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I. Motivation

Questions

QCD and |QCD|

QCD Phase Diagram
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Issues and Questions

√

QCD at nonzero chemical potential has a sign problem and an overlap problem.
√

Can we quantify the sign problem and overlap problem, and determine its
dependence on the parameters of the phase diagram?

√

Are there regions of phase space or observables for which these problems become
manageable?

√

Will it ever be possible to access interesting physics related to the existence of a
Fermi surface by lattice QCD methods?

√

Is the sign problem a fundamental problem rather than a technical problem that can
be evaded?
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QCD Partition Function

The QCD partition at temperature 1/β and quark chemical potential µ is given by

ZQCD(µ, β) =
X

k

e−β(Ek−µNk),

where the sum is over all states with energy Ek and quark number Nk .
√

Because of charge conjugation symmetry, ZQCD(µ, β) is an even function of µ .
√

ZQCD(µ, β) is expected to have a well-defined high-temperature expansion in
powers of µ2/T 2 .

√

Interesting effects related to the formation of a Fermi-sphere cannot be obtained
from this expansion.

√

This partition function can be rewritten as a Euclidean quantum field theory

ZQCD = 〈
NfY

k

det(D + mk + µkγ0)〉YM.

Dirac

operator

quark mass

matrix

imaginary

vector potential
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|QCD|

We will compare the QCD partition function and the QCD partition function where the
fermion determinant has been replaced by its absolute value (the phase quenched QCD
partition function)

Z|QCD| = 〈| det(D + m + µγ0)|2〉 = 〈det(D + m + µγ0) det(D + m − µγ0)〉.

Therefore, µ can be interpreted as an isospin chemical potential. Goldstone bosons
made out of quarks and conjugate anti-quarks are charged with respect to the chemical
potential. Alford-Kapustin-Wilczek-1999

The mass of the Goldstone bosons is given by Mk − 2µqk with qk the charge of the
Goldstone bosons.

A phase transition to a Bose condensed phase takes place at µ = mπ/2 .

KSTVZ-2000, Toublan-JV-2000, Son-Stephanov-2000
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Phase Diagram QCD and |QCD|

Τ

critical endpoint

〈q̄q〉 6= 0〈q̄q〉 6= 0

〈qq〉 6= 0

µ

〈q̄q〉 = 0

µ = mN/3

Schematic QCD phase diagram.
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mπ/T

Phase diagram of phase quenched
QCD (de Forcrand-Stephanov-Wenger-

2007). Agrees with earlier work by Kogut

and Sinclair.

The high temperature expansion of the free energy can be obtained by a Taylor
expansion (Allton-et-al-2003, Gavai-Gupta-2003), reweighting (Fodor-Katz-2002) or from an
extrapolation from imaginary µ (Lombardo-2000, de Forcrand-Philipsen-2002,

D’Elia-Lombardo-2002).
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II. Sign Problem

Average Phase Factor

Phase Factor and Dirac Spectra

Distribution of the Phase

Can we Evade the Sign Problem
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Sign Problem for µ 6= 0

Because the Dirac operator at nonzero µ is nonhermitean, the fermion determinant is
complex

det(D + µγ0 + m) = eiθ|det(D + µγ0 + m)|.

The fundamental problem is that the average phase factor may vanish in the
thermodynamic limit, so that Monte-Carlo simulations are not possible (sign problem).

The severity of the sign problem can be measured by the ratio

〈e2iθ〉1+1∗ ≡ 〈det2(D + m + µγ0)〉
〈| det(D + m + µγ0)|2〉 ∼ e

−V (FNf =2−Fpq)
.

full QCD
partition function

phase quenched
partition function

The phase of the quark determinant wipes out the pion condensation phase.

The difference in free energy between the phase quenched theory and the full theory (at
low temperatures) is determined by pion physics.

Splittorff-JV-2006
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Phase Factor and Dirac Eigenvalues

det(D + m + µγ0) = eiθ| det(D + m + µγ0)|

∏
k(λk + m) phase factor

Toussaint-1990

Scatter plot of Dirac eigenvalues
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quark mass m

cm

Barbour et al. 1986

m < mc then 〈eiθ〉 ∼ 0
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The Distribution of Phase

The distribution of the phase is given by

〈δ(θ − θ′)〉1+1 ≡ 〈δ(θ − θ′)det2(D + m + µγ0)〉 = e2iθ〈δ(θ − θ′)|det(D + m + µγ0)|2〉

The distribution of the phase angle for the phase quenched theory is a Gaussian. We
thus find

〈δ(θ − θ′)〉1+1 = e2iθ−θ2/∆G ∼ e−(θ−i∆G)2/∆G.

The distribution is peaked in the complex plane.

If we could use θ as integration variable this would be fine, but there are correlations
between the phase and observables.

Using the Gaussian distribution we obtain

〈e2iθ〉1+1∗ =

Z

dθe−θ2/∆Ge2iθ ∼ e−∆G, but also, 〈e2iθ〉1+1∗ ∼ e
−V (FNf =2−Fpq)

So ∆G is the difference of free energy of the phase quenched theory and the two flavor
theory. It can be approximated by one-loop chiral perturbation theory in the appropriate
domain. Lombardo-Splittorff-JV-2009
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The Distribution of Phase

Both within one-loop chiral perturbation theory and in one-dimensional QCD we find for
the distribution of the phase:

√

µ < mπ/2 : ρ(θ) is a periodicized Gaussian

〈ρ(θ)〉1+1 =
1√

2π∆G0
e
−

(θ−i∆G)2

∆G .

one-loop chPT integral

√

µ > mπ/2 : ρ(θ) is a periodicized Lorentzian
Lombardo-Splittorff-JV-2009

-20 -10 0 10 20
θ=(N

f
/4)Im[ln(det M)]

0
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400

µ
q
/T=1.0

µ
q
/T=2.0

Quenched distribution, Ejiri-2009.

See also Nakagawa-etal-

2012.
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Can we Evade the Sign Problem?

Let is consider an observable O . At nonzero chemical potential this operator is not
necessarily Hermitian. For example O could be the baryon number

O = Tr
γ0

D + m + µγ0
.

We can decompose O as

O = Re[O] + iIm[O]

Since O is a physical observable, its expectation value should be real. However, at
nonzero chemical potential, the expectation value of the real and imaginary parts of the
chemical potential is generally not real,

〈Re[O] det(D + m + µγ0)〉 ∈ C,

〈Im[O] det(D + m + µγ0)〉 ∈ C.
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Complex Gauge Fields

Can the complex weight be absorbed into trajectories of complex fields?

This makes sense if the integrand is peaks somewhere in the plane of complex gauge
field.

A simple example is the Gaussian integral
Z

dxe−(x−ia)2 =

Z

dxe−x2+a2+2iax.

Integrating over the real axis, we have large phase fluctuations, but after shifting the
integration contour by ia we get a well behaved Gaussian integral.

de Forcrand-2010, Lombardo-Splittorff-JV-2010
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Poles and Saddles

Generally, observables have poles and when we change to complex trajectories we also
need to take into account the pole contributions.

µ

saddle

pole

Im[A  ]

Re[A  ]

µ

Deforming the integration contour over the saddle leads to a large reduction of the phase
oscillations. However, we still have to take into account the pole contribution.

Integration trajectories close to the pole lead to large phase fluctuations. Pole
contributions are better behaved if we stay away from the pole.

Sign Problem, INT, March 2012 – p. 17/39



III. Distribution of the Baryon Number

Distribution of the Baryon Number Density

Overlap Problem
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The Baryon Number Density

nB =
1

V
Tr

1

γ0(D + m) + µ
.

It satisfies the charge conjugation relation

n∗
B(µ) = −nB(−µ).

Therefore nB generally has a nonzero real and imaginary part.

Re(nB) =
1

2
[nB(µ) − nB(−µ)] = lim

n→0

1

2nV

d

dµ
detn(γ0(D + m) + µ)detn(γ0(D + m) − µ),

Im(nB) =
1

2i
[nB(µ) + nB(−µ)] = lim

n→0

1

2inV

d

dµ

detn(γ0(D + m) + µ)

detn(γ0(D + m) − µ)
.

Therefore, the real and imaginary part of the baryon number are determined by pion
physics.

Since 〈Im(nB)〉 = 〈dθ/dµ〉 so that 〈Im(nB)〉1+1∗ = 0 and
〈Im(nB)〉1+1 = i(nI − nB)

For QCD with, say with Nf = 2 , we know that at low temperatures

〈nB〉1+1 = 0 for µ < mN /3.
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Expectation values of nB for µ < mπ/2

To one loop order in chiral perturbation theory we find

〈Re nB〉1+1∗ = νI ,

〈Re nB〉1+1 = νI ,

〈Im nB〉1+1∗ = 0,

〈Im nB〉1+1 = iνI .

It it possible to evaluate all moments of both the real and the imaginary parts of the
baryon density. Their distribution is a Gaussian with a width given by the sum and
difference of the isospin number and the baryon number susceptibility, respectively.

Lombardo-Splittorff-JV-2009
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Distribution of nB for µ < mπ/2

*

)Re(n

V
1

1/2~

0 ~O(V
1+1

ν o)I

1+1

B

Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).

I)Im(n

1+1*

~
V
1

1/2~

0 ~O(V
1+1
iν o)

B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.
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Distribution of nB for µ < mπ/2

*
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1
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B

Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).
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1+1*

~
V
1

1/2~

0 ~O(V
1+1
iν o)

B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.

〈nB〉1+1 = 〈Re(nB)〉1+1 + i〈Im(nB)〉1+1 = νI + iiνI = 0.
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Distribution of nB for µ > mπ/2
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Spectrum of γ0(D + m)

For µ > mπ/2 moments of the baryon number diverge due to eigenvalues close to µ .
For the p -th moment we obtain after excluding a disc around µ with radius ǫ ,

〈|n|2p〉1+1∗ ∼ ǫ2p−4.

Therefore the distribution of |n| has a power tail ( 1/|n|5 in this case).

It becomes virtually impossible to sample the baryon number.
Lombardo-Splittorff-JV-2009
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Overlap Problem

Therefore if we put the phase factor in the observable and use gauge field configurations
generated by Z|QCD| (known as reweighting) we will generate an incorrect distribution
for the imaginary part of the baryon number density.

This gives the overlap problem: the observable seems to converge to the the incorrect
value and the correct value can only be obtained because of very rare fluctuations.

O

<O>
1+1*

ρ(O)

<O>
1+1

σσ
O

Distribution of an operator for the phase

quenched ensemble and the full theory.

A quantitative estimate of the overlap
probelm can be obtained by evaluating
the distribution of the observables to one
loop order in chiral perturbation theory.

Overlap problems also may result because of distributions with heavy tails of the
distributions. Endres-Kaplan-Lee-Nicholson-2011
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IV. Sign Problem in the ǫ Domain

Infrared Dominance of the Phase Factor

Spectral Representations

Alternative to Banks-Casher Formula

Sign Problem, INT, March 2012 – p. 24/39



Infrared Dominance of the Phase Factor

Both in the ǫ and p domain the mass and chemical potential dependence of QCD and
QCD like partition functions can be obtained from chiral perturbation theory.

Therefore the average phase factor in this domain is determined by chPT, or in QCD, by
the infrared part of the Dirac spectrum. Notice that the chemical potential can be gauged
to the boundary.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
mΣV

1

1.1

1.2

1.3

<
ex

p(
2i

θ(
iµ

))
>

<Φ+−>
<Φ−+>

Nf=0  8
4
  µFV

1/2
=0.159  ΣV=1039

“Phase” of the fermion determinant
for imaginary chemical potential.

Splittorff-Svetitsky-2007

Analytical continuation of average phase fac-
tor:
fi

det(D + iµ)

det(D − iµ)

fl

= 1 − 4µ̂2I0(m̂)K0(m̂).

Here, m̂ = mV Σ and µ̂2 = µ2F 2
πV . The

analytical result has been obtained in the mi-
croscopic domain
Damgaard-Splittorff-2006, Splittorff-JV 2007.
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Sign Problem in the ǫ Domain

√

Because the sign problem is dominated by the infrared part of the Dirac spectrum,
we will analyze it in the ǫ domain or microscopic domain of QCD.

√

This is the domain where the pion Compton wave length remains much larger than
the size of the box in the thermodynamic limit.

√

In this domain QCD is equivalent to a random matrix theory with the global
symmetries of QCD.

√

This problem has been solved at nonzero chemical potential

⋆ The joint eigenvalue distribution is known analytically Osborn-2004

⋆ The eigenvalue density is know analytically for any number of flavors
Osborn-2004, Akemann-Osborn-Splittorf-JV-2004

⋆ The relation between the chiral condensate and the spectral density has been
understood Osborn-Splittorff-JV-2005, 2008
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VI. Spectral Representations

Dirac Spectra

Alternative to Banks-Casher Relations

QCD in 1d
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Spectral Representations

Spectral representations of the Dirac operator have been extremely useful for
nonhermitean theories.

c
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����� quark mass m

Scatter plot of Dirac eigenvalues

m

√

The critical point is when the quark
mass hits the cloud of eigenvalues.

√

For phase quenched QCD this is the
point when µ = mπ/2 .
Gibbs-1986,Splittorff-JV-2006

√

For Wilson fermions this is the onset of
the Aoki phase.

√

For nonhermitean theories theories with a complex determinant, the support of the
Dirac spectrum does not depend on the complex phase of the determinant.

√

Exponential cancellations can wipe out the critical point and reveal a completely
different physical system. This is the case of QCD at nonzero baryon density.
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Chiral Condensate and Banks-Casher Formula

Chiral condensate:

Σ(m) = 〈q̄q〉 =
1

V
∂m log Z =

1

V

X

k

1

m + λk
.

w

−m m

l

−w
Nonhermitian

Dirac operator

I

dsΣ(s) = il(Σ(m) − Σ(−m))

= 2πiρ2(0)
m

w

Σ(m) = πρ2(0)
m

w

density of eigenvalues in the plane

Chiral condensate goes to zero linearly in m

Critical value: wc = m .
In physical terms this can be written as: µc = mπ/2.

At low temperature the chiral condensate has to remain constant until µ = mN /3 .
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Eigenvalue Density for One Flavor QCD

-1000100
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0.001
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50

Spectral density for QCD with one dynamical flavor.

Asymptotic form

ρ(x > 0, y) =
1

4πµ2
e
−V

(y+i(|x|+|m|−4µ2)2

8µ2 −V
(x−2µ2)2

2µ2 .

This has oscillations with a period of O(1/V ) and an amplitude that increases
exponentilally with V.

It provides a generic mechanism to get a discontinuity of the chiral condensate without
having a dense line of eigenvalues.

Osborn-Splittorf-JV-2005
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Chiral Condensate for One Flavor QCD

Spectral density shows oscillations on the scale of 1/V with an amplitude that grows
exponentially with the volume

ρ(x, y, µ) = ρquenched(x, y, µ) + ρosc(x, y, µ).

Chiral condensate after integration over y

Σosc =

Z 2µ2

−2µ2
dxΣosc(x, µ), Σosc(x, µ) ≡

Z

dy
1

x + iy + m
ρosc(x, y, µ).

The integral can be performed by a saddle point approximation. For |x| < 2µ2 the
saddle point contribution is exponentially suppressed with respect to the quenched result
and only the contribution from the pole at y = i(x + m) remains.

The result is given by

1

2µ2
[θ(m)θ(−x − m) − θ(−m)θ(x + m)].

For m > 0 the x -integral gives 1 − m/2µ2 . Adding the quenched result we obtain

m

2µ2
+ [1 − m

2µ2
] = 1.
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IV. Sign Problem for One Dimensional QCD

Dirac Spectrum and Chiral Condensate

Langevin Equation
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U(1) QCD in 1d
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Dirac spectrum of 1d QCD
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0.5
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<
eiθ

> pq

n=4
n=10
n=16

µ
c
=1Σ(m) =

D

P

k
1

λk+m

Q

k(λk+m)
E

DQ

k(λk + m)
E

determinant with
a complex phase

Ravagli-JV-2007, Aarts-Splittorff-2010
Eigenvalues are equally spaced on an ellipse with a random overall phase.

In the limit of a dense spectrum, Σ(m) is discontinuous across the imaginary axis
despite the fact that there are no eigenvalues for µ 6= 0.

The chiral condensate is continuous across the ellipse where the eigenvalues are
located.
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Alternative to the Banks-Casher Relation

x=−µ µ
                                        

m

x=

Σ
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For large V and small µ the eigenvalues of the Dirac operator are located on two
parallel lines x ± µ resulting in the chiral condensate

Σ(m) =

Z
dxdy

π

1

m − x − iy
δ(|x| − µ)

"

1 − (eV (x+iy) + e−V (x+iy))

eV m + e−V m

#

| {z }

= tanh(V m).

ρ(x, y) for Nf = 1

In the thermodynamic limit (V → ∞) this results in a discontinuity across m = 0 , but
only after exponentially large cancellations. Osborn-Splittorff-JV-2005, Ravagli-JV-2008
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Chiral Condensate in 1d

The first term ( ∼ δ(|x| − µ) ) gives the quenched contribution

Σquenched(m) = sign(m − µ) + sign(−m + µ).

This follows from electrostatic arguments with eigenvalues as charges. The second term
is evaluated as

Σosc(m) = (θ(m + µ) − θ(m − µ)) tanh(mn).

(m)

−µ µ

Σ

m m

Σ

−µ µ

1
n

tanh(mn)

quen (m)  osc

The chiral condensate becomes
discontinuous in the continuum
limit.

Ravagli-JV-2007
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Complex Langevin for 1d QCD

Spectral density is given by

ρ(y) = 1 − cosh(V (µ + iy))

cosh(V m)
.

Langevin equation

dy

dt
=

d log ρ(y)

dy
+ η =

iV sinh V (µ + iy)

ρ(y)
+ η

For complex Langevin y = v + iw with v, w ∈ R .

Solution:

w = µ,

dv

dt
=

iV sinh(V (iv)

1 − cosh(iV v))
cosh(V m)

+ η.

The equation for v is the Langevin equation for µ = 0 and converges to the correct
distribution. Aarts-Splittorff-2010
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Complex Langevin in 1d QCD

-2 -1 0 1 2

µ
c
 = arcsinh m

-1

-0.5
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0.5

1

Σ

n=16
n=22

µ=1

Result for the chiral condensate of one-flavor 1d QCD from the complex Langevin
equation compared to the exact analytical result.

Aarts-Splittorff-2010

Sign Problem, INT, March 2012 – p. 37/39



Conclusions and Outlook
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To make progress we have to rethink the problem for much simpler
model systems.
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