Simulations of SASI, turbulence, and magnetic field amplification

INT Program INT-12-2a: Core-Collapse Supernovae: Models and Observable Signals

Eirik Endeve

Funding: DoE Office of Advanced Scientific Computing Research and Office of Nuclear Physics

Computing resources provided by DoE through the INCITE program

1

Turbulence and Magnetic Fields from SASI

Objectives:

- Does turbulence develop from the SASI?
 - What are the characteristics of SASI-driven turbulence?
 - Does turbulence result in nonlinear SASI saturation? (e.g., Guilet et al. 2010, ApJ, 713, 1350)
- Does SASI-driven turbulence result in magnetic field amplification?
 What are the characteristics of SASI-driven magnetic field amplification?
- Do amplified magnetic fields change characteristics of the SASI?
 Implications for the explosion mechanism of CCSNe?
- Do SASI + B-fields impact observables associated with CCSNe?
 - Implications for proto-neutron star magnetic fields?

Endeve, Cardall, Budiardja, & Mezzacappa (2010), *ApJ*, **713**, 1219 Endeve, Cardall, Budiardja, Beck, Bejnood, Toedte, Mezzacappa, & Blondin (2012), *ApJ*, **751**, 26 Endeve, Cardall, Budiardja, Mezzacappa, & Blondin (2012), *Physica Scripta*, in press (arXiv:1203:3748)

Turbulence and Magnetic Fields from SASI

Methods:

- High-resolution magnetohydrodynamic (MHD) simulations
 - Multiple models (vary rotation rate and initial field strength)
 - Grids up to 1280³ zones
 - CPU time at OLCF provided by DoE through the INCITE program
- Idealized semi-analytic initial condition
 - Blondin & Mezzacappa (2007), Nature, 445, 58 + weak B-field
- Analysis includes Fourier decomposition
 - Kinetic, Magnetic, and Enstrophy spectra

Endeve, Cardall, Budiardja, & Mezzacappa (2010), *ApJ*, **713**, 1219 Endeve, Cardall, Budiardja, Beck, Bejnood, Toedte, Mezzacappa, & Blondin (2012), *ApJ*, **751**, 26 Endeve, Cardall, Budiardja, Mezzacappa, & Blondin (2012), *Physica Scripta*, in press (arXiv:1203:3748)

MHD Scheme in GenASiS

Finite volume method solves integral form of ideal MHD equations

- Second-order in space through slope-limited linear interpolation
- HLL-type approximate Riemann solver → flux + electric fields
- Constrained transport for divergence-free B-field update
- Second-order in time through TVD Runge-Kutta time integration

Kurganov et al. (2001), *SIAM*, *J.Sci.Comput.*, **23**, 707 Londrillo & Del Zanna (2004), *JCP*, **195**, 17 Endeve et al. (2012), *J. Phys.: Conf. Ser.*, in press (arXiv:1203:3385)

MHD Scheme in GenASiS

Second-order convergence for smooth problems: Circularly polarized Alfven wave

	TW $(t_f = 1)$		SW $(t_f = 1)$		TW $(t_f = 5)$		SW $(t_f = 5)$	
N_x	$L_1(B_z)$	Rate	$L_1(B_z)$	Rate	$L_1(B_z)$	Rate	$L_1(B_z)$	Rate
32	1.373E-01	_	2.279E-01	_	4.974E-01	_	7.361E-01	—
64	5.196E-02	-1.40	8.629 E-02	-1.40	1.395E-01	-1.83	2.144E-01	-1.78
128	1.433E-02	-1.86	2.535E-02	-1.77	5.053 E-02	-1.46	8.700 E-02	-1.30
256	3.625E-03	-1.98	6.842 E-03	-1.89	1.483E-02	-1.77	2.754 E-02	-1.66
512	9.085 E-04	-2.00	1.760E-03	-1.96	3.945E-03	-1.91	7.782 E-03	-1.82
1024	2.242 E-04	-2.02	4.491E-04	-1.97	1.015E-03	-1.96	2.059E-03	-1.92

Table 1. L_1 -error and convergence rate for the circularly polarized Alfvén wave test.

First-order convergence for problems with discontinuities: Orzag-Tang vortex

5

Turbulence from Spiral SASI Modes

time=832 ms

- SASI Spiral modes emerge favorably
- Turbulence driven by supersonic shear flows
- Postshock flow: Supersonic driving component +subsonic turbulent (volume filling) component

Supersonic flows contribute mostly to the wings of the PDF for $\rm v_x$

1.0E-06

0.2

0.4

0.6

time [s]

Turbulent E_{kin}^{T}

0.8

7.0

equipartition during turbulent, saturated sta (similar to turbulence from neutrino-driven convection; Murphy et al. arXiv:1205.3491)

Fourier Decomposition of Simulation Results

For any vector field we compute Fourier amplitudes (using FFTW library)

$$\hat{\mathbf{f}}(\mathbf{k}) = \frac{1}{V_L} \int_{V_L} \mathbf{f}(\mathbf{x}) \times \exp(i\mathbf{k} \cdot \mathbf{x}) \, dV$$

Define the spectral energy density in k-space shell

$$\hat{e}(k) = \frac{1}{2} \int_{k-\text{Shell}} |\hat{\mathbf{f}}|^2 \, k^2 d\Omega_k \qquad \int_0^\infty \hat{e} \, dk = \frac{1}{2} \int_{V_L} |\mathbf{f}|^2 \, dV$$

$$\mathbf{f}(\mathbf{x}) = \sqrt{\rho} \mathbf{u}, \, \mathbf{u}, \, \boldsymbol{\omega}, \, \mathbf{B} \to \hat{e}_{\min}, \, \hat{e}_{\mathbf{u}}, \, \hat{e}_{\boldsymbol{\omega}}, \, \hat{e}_{\max}$$

(i.e., kinetic energy, specific kinetic energy, enstrophy, and magnetic energy spectra)

Nonlinear Saturation of SASI due to Turbulence?

- SASI saturation coincides with development of turbulence
- Quasi-steady state with Kolmogorov spectrum develops
 - Accretion-powered large-scale flows cascade to smaller scales and dissipate (numerically)

Impact of Numerical Resolution

- Kinetic energy Spectrum extends to larger k-values for higher resolution
 - Numerical dissipation causes spectrum to decrease faster than k^{-5/3}
- No impact on saturation level of kinetic energy (earlier onset of nonlinear SASI for lowest resolution model)

Non-Helical Turbulence from SASI

Relative kinetic helicity

$$h_{ ext{kin}} = rac{\mathbf{u} \cdot oldsymbol{\omega}}{u_{ ext{rms}} \, \omega_{ ext{rms}}}$$

Net kinetic helicity small in SASI simulations

$$\left| \int_{-\infty}^{+\infty} h_{\rm kin} \, \rm PDF(h_{\rm kin}) \, dh_{\rm kin} \right| < 10^{-3}$$

Important for magnetic field amplification! Non-helical turbulence: small-scale dynamo (Haugen et al. 2004)

Helical Turbulence: Large-scale dynamo (inverse cascade; Meneguzzi et al. 1981, Brandenburg 2001, Blackman 2012)

SASI-driven turbulence: *B-field amplification via efficient small-scale dynamo*– Similar to convectively driven turbulence (Brandenburg et al. 1996, *J. Fluid Mech.*, **306**, 325)
Kinetic helicity may increase with sufficient differential rotation

Turbulent Magnetic Field Amplification

Post-shock magnetic energy

- B-fields grow exponentially
 - − $B_0=10^{10}$ G: steady growth, $\tau \approx 65$ ms, $B_0=10^{13}$ G: growth tapers off, $E_{mag} \approx 5 \times 10^{47}$ erg
 - Growth rate underestimated by numerical simulations!

time=832 ms

• Magnetic field displays spatial and temporal intermittency

Spectral Evolution of Magnetic Energy

 $\tau \sim \bar{\lambda}_{
m mag}/u_{
m rms} \approx 5 \ {
m ms}$

15

Amplification of Magnetic Fields

Effects of Finite (Numerical) Conductivity

$$\frac{\partial}{\partial t} \left(\frac{\mathbf{B} \cdot \mathbf{B}}{2\mu_0} \right) = -\nabla \cdot \mathbf{P} - \mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) - \frac{1}{\mu_0} \mathbf{B} \cdot \nabla \times (\eta \mathbf{J})$$

- Finite volume scheme mimics effect of finite conductivity to stabilize solution near discontinuities and sharp gradients
- Decrease in flux tube thickness halted by resistive dissipation
- Limits field amplification
- Magnetic energy growth rate severely underestimated

$$\Sigma \approx \Sigma_{\mathbf{J} \times \mathbf{B}} \times \left[1 - R_{\mathrm{m}}^{-1} \left(\frac{\overline{\lambda}_{\mathrm{mag}}}{\lambda_{\mathrm{d}}} \right)^2 \right]$$

Effects of Finite (Numerical) Conductivity

HLL electric field:

$$\langle E_{z} \rangle_{p}^{n} = \frac{\alpha_{x}^{+} \alpha_{y}^{+} \left[E_{z}^{\text{SW}} \right]_{p}^{n} + \alpha_{x}^{+} \alpha_{y}^{-} \left[E_{z}^{\text{NW}} \right]_{p}^{n} + \alpha_{x}^{-} \alpha_{y}^{+} \left[E_{z}^{\text{SE}} \right]_{p}^{n} + \alpha_{x}^{-} \alpha_{y}^{-} \left[E_{z}^{\text{NE}} \right]_{p}^{n} \right]$$

$$+ \frac{\alpha_{x}^{+} \alpha_{x}^{-}}{(\alpha_{x}^{+} + \alpha_{x}^{-})} \left(\left[B_{y}^{\text{E}} \right]_{p}^{n} - \left[B_{y}^{\text{W}} \right]_{p}^{n} \right)$$

$$- \frac{\alpha_{y}^{+} \alpha_{y}^{-}}{(\alpha_{y}^{+} + \alpha_{y}^{-})} \left(\left[B_{x}^{\text{N}} \right]_{p}^{n} - \left[B_{x}^{\text{S}} \right]_{p}^{n} \right),$$

$$= \frac{\alpha_{y}^{+} \alpha_{y}^{-}}{(\alpha_{y}^{+} + \alpha_{y}^{-})} \left(\left[B_{x}^{\text{N}} \right]_{p}^{n} - \left[B_{x}^{\text{S}} \right]_{p}^{n} \right),$$

- Finite volume scheme mimics effect of finite conductivity to stabilize solution near discontinuities and sharp gradients
- Contributes significantly to magnetic energy growth rate

Simulations with Different Resolutions

- Double grid resolution \rightarrow Magnetic energy increases by a factor $\approx 10^2$
 - Growth rate also sensitive to spatial resolution

Impact of B-fields on Post-shock Flows

- Small-scale B-fields impact small-scale flows
- No impact on large scale dynamics detected

Implications for Proto-neutron Star Magnetization

- SASI may result in PNS B-fields exceeding 10¹⁴ G
- Sensitivity to numerical resolution applies
 - models with weak initial fields saturate due to finite grid

Summary

- Nonlinear SASI drives vigorous turbulence below the shock
- Development of turbulence seems to result in SASI saturation
 - Turbulence feeds on power in low-order SASI modes
- Weak magnetic fields amplified exponentially
- Strong magnetic fields emerge and impact flows on small spatial scales
- SASI-induced B-fields not likely to play principal role in the explosion of CCSNe
 - Kinetic energy of explosion $\approx 1 \times 10^{51}$
 - Post-shock kinetic energy $\approx 5 \times 10^{49}$
 - Turbulent kinetic energy $\approx 5 \times 10^{48}$ (only about 10% accessed by B-fields)
- SASI-induced magnetic fields may contribute nontrivially to PNS magnetization
 - Magnetic energy accreted onto the PNS > 10^{48} erg
 - Estimates suggest small scale B-fields in the 10¹⁴-10¹⁵ G range

Are B-Fields Relevant for Non-rotating CCSNe?

- Idealized simulations offer proof of principle for efficient B-field amplification
- Must follow up with multi-physics simulations
 - Explicitly include PNS

Computational cost increases dramatically!

- Neutrino radiation transport
- Does the spiral SASI mode play a central role?
- Other field-amplification mechanisms also at play (α - Ω dynamo, MRI)
- Effects of finite grid resolution represents a challenge for global simulations
 - Magnetic energy growth rates underestimated
 - Flux-rope thickness (i.e., field strength) limited by size of grid cells
 - What happens at larger/realistic R_m (10¹⁶)?
 - Does modest rotation result in helical dynamo and large-scale B-fields?
 - Can we construct useful local simulations with guidance from global simulations?
- Details on evolution and impact of magnetic fields in CCSNe remain uncertain

Post-Shock Kinetic Energy from 2D Multi-Physics Runs

60 ms

Bruenn et al. (2011), in preparation Woosley & Heger (2007), Phys. Rep., 442, 269 180 ms