Neutrino-Driven Nucleosynthesis in Metal-poor Stars

Projjwal Banerjee (UCB) with Wick Haxton, Yong-Zhong Qian & Alexander Heger

R-process in Metal-poor Stars ([Fe/H] <- 2.5)

s-process does not contribute below $[Fe/H] < -2.5$

Only high mass star (CCSNe) can contribute at early times.

Standard "hot" bubble r-process CCSNe runs into problems with seed overgrowth. Requires high entropies not observed in simulations.

Neutron Star Mergers are attractive sites But not efficient below [Fe/H]<-2.5

Need a r-process site at early times to account for MP Stars if "hot" bubble does not work.

He Shell r-process

Proposed in Epstein, Colgate and Haxton in 1988 **Idea:** $\nu + {}^4\text{He} \rightarrow \text{free neutrons captured by Fe} \rightarrow \text{r-process}$

> Neutrons formed by NC ν reaction ⁴He($\nu, \nu n$)³He(n, p)³H(³H, 2n)⁴He 4 He($\nu, \nu p$)³H(³H, 2n)⁴He $r = 10^9$ cm, $\rho = 3 \times 10^3$ g/cm³, $T = 2 \times 10^8$ K Neutron Poison: ¹⁴N 12^C not considered, burning by shock

Can Neutrino oscillations help? If yes, then CC reactions will make the difference

MSW Effect

Only IH can work!

He Shell r-process

Revised Scenario (2011)

Requirements:

- •Low abundance of poison
- •low shock temperature
- •high n/s ratio
- •Beyond MSW resonance

 $T_{\nu_x} = 8 \,\, \mathrm{MeV}, \, T_{\bar{\nu}_e} = 5.33 \,\, \mathrm{MeV}, \, T_{\nu_e} = 4 \,\, \mathrm{MeV}$ 11-15 M_{\odot} , $Z = 10^{-4} Z_{\odot}$ **(Woosley, Heger, and Weaver 2002)** $r = 10^{10}$ cm, $\rho = 50$ g/cm³, $T = 9 \times 10^7$ K $T_{\text{sh}}^{\text{peak}} = 2 - 4 \times 10^8 \text{ K (no burning)}$ Neutrons from CC ν reactions NC is inefficient as ${}^{3}H({}^{3}H,2n){}^{4}He$ does not work $\tau_{\text{coll}} \gg \tau_{\text{sh}} \to \text{Pre-shock}$ is hydrostatic

$$
L_{\nu_x} = L_{\bar{\nu}_e} = L_{\nu_e} = \frac{E_B}{6\tau} e^{-t/\tau}, \tau = 3 \text{ s}
$$

KEPLER code is used to calculate the nucleosynthesis

Pre-shock Hydrostatic Result

Model ull: zone 597

PB, W. Haxton & Y. -Z. Qian, PRL 106, 201104 (2011)

Effect of Shock

⁷Li and ⁸Li are the main poisons

Some neutrons are recovered by 8 Li (α, n) ¹¹B due to shock heating

Allows r-process to reach the third peak. $^9\mathrm{Be}$ is produced via neutron capture on $^7\mathrm{Li}$ to produce ⁹Li followed by β -decay. ⁹Be survives shock for low explosion energies Be is destroyed via ${}^{9}Be(p, {}^{4}He){}^{6}Li$ β -decay of ⁸Li hinders ⁹Be production

Friday, July 6, 12

Hydrodynamic Evolution (KEPLER)

this is due to ${}^{8}\text{Li}(n, \gamma){}^{9}\text{Li}$ reaction not included before

3rd r-process peak is still reached but takes ~60 s. Hard spectra needed.

Effect of Explosion Energy

Abundance pattern not very sensitive to Fallback for low explosion energy Explosion energy

He and H shell is ejected for low energy

Effect of Initial Composition

New u11 model with $E = 1 \times 10^{50}$ ergs. New Poisons: ²⁸Si, ³²S

Elemental Abundance

Cannot account for the robust r-process pattern at low metallicities for Z>56

Might still play an important role in MP star abundance (eg. "r+s" stars)

Origin of Light Elements Li-Be-B

- Not made efficiently in stars as they are fragile.
- Li- BBN, Galactic Cosmic Rays (GCR), AGB stars/ Novae
- Be- Only from GCR
- B- GCR, nu-process in SNe

Light Elements from GCR

Standard GCR Scenario:

$$
\phi^{GCR}(t) \propto Y^{GCR}(t) \frac{dN_{SN}}{dt}
$$

$$
Y_{p,\alpha}^{GCR} \sim Y_{p,\alpha}^{BBN} \sim \text{const}
$$

$$
Y_{CNO}^{GCR} \sim Y_{CNO}^{ISM} \propto N_{SN}(t)
$$

Standard scenario can only produce secondary Be, B

Evolution of Be and B

Evolution with Standard GCR Scenario

Need a primary source for Be (and B)

Primary Be and B

 -10 $log(Be/H)$ Solution for Primary Be and B by GCR: $Y_{CNO}^{GCR}(t) \sim \text{const}$ -12 -14 Problem: What kind of source can give $Y_{CNO}^{GCR} \sim \text{const?}$.
P -16 $log(B/H)$ Such a GCR source is a still a matter of debate -10 -12 nu-process can account for primary B production $\mathbf P$ -14 ¹¹B produced via $\nu(^{12}C, \nu p)^{11}B$ and $\nu(^{12}C, \nu n)^{11}C$ -2 -3 -1 Ω $[Fe/H]$

Figure 6. Left: Evolution of Bea/H and B/H and B/H α and B/H α composition of α Prantzos, 2007

is independent of time (or ISM metallicity); Be and B are then produced as primaries, in agreement as μ

with observations. *Dotted curves* indicate primary (P) and secondary (S) behaviour with respect to Fe

(while Be and B are produced from CNO, behaving not exactly as Fe). Note that ∼40% of solar 11B

has to be produced by a source other than standard GCR, like e.g. ν-nucleosynthesis in supernovae,

which is a primary process (this is not included in the figure). *Right:* Production rates of Be and B as

a function of metallicity, for GCR components \mathcal{A} (fast protons and alphas impinging on ISM CNO)

and B (fast C) and B (producing secondary B). Component A (production \mathbb{R} (producing secondary BeB) slightly be

Neutrino-induced Be in the Early Galaxy

We consider two different scenarios: $8.1M_{\odot}$, $Z = 10^{-4}Z_{\odot}$ (Heger, 2011) 11-15 M_{\odot} , $Z = 10^{-4} Z_{\odot}$ (Already Discussed)

We use a FD neutrino spectra with a soft $(T_{\nu_e}, T_{\bar{\nu}_e}, T_{nu_x} = 3, 4, 6 \text{ MeV})$ and a hard $(T_{\nu_e}, T_{\bar{\nu}_e}, T_{nu_x} = 4, 5.33, 8 \text{ MeV})$ spectra

Oscillation scenarios: Complete $\bar{\nu}_e \rightleftharpoons \bar{\nu}_x$, and no oscillations.

Low Mass CCSN

Inner ejected zone: Initial Composition: $X(^{16}O) \approx 0.41$, $X(^{20}Ne) \approx 0.48$, $X(^{24}Mg) \approx 0.1$ $T \approx 1.8 \times 10^9$ K, $\rho \approx 8 \times 10^5$ g/cc, $r \approx 1.7 \times 10^8$ cm $T_{sh}^{peak} \approx 1.1 \times 10^{10} \; \text{K}, \, \rho_{sh}^{peak} \approx 6 \times 10^{7} \; \text{g/cc}$

Outer ejected zone: Initial Composition: $X(^{4}He) \approx 0.95, X(^{12}C) \approx 0.04$ $T \approx 2.2 \times 10^8$ K, $\rho \approx 2.8 \times 10^2$ g/cc, $r \approx 1.6 \times 10^9$ cm $T_{sh}^{peak} \approx 8 \times 10^8 \text{ K}, \ \rho_{sh}^{peak} \approx 1 \times 10^3 \text{ g/cc}$

Be Production in CCSN

Reassembles into He and Fe group elements.

Neutrino interaction on He gives Be.

Only contributes to about 1% of total Be production.

⁹Be produced via ⁴He(³H, γ)⁷Li(³H, *n*)⁹Be

Bulk material such as He remains unchanged as the shock temperature is low.

Other light elements are dissociated and re-assembled.

Neutrino interaction on He gives Be.

Accounts for 99% of the total Be production

Fast expansion is the key

⁹Be produced when $T \lesssim 2 \times 10^8$ K

Results: Be Yields

man, and B. S. Meyer, Astrophys. J. Astrophys. J. 433, 229 (1994). J. 433, 229 (19

TABLE I: Sample results for neutrino-induced Be production-induced Be production-induced Be production-induced B

TABLE I: Sample results for neutrino-induced Be production

Boesgaard 2011, Smiljanic 2009, Tan 2009

Other Non-GCR Sources of Be?

 201), but at lower densities, the high temperatures lead to the high temperature lead to the high temperature lead to

Figure 3. Time evolution of the total radioactive heating rate per unit mass, !Q", mass number !A", and temperature !T " (all mass-averaged over the ejecta) for the

Figure 4. The A = 195 abundance peak related to the N = 126 shell closure is produced in solar distribution and found to be almost insensitive to all input parameters such as the initial abundances, the expansion timescales, and the adopted nuclear

Summary

- Neutrino-induced r-process can occur in the He zones in metal-poor stars with $[Fe/H]$ <~ -3.
- Neutrino oscillations, mass hierarchy, and the CC reaction on He play a critical role.
- Sensitive to neutrino parameters and initial metallicity but insensitive to explosion energy.
- The effect of shock is beneficial as it increases free neutron density.
- The r-process is long (about 60 s) and cold (about 10^8 K).
- Elemental abundance pattern is in between solar r and s pattern. Could possibly help in explaining abundance pattern of so called "r+s" stars?
- This mechanism can be part of multiple r-process explanation of Galactic chemistry.

Summary

- Two new mechanisms to produce Be was discussed.
- First mechanism works in low mass SN and is independent of metallicity. Less sensitive to neutrino parameters and explosion energy.
- The second mechanism is tied to the He shell r-process and works only at [Fe/H] <~ -3 with a hard spectra and low explosion energy.
- Other mechanisms such as NSM can contribute to primary Be production.