytic study would require perturbing time-averaged quantities.

3D Hydrodynamic Studies

Summary

1. Radial instability of the shock is a sufficient condition for explosion

IF

- a) Neutrinospheric parameters are constant in time
- b) Heating from accretion luminosity is neglected
- c) Mass accretion rate is constant or decreases with time
- 2. Radial instability thresholds can be approximately (~5% in L_{ν}) described by global properties of the flow
- 3. Instability thresholds are different from limiting luminosity for a steady-state configuration (BG93 limit)
- 4. Multi-dimensional explosions involve growth of spherical and/or non-spherical modes in turbulent background flow