

Core-Collapse Supernovae: Models and Observable Signals, Institute for Nuclear Theory

A Multidimensional History

Multi-D hydrodynamics is **a** key ingredient...

But of course we should worry about

- Neutrino transport
- Microphysics (EOS)
- General relativity
- Progenitors

Numerical Setup

- CASTRO: AMR Godunov
- Monopole gravity
- $H = H_0 \frac{L_{\nu_e}}{r^2} (x_n + x_p) e^{-\tau}$
- $C = C_0 T^6 (x_n + x_p) e^{-\tau}$
- Shen et al. (1998) EOS
- $15\,M_{\odot}$ Woosley & Weaver ('95)
- Liebendörfer's Y_e scheme

Results

2D is not 3D.

Multi-D Hydrodynamics of Core Collapse Supernovae

Josh Dolence

?D

?D

Pop quiz: How many dimensions am I?

2D

3D

Flows are different, even by eye.

Structure of multi-D models

1. The shock

Josh Dolence

Evolution of the shock surface in 3D L=2.2 model

Evolution of the shock surface in 3D L=2.3 model

Structure of multi-D models

2. Turbulence

Time = 0.466 s after bounce

2D and 3D nonlinear turbulence are different.

Power distributed differently. Inverse vs. forward energy cascades? See Hanke et al. 2012 for similar plots.

Multi-D Hydrodynamics of Core Collapse Supernovae

Josh Dolence

2D has longer mean dwell time but 3D has long tail

Which is more important?

Multi-D Hydrodynamics of Core Collapse Supernovae

Conclusions

- 2D & 3D shock structure and evolution are *different*
- 2D & 3D power spectra of turbulence are *different*
- 2D & 3D dwell time distributions are *different*

