Neutrino-Driven Nucleosynthesis in Metal-poor Stars

Projjwal Banerjee (UCB) with Wick Haxton,Yong-Zhong Qian & Alexander Heger

R-process in Metal-poor Stars ([Fe/H] <- 2.5)

s-process does not contribute below [Fe/H] <-2.5

Only high mass star (CCSNe) can contribute at early times.

Standard "hot" bubble r-process CCSNe runs into problems with seed overgrowth. Requires high entropies not observed in simulations.

Neutron Star Mergers are attractive sites But not efficient below [Fe/H]<-2.5

Need a r-process site at early times to account for MP Stars if "hot" bubble does not work.

He Shell r-process

Proposed in Epstein, Colgate and Haxton in 1988 Idea: $\nu + {}^{4}\text{He} \rightarrow \text{free neutrons captured by Fe} \rightarrow r\text{-process}$

> Neutrons formed by NC ν reaction ${}^{4}\text{He}(\nu,\nu n){}^{3}\text{He}(n,p){}^{3}\text{H}({}^{3}\text{H},2n){}^{4}\text{He}$ ${}^{4}\text{He}(\nu,\nu p){}^{3}\text{H}({}^{3}\text{H},2n){}^{4}\text{He}$ $r = 10^{9}\text{cm}, \rho = 3 \times 10^{3}\text{g/cm}{}^{3}, T = 2 \times 10^{8} \text{ K}$ Neutron Poison: ${}^{14}\text{N}$ ${}^{12}\text{C}$ not considered, burning by shock

Can Neutrino oscillations help? If yes, then CC reactions will make the difference

MSW Effect

Only IH can work!

He Shell r-process

Revised Scenario (2011)

Requirements:

- •Low abundance of poison
- •low shock temperature
- •high n/s ratio
- •Beyond MSW resonance

11-15 M_{\odot} , $Z = 10^{-4} Z_{\odot}$ (Woosley, Heger, and Weaver 2002) $r = 10^{10} \text{ cm}$, $\rho = 50 \text{g/cm}^3$, $T = 9 \times 10^7 \text{ K}$ $T_{\text{sh}}^{\text{peak}} = 2 - 4 \times 10^8 \text{ K}$ (no burning) Neutrons from CC ν reactions NC is inefficient as ${}^{3}\text{H}({}^{3}\text{H},2n){}^{4}\text{He}$ does not work $\tau_{\text{coll}} \gg \tau_{\text{sh}} \rightarrow \text{Pre-shock}$ is hydrostatic $T_{\nu_x} = 8 \text{ MeV}$, $T_{\bar{\nu}_e} = 5.33 \text{ MeV}$, $T_{\nu_e} = 4 \text{ MeV}$

$$L_{\nu_x} = L_{\bar{\nu}_e} = L_{\nu_e} = \frac{E_B}{6\tau} e^{-t/\tau}, \tau = 3 \text{ s}$$

KEPLER code is used to calculate the nucleosynthesis

Pre-shock Hydrostatic Result

Model ull: zone 597

PB, W. Haxton & Y. -Z. Qian, PRL 106, 201104 (2011)

Effect of Shock

⁷Li and ⁸Li are the main poisons

Some neutrons are recovered by ${}^{8}\mathrm{Li}(\alpha,n){}^{11}\mathrm{B}$ due to shock heating

Allows r-process to reach the third peak. 9 Be is produced via neutron capture on 7 LiBe is desto produce 9 Li followed by β -decay. β -decay of 9 Be survives shock for low explosion energies

Be is destroyed via ${}^{9}\text{Be}(p, {}^{4}\text{He}){}^{6}\text{Li}$ β -decay of ${}^{8}\text{Li}$ hinders ${}^{9}\text{Be}$ production

Hydrodynamic Evolution (KEPLER)

this is due to ${}^{8}\text{Li}(n,\gamma){}^{9}\text{Li}$ reaction not included before

3rd r-process peak is still reached but takes ~60 s. Hard spectra needed.

Effect of Explosion Energy

Abundance pattern not very sensitive to Explosion energy

Fallback for low explosion energy

He and H shell is ejected for low energy

Effect of Initial Composition

New u11 model with $E = 1 \times 10^{50}$ ergs. New Poisons: ²⁸Si, ³²S

Elemental Abundance

Cannot account for the robust r-process pattern at low metallicities for Z>56

Might still play an important role in MP star abundance (eg. "r+s" stars)

Origin of Light Elements Li-Be-B

- Not made efficiently in stars as they are fragile.
- Li- BBN, Galactic Cosmic Rays (GCR), AGB stars/ Novae
- Be- Only from GCR
- B- GCR, nu-process in SNe

Light Elements from GCR

Standard GCR Scenario:

$$\phi^{GCR}(t) \propto Y^{GCR}(t) \frac{dN_{SN}}{dt}$$
$$Y^{GCR}_{p,\alpha} \sim Y^{BBN}_{p,\alpha} \sim \text{const}$$
$$Y^{GCR}_{CNO} \sim Y^{ISM}_{CNO} \propto N_{SN}(t)$$

Standard scenario can only produce secondary Be, B

Evolution of Be and B

Evolution with Standard GCR Scenario

Need a primary source for Be (and B)

Primary Be and B

-10 log(Be/H) Solution for Primary Be and B by GCR: $Y_{CNO}^{GCR}(t) \sim \text{const}$ -12 -14 Problem: What kind of source can give $Y_{CNO}^{GCR} \sim \text{const}$? P -16 log(B/H Such a GCR source is a still a matter of debate -10 -12 nu-process can account for primary B production Ρ -14 ¹¹B produced via ν (¹²C, νp)¹¹B and ν (¹²C, νn)¹¹C -2 -30 -1 [Fe/H]

Prantzos, 2007

Neutrino-induced Be in the Early Galaxy

We consider two different scenarios: $8.1M_{\odot}, Z = 10^{-4}Z_{\odot}$ (Heger, 2011) 11-15 $M_{\odot}, Z = 10^{-4}Z_{\odot}$ (Already Discussed)

We use a FD neutrino spectra with a soft $(T_{\nu_e}, T_{\bar{\nu}_e}, T_{nu_x} = 3, 4, 6 \text{ MeV})$ and a hard $(T_{\nu_e}, T_{\bar{\nu}_e}, T_{nu_x} = 4, 5.33, 8 \text{ MeV})$ spectra

Oscillation scenarios: Complete $\bar{\nu}_e \rightleftharpoons \bar{\nu}_x$, and no oscillations.

Low Mass CCSN

Inner ejected zone: Initial Composition: $X(^{16}O) \approx 0.41$, $X(^{20}Ne) \approx 0.48$, $X(^{24}Mg) \approx 0.1$ $T \approx 1.8 \times 10^9$ K, $\rho \approx 8 \times 10^5$ g/cc, $r \approx 1.7 \times 10^8$ cm $T_{sh}^{peak} \approx 1.1 \times 10^{10}$ K, $\rho_{sh}^{peak} \approx 6 \times 10^7$ g/cc

Outer ejected zone: Initial Composition: $X(^{4}He) \approx 0.95$, $X(^{12}C) \approx 0.04$ $T \approx 2.2 \times 10^{8}$ K, $\rho \approx 2.8 \times 10^{2}$ g/cc, $r \approx 1.6 \times 10^{9}$ cm $T_{sh}^{peak} \approx 8 \times 10^{8}$ K, $\rho_{sh}^{peak} \approx 1 \times 10^{3}$ g/cc

Be Production in CCSN

Reassembles into He and Fe group elements.

Neutrino interaction on He gives Be.

Only contributes to about 1% of total Be production.

⁹Be produced via ${}^{4}\text{He}({}^{3}\text{H},\gamma){}^{7}\text{Li}({}^{3}\text{H},n){}^{9}\text{Be}$

Bulk material such as He remains unchanged as the shock temperature is low.

Other light elements are dissociated and re-assembled.

Neutrino interaction on He gives Be.

Accounts for 99% of the total Be production

Fast expansion is the key

⁹Be produced when $T \lesssim 2 \times 10^8$ K

Results: Be Yields

model	$M_{ m Be}~(M_{\odot})$	[Be/Fe]
$u8.1\overline{H}.1$	2.0×10^{-10}	-0.01
$u8.1\overline{H}.3$	2.6×10^{-10}	0.18
u8.1H.1	1.2×10^{-10}	-0.24
$u8.1\overline{S}.1$	5.0×10^{-11}	-0.61
u8.1S.1	2.55×10^{-11}	-0.90
$u11\overline{H}.1$	1.4×10^{-9}	-0.79
$u11^*\overline{H}.1$	9.1×10^{-9}	0.01
$u11^*\overline{H}.3$	9.8×10^{-10}	-1.0
$u15\overline{H}.1$	5.2×10^{-10}	-0.99
$u15^*\overline{H}.1$	2.9×10^{-9}	-0.24
$u15^*\overline{H}.3$	7.2×10^{-10}	-0.87

Boesgaard 2011, Smiljanic 2009, Tan 2009

Other Non-GCR Sources of Be?

Summary

- Neutrino-induced r-process can occur in the He zones in metal-poor stars with [Fe/H] <~ -3.
- Neutrino oscillations, mass hierarchy, and the CC reaction on He play a critical role.
- Sensitive to neutrino parameters and initial metallicity but insensitive to explosion energy.
- The effect of shock is beneficial as it increases free neutron density.
- The r-process is long (about 60 s) and cold (about 10⁸ K).
- Elemental abundance pattern is in between solar r and s pattern. Could possibly help in explaining abundance pattern of so called "r+s" stars?
- This mechanism can be part of multiple r-process explanation of Galactic chemistry.

Summary

- Two new mechanisms to produce Be was discussed.
- First mechanism works in low mass SN and is independent of metallicity. Less sensitive to neutrino parameters and explosion energy.
- The second mechanism is tied to the He shell r-process and works only at [Fe/H] <~ -3 with a hard spectra and low explosion energy.
- Other mechanisms such as NSM can contribute to primary Be production.