Nucleosynthesis in core-collapse supernovae

Almudena Arcones

Solar system abundances

Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed.

Contribution of all nucleosynthesis processes.

s-process: slow neutron capture in stellar envelopes.

r-process: rapid neutron capture in core-collapse supernovae and neutron star mergers.

Nucleosynthesis in ccsn

 \Box \Box

Nucleosynthesis in ccsn

 \Box \Box

Ultra metal-poor stars

Abundances of r-process elements in:

- ultra metal-poor stars and

- solar system

Robust r-process for 56<Z<83

Scatter for lighter heavy elements, $Z \sim 40$

Sneden, Cowan, Gallino 2008

r-process in core-collapse supernovae? (B2FH 1957)

- prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)
- neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- shocked surface layers (Ning, Qian, Meyer 2007)
- neutrino-induced in He shells (Banerjee, Haxton, Qian 2011)
- jets (e.g., Winteler et al. 2012)

One model for low mass progenitors: 8.8M_{sun} (Nomoto 1984, 1987) Promising scenario for the r-process, requires further investigation

r-process in shocked surface layers

parametric study: shock velocity

expansion ($\rho \sim t^{-n}$)

Preliminary results by M. Eichler

r-process in core-collapse supernovae? (B2FH 1957)

- prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)
- neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- shocked surface layers (Ning, Qian, Meyer 2007)
- neutrino-induced in He shells (Banerjee, Haxton, Qian 2011)
- jets (e.g., Winteler et al. 2012)

Nucleosynthesis in neutrino-driven winds lucleosynthe

Production of heavy elements (A>130) requires high neutron-to-seed ratio $(Y_n/Y_{seed}-100)$.

Necessary conditions for the r-process:

- fast expansion: inhibits the alphaprocess and thus the formation of seed nuclei
- neutron rich ejecta: $Y_e < 0.5$
- high entropy is equivalent to high photon-to-baryon ratio. Photons dissociate seed nuclei into nucleons.

(Meyer et al. 1992, Hoffman et al. 1997, Otsuki et al. 2000, Thompson et al. 2001...)

Nucleosynthesis in neutrino-driven winds lucleosynthe

Production of heavy elements (A>130) requires high neutron-to-seed ratio $(Y_n|Y_{seed}-100)$.

Necessary conditions for the r-process:

- fast expansion: inhibits the alphaprocess and thus the formation of seed nuclei
- neutron rich ejecta: Y_e<0.5
- **high entropy is equivalent to high** photon-to-baryon ratio. Photons dissociate seed nuclei into nucleons.

ns identifi et al. 2010, Hüdepohl et al. 2010, Roberts et al. 2010) Necessary conditions identified by steady-state models (e.g. Otsuki et al. 2000, Thompson et al. 2001) are not realized in recent simulations (Arcones et al. 2007, Fischer

9

(Meyer et al. 1992, Hoffman et al. 1997, Otsuki et al. 2000, Thompson et al. 2001...)

Core-collapse supernova simulations

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and \sim 10s in 1D (Arcones et al. 2007)
- explosion triggered by neutrinos
- detailed study of nucleosynthesis-relevant conditions

Neutrino-driven wind in 2D

Supersonic neutrino-driven wind collides with slow supernova ejecta:

1D simulations for nucleosynthesis studies

Arcones et al 2007

1D simulations for nucleosynthesis studies

Sneden, Cowan, Gallino 2008

LEPP: Lighter Element Primary Process

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: two components or sites (Qian & Wasserburg):

Can the LEPP pattern be produced in neutrino-driven wind simulations?

Lighter heavy elements in neutrino-driven winds (Arcones & Montes, 2011)

Y_e depends on details of neutrino interactions and transport

Impact of the electron fraction: $Y_e = n_p/(n_p+n_n)$

Observation pattern can be reproduced!

Production of p-nuclei (neutron-deficient nuclei)

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta

Isotopic abundances from old stars will give rise to new insights!

Lighter heavy elements in neutrino-driven winds (Arcones & Montes, 2011)

Y_e depends on details of neutrino interactions and transport

Impact of the electron fraction: $Y_e = n_p/(n_p+n_n)$

Observation pattern can be reproduced!

 10^2 production factor Αa 10^1 10^0 10^{-1} 10^{-2} 70 80 100 60 90 110 120 \overline{A}

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta

Production of p-nuclei (neutron-deficient nuclei)

Isotopic abundances from old stars will give rise to new insights!

Is the neutrino-driven wind proton rich?

Electron fraction and uncertainties

Electron fraction depends on accuracy of supernova neutrino transport and on details of neutrino interactions in outer layers of neutron star.

$$
Y_e = \frac{\lambda_{\nu_e,n}}{\lambda_{\nu_e,n} + \lambda_{\bar{\nu}_e,p}} = \left[1 + \frac{L_{\bar{\nu}_e}}{L_{\nu_e}} \frac{\varepsilon_{\bar{\nu}_e} - 2\Delta + 1.2\Delta^2/\varepsilon_{\bar{\nu}_e}}{ \varepsilon_{\nu_e} + 2\Delta + 1.2\Delta^2/\varepsilon_{\nu_e}}\right]^{-1} \tag{ \Delta = m_n - m_p}
$$

The neutrino energies are determined by the position (temperature) where neutrinos decouple from matter: neutrinosphere

Light clusters

Light nuclei (A≤4) present at $\rho \approx 10^{12}$ g/cm³ (O'Connor et al. 2007, Sumiyoshi & Ropke 2008).

Wind models and electron fraction

Neutrino energies change with more realistic neutrino physics input More recent simulations obtain lower antineutrino energies and therefore proton-rich conditions

Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from proto-neutron star cooling

G. Martínez-Pinedo, ^{1, 2} T. Fischer, ^{2, 1} A. Lohs,¹ and L. Huther¹

A NEW CODE FOR PROTO-NEUTRON STAR EVOLUTION

L. F. ROBERTS[†]

Medium modification of the charged current neutrino opacity and its implications

L. F. Roberts¹ and Sanjay Reddy²

Where is the r-process?

Neutrino-induced r-process in He shell

at low metallicity $Z < 10^{-3} Z_{sun}$ \rightarrow low seed abundance neutral- and charged-current neutrino reactions on $He \rightarrow few$ neutrons

cold r-process relative low neutron density lasts ~20s peaks shift to high A (between r- and s-process)

Banerjee, Haxton, Qian 2011 Epstein, Colgate, Haxton 1988, Woosley, Hartmann, Hoffman, Haxton 1990 Nadyozhin, Panov, Blinnikov 1998

3D magneto-hydrodynamical simulations: rapid rotation and strong magnetic fields

matter collimates: neutron-rich jets

right r-process conditions

z [km]

Winteler, Käppeli, Perego, et al. 2012

Neutron star mergers

(submitted MNRAS)

Right conditions for a successful r-process

(Lattimer & Schramm 1974, Freiburghaus et al. 1999,, Goriely et al. 2011)

Do they occur early enough to explain UMP star abundances (Argast et al. 2004)?

r-process heating affects merger dynamics: late X-ray emission in short GRBs (Metzger, Arcones, Quataert, Martinez-Pinedo 2010)

Transient with kilo-nova luminosity (Metzger et al. 2010): direct observation of r-process, EM counter part to WG

Neutron star mergers

simulations: 21 mergers of 2 neutron stars 2 of neutron star black hole

nucleosynthesis of ejecta robust r-process:

- extreme neutron-rich conditions $(Y_e = 0.04)$
- several fission cycles

Conclusions

Lighter heavy elements (Sr, Y, Zr) produced in neutrino-driven wind \rightarrow Y_e

jet-like supernovae

uncertainties on nuclear physics input: nuclear masses, beta decays, neutron captures, fission

Conclusions

Lighter heavy elements (Sr, Y, Zr) produced in neutrino-driven wind \rightarrow Y_e

uncertainties on nuclear physics input: nuclear masses, beta decays, neutron captures, fission