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Motivation 
•  Cannot apply viscous hydrodynamics too early after 

initial nuclear impact 
•  Large corrections to ideal EM tensor due to rapid 

longitudinal expansion 
•  These corrections grow as η/S increases 
•  Also breaks down near transverse and longitudinal 

edges where the system is dilute ~ free streaming 
•  How can we improve things to make hydro-like 

theories more quantitatively reliable for HIC? 
•  In the process we may learn something about the 

approach to isotropy in the quark gluon plasma and 
improve phenomenology. 
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QGP momentum anisotropy 

Processes 
Plasma Instability 
Inelastic Scattering 
Quark Pair Production  
Elastic Scattering 

0.5 fm/c? 
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Anisotropic Plasma 
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prolate oblate 

Anisotropy parameter, 
ξ,  is related to 
pressure anisotropy of 
the system. 

Small Anisotropy Limit (Thermal fiso) 

Navier-Stokes Limit 
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QGP momentum anisotropy 

Processes 
Plasma Instability 
Inelastic Scattering 
Quark Pair Production  
Elastic Scattering 

WARNING 
Blasphemy 

Ahead 

0.5 fm/c? 
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Come ye of little faith … 
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•  It has been taken as 
gospel that agreement 
with experimental data 
for elliptic flow requires 
early thermalization/
isotropization at times 
on the order of 0.5 fm/c. 
 

•  Is that true within 
viscous hydro? 
 

•  Let’s ask some 
experts… 

7 
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Luzum et al  
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Heinz et al 
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NS = Navier Stokes 

⇠NS =
10

T ⌧

⌘

S⇠ =
hp2T i
2hp2Li

� 1

Using values from the paper I obtain 

Which corresponds to 

⇠0,NS ' 1.3

PL/PT ' 0.51
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Heinz et al 
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NS = Navier Stokes 

⇠NS =
10

T ⌧

⌘

S⇠ =
hp2T i
2hp2Li

� 1

Using values from the paper I obtain 

Which corresponds to 

⇠0,NS ' 1.3

PL/PT ' 0.51

Viscous Hydro situation is 
even worse than this would 
make it seem.  For Navier-
Stokes at the initial time 
shown, the longitudinal 
pressure is negative  
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S = 0.2

T0 = 420 MeV

Even stronger anisotropies near 
transverse and longitudinal 
edges 

Anisotropies persist 
for a long time… 
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O+1d 
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--- Physics 101 --- 
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Consider a cow… 
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Cows are spheres   
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Cows are spheres? 
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Cows are not spheres 
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Cows are more like ellipsoids! 
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Especially very short  
cows… 

or very tall  
cows… 
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Why is this Seussian parable relevant? 

Viscous hydro says that we should approximate 
our particle momentum-space distribution to first 
order by a sphere.  However, if the system is 
highly anisotropic in momentum space, this will 
result in large corrections… 

Leading order A large correction 
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--- Hydro From Transport --- 

                      INT Seattle - March 23, 2012 21 



Michael Strickland, Gettysburg College 

Near Equilibrium QGP Evolution 
•  If the system is close to equilibrium and has 

pressures in the local rest frame which are 
approximately isotropic (PT ≅  PL) then we might 
try to use relativistic viscous hydrodynamics 
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T
µν
= T

ideal

µν
+Π

µν

•  The ideal stress tensor is thermal and isotropic 
•  Large amplitudes of the shear tensor compared to 

the ideal stress tensor indicate a problem with the 
hydrodynamic expansion itself 
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Relativistic Hydro from Transport 
•  Describe evolution of the system using the Boltzmann 
equation 

C[f] = Collisional Kernel 

•  Can extract hydro equations from the Boltzmann equation by 
taking “moments” of the equation using an integral operator 

eg. 

0th moment operator 1st moment operator 
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0th Moment  
if number 
conserving 

collisional  
kernel 

Number conservation 

If particle number changing processes 
in kernel, eg 2 → 3, RHS is nonzero 

 :  Particle Number and Current 

1st Moment  
if energy 
conserving 

collisional  
kernel 

Energy-momentum 
conservation! 

:  Energy-Momentum Tensor 
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2nd Order Viscous Hydro 
•  The first two moments are enough to generate equations of 
motion for ideal hydrodynamics. 

•  In number conserving theories the second moment gives the 
first non-trivial (dissipative) equation of motion and can be 
used to derive 2nd-order viscous hydro using transport theory. 

•  If the system is homogeneous in the transverse directions, 
the energy-momentum tensor in the local rest frame has the 
following form 

:  Energy Density 

:  Transverse Pressure 

:  Longitudinal Pressure 
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Boost Invariant 1d Hydro 
•  Consider a boost invariant system that is homogeneous in 
the transverse directions. 

•  Expand the energy momentum tensor to first order around 
an isotropic state → 1d second order viscous hydro. 

•  The 1d second order viscous hydro equations can be written 
in terms of the isotropic energy density/pressure and the 
rapidity-rapidity (ς-ς) component of the shear tensor Π = Πς

ς 

Shear viscosity 

Shear relaxation 
time 
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QGP momentum anisotropy 

Processes 
Plasma Instability 
Inelastic Scattering 
Quark Pair Production  
Elastic Scattering 
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Hydro Results - Strong Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Hydro Results - Strong Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Viscous Hydrodynamics  

Center of Nucleus à Edge of Nucleus r [fm] r [fm] 
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Hydro Results - Weak Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Start over from scratch 
Viscous Hydrodynamics Expansion 

Anisotropic Hydrodynamics (AHYDRO) Expansion	


Isotropic in momentum space	



prolate oblate 
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Collisional Kernel 

•  Relaxation time approximation 

•  Where Γ is the relaxation rate 

•  Γ will be fixed by matching to 2nd order viscous hydro 
in the weak anisotropy limit 

•  T(τ) is the self-consistent isotropic temperature which 
can be fixed by requiring energy conservation at all 
proper times [Baym ’84] 
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0th Moment of Boltzmann EQ  

Using relaxation-time approximation scattering kernel gives 

1st Moment of Boltzmann EQ  

where 
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Linearized Equations  
If we expand and keep only the lowest non-vanishing order in 
the anisotropy parameter we find 

and the coupled nonlinear differential equations reduce to 

Reproduces 2nd order viscous hydro in small anisotropy limit! 
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Hard Momentum vs Time 

[Strong Coupling] 
[Weak Coupling] 

M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 

[Very Weak Coupling] 

� =
2T (⌧)

5⌘̄
=

2R1/4(⇠)phard
5⌘̄
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Hydro vs AD : Strong Coupling 
M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 
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Hydro vs AD : Weak Coupling 
M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 
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Entropy Production 
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T0 = 600 MeV 

Tf = 150 MeV 

τ0 = 0.25 fm/c 

T0 = 400 MeV 

Tf = 150 MeV 

τ0 = 0.25 fm/c 
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N=4 SUSY using AdS/CFT 
•  In 0+1 case there are now 

numerical solutions of 
Einstein’s equations to 
compare with.  
[Heller, Janik, and Witaszczyk, arXiv:1103.3452] 

•  They study a wide variety 
of initial conditions and 
find a kind of universal 
lower bound for the 
thermalization time 
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Fhydro known up 
to 3rd order hydro 
analytically  

Red – 1st Order Hydro 
Blue – 2nd Order Hydro 
Green – 3rd Order Hydro 
Grey – GR solution 

w > 0.63 

RHIC 200 GeV/nucleon:   
  T0 = 350 MeV, τ0 > 0.35 fm/c 
 
LHC 2.76 TeV/nucleon: 
  T0 = 600 MeV, τ0 > 0.2 fm/c 
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N=4 SUSY using AdS/CFT 
However, at that time the 
system is not isotropic and 
remains anisotropic for the 
entirety of the evolution 
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Red – 1st Order Hydro 
Blue – 2nd Order Hydro 
Green – 3rd Order Hydro 
Grey – GR solution 

= 0.31 

How well does the 
aHydro framework 
compare? 

Black - aHydro 
Red – 1st Order Hydro 
Blue – 2nd Order Hydro 
Green – 3rd Order Hydro 
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*** 
 

Including Transverse 
Dynamics 

 
*** 
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Including Transverse Dynamics 
H. Song, PhD Dissertation, arXiv:0908.3656 

Σ  =  πxx + πyy 

Δ =  πxx - πyy 

= πL 
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Including Transverse Dynamics 
M. Martinez, R. Ryblewski, and MS, forthcoming. 

o  Now we 
consider boost 
invariant 
dynamics with 
transverse flow. 

o  Four equations 
for four 
variables ux, uy, 
ξ, and Λ. 
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Transverse Dynamics  Pb-Pb @ 2.76 TeV 
T0 = 600 MeV 
τ0 = 0.25 fm/c 
b = 7 fm 
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Transverse Dynamics  Pb-Pb @ 2.76 TeV 
T0 = 600 MeV 
τ0 = 0.25 fm/c 
b = 7 fm 
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Check against Viscous Hydro 
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Check against Viscous Hydro 
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Collective Flow 
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T0 = 600 MeV 
T0 = 559 MeV 

M. Martinez, R. Ryblewski, and MS, forthcoming. 

Tf = 150 MeV 
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Conclusions 
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•  Plasma need not be isotropic in momentum 
space to describe the data 

•  Large momentum-space anisotropies cause trouble for 
traditional viscous hydrodynamical approaches 
 

•  Particularly worrisome near edges 
 

•  A practical way out is to change the expansion point and 
consider fluctuations around that à “aHydro” 
 

•  Results in a more reliable tool to compute the dependence of 
observables on momentum-space anisotropy; first application, 
bottomonium suppression [MS arXiv:1106.2571, MS and D. Bazow arXiv:1112.2761] 

Now, to be certain that I have this straight...  
I'll re-Recapitulate. Mr. Finklebein the Fish 
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--- Backup Slides --- 
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Effect of Transverse Expansion on Isotropization 
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Numerical Checks 1 
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Numerical Checks 2 
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Numerical Checks 2 
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Numerical Checks 3 
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Quarkonium Binding 
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•  First theoretical calculation 
of dependence of states’ 
complex-valued binding 
energies. 

•  Imaginary part of the 
binding energy gives the 
decay rate (width) 
 

•  Width increases with 
temperature à in-medium 
suppression 
 

•  Calculation performed 
allowing for anisotropy in 
momentum space (ξ≠0) 

χb1

MS et al, Phys. Rev. D 83, 105019 (2011)  

ϒ(1s)
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Centrality Dependence - LHC 

           Kent State University, March 8 2012 
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MS, Phys. Rev. Lett. 107, 132301 (2011).  

No QGP 
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Rapidity Dependence - LHC 

           Kent State University, March 8 2012 
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MS, Phys. Rev. Lett. 107, 132301 (2011).  

No QGP 
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Centrality Dependence - RHIC 

           Kent State University, March 8 2012 Michael Strickland, Gettysburg College Physics Department 
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