

New approaches to multidimensional radiation transport

Ernazar Abdikamalov

Caltech

INT, July 25, 2012

Monte Carlo

E. Abdikamalov, A. Burrows, C. D. Ott, F. Löffler, E. O'Connor, J. Dolence, E. Schnetter, 2012, ApJ

Filtered Spherical Harmonics (*FP N*)

D. Radice, E. Abdikamalov, L. Rezzolla, and C. D. Ott, *in prep*

Monte Carlo

E. Abdikamalov, A. Burrows, C. D. Ott, F. Löffler, E. O'Connor, J. Dolence, E. Schnetter, 2012, ApJ

Filtered Spherical Harmonics (*FP N*)

D. Radice, E. Abdikamalov, L. Rezzolla, and C. D. Ott, *in prep*

Transport equation

$\frac{1}{c}\frac{\partial I}{\partial t} + \nabla I = \eta - \kappa I$

Transport equation

Deterministic and Monte Carlo radiation transport

- Easy extension to multi-D
- •Parallelization
- ●Random noise
- ●Expensive

Monte Carlo transport scheme goal:

• Time-dependence

(coupling to matter energy and lepton number)

• Efficient treatment of high optical depth.

• Energy dependence

• Velocity dependence

A simple explicit discretization does not work!

A popular solution: Implicit Monte Carlo method (Fleck & Cummings 1971)

Implicit Monte Carlo scheme:

Implicit Monte Carlo for Neutrinos

•Energy and lepton number coupling

•The same benefits as for photons (large timestep, unconditional stability, accuracy)

• Both energy and lepton number conservation

Implicit Monte Carlo

at high optical depth

Implicit Monte Carlo

at high optical depth

Discrete-Diffusion Monte Carlo by Densmore+ '07 for gray transport for non-moving matter

Discrete-diffusion speed-up for proto-neutron star cooling

Velocity dependence

Velocity-dependent Monte Carlo Mixed frame formalism

Eulerian frame: Transport

Comoving frame: emission, absorption, scattering

Velocity-dependent discretediffusion

Transport is performed in comoving frame with O(λ*v*/*Lc*) accuracy:

$$
\frac{1}{c}\frac{dJ_0}{dt} + \frac{v}{c}\frac{\partial J_0}{\partial r} + \frac{J_0}{c}\frac{\partial v}{\partial r} + \frac{\varepsilon_0}{3c}\frac{\partial J_0}{\partial \varepsilon_0}\frac{D\ln\rho}{Dt} + \frac{\partial H_0}{\partial x} = \kappa_0(B - J_0)
$$

Three effects: advection, compression/expansion, and Doppler shift.

Solution method: Operator-splitting

Tests

Homogeneous sphere

Homologously expanding shell

Proto-neutron star cooling using Ott et al. (2008) PNS model

Parallel scaling mesh replication method

Monte Carlo Summary

- •Implicit MC for neutrino transport
- Multi-group discrete-diffusion
- •Velocity-dependence
- Applicable to both neutrinos and photons
- Parallel scaling (in 1D)

Monte Carlo

E. Abdikamalov, A. Burrows, C. D. Ott, F. Löffler, E. O'Connor, J. Dolence, E. Schnetter, 2012, ApJ

Filtered Spherical Harmonics (*FP N*)

D. Radice, E. Abdikamalov, L. Rezzolla, and C. D. Ott, *in prep*

P N scheme

$$
I(x, \nu, \Omega, t) \simeq \sum_{l=0}^{N} \sum_{m=-l}^{l} E^{ml}(x, \nu, t) Y_{ml}(\Omega)
$$

$$
E^{lm}(x,\nu,t) = \int_{4\pi} I(x,\nu,\Omega,t) Y^{lm}(\Omega) d\Omega
$$

●Hyperbolic system (*v*≤*c*)

●Rotationally invariant (no ray-effects as in *S N*)

•Less memory
$$
(P_{N-1} - S_N)
$$

Oscillations in *P N*

Filtered *P N* McClarren & Hauck 2010

• Use filters to remove oscillations

- •Preserves rotational invariance
- Converges to the transport solution
- Efficient and accurate

Filtered *P N* : 2D line problem McClarren & Hauck 2010

- •Other filters?
- •What about 3D?
- Filtering as a continuum operation

Charon code

•3D (using Cactus and Carpet)

- Space discretization: AP DG scheme (Mcclarren & Lowrie '08)
- Semi-implicit time integration (McClarren+ '06)
- •2nd- and 4th-order filters (continuum limit)
- •Special relativity
- •No velocity dependence

Line problem

Line problem

Line problem

Homogeneous sphere test

Conclusion

- 3D filtered spherical harmonics
- Continuum filter formulation
- 2nd-order filters are better
- Overall, *FP N* is a promising approach to 3D radiation transport

Supplemental Material

Velocity-dependent discretediffusion: operator splitting

$$
\frac{1}{c}\frac{dJ_0}{dt} + \frac{\partial H_0}{\partial x} = \kappa_0 (B - J_0)
$$

$$
\frac{1}{c}\frac{dJ_0}{dt} + \frac{\varepsilon_0}{3c}\frac{\partial J_0}{\partial \varepsilon_0}\frac{D\ln\rho}{Dt} = 0
$$

$$
\frac{1}{c}\frac{dJ_0}{dt} + \frac{v}{c}\frac{\partial J_0}{\partial r} + \frac{J_0}{c}\frac{\partial v}{\partial r} = 0
$$

Implicit Monte Carlo for Photons [Fleck & Cummings '71]

$$
\frac{1}{c} \frac{\partial I}{\partial t} + \mathbf{n} \cdot \nabla I = \kappa (B - I)
$$

$$
\frac{1}{c} \frac{\partial I}{\partial t} + \mathbf{n} \cdot \nabla I = \kappa_{ea,n} (B_n - I)
$$

$$
+ \chi_n \int \int \kappa_{es,n} I d\Omega d\varepsilon - \kappa_{es,n} I
$$

Much larger timesteps!