Heavy quarks in the quark-gluon plasma

Jon-Ivar Skullerud

Collaborators: Tim Harris Aoife Kelly Dhagash Mehta Buğra Oktay Gert Aarts Chris Allton Maria-Paola Lombardo Seyong Kim Sinéad Ryan Don Sinclair

NUI Maynooth, FASTSUM

INT, 14 March 2012

Outline

Background

Charm

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

Beauty

- Correlators Spectral functions Relativistic beauty
- Nonzero density
- Summary and outlook

Background

- J/ψ suppression a probe of the quark–gluon plasma?
- Sequential suppression —> quarkonia as QGP thermometers?
- c, b quarks created in primordial collisions, hard probes?
- To what extent do c, b quarks thermalise?
- Quenched lattice results suggest that S-waves survive well into the plasma phase
- Sequential charmonium suppression + recombination explains experimental results?
- Uncertainty about which potential to use in potential models, how to treat continuum
- How reliable are quenched lattice simulations?

Quenched vs dynamical

Are quenched lattice results reliable?

- $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- Light quarks can catalyse QQ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c

Quenched vs dynamical

Are quenched lattice results reliable?

- $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- \blacktriangleright Light quarks can catalyse $Q\bar{Q}$ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c
- Only dynamical lattice calculations can give the answer

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach \rightarrow need only 1 T = 0 calculation for renormalisation
- Independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem [PRD 74 014505 (2006)]
 [See also Edwards, Joó, Lin, PRD 78 054501 (2008)]

Spectral functions

• $\rho_{\Gamma}(\omega, \overrightarrow{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \overrightarrow{p})$ according to

$$G_{\Gamma}(\tau, \overrightarrow{p}) = \int \rho_{\Gamma}(\omega, \overrightarrow{p}) \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} d\omega$$

- an ill-posed problem
- use Maximum Entropy Method to determine most likely $\rho(\omega)$
- requires a large number of time slices to have any chance of a reliable determination
- must introduce model function $m_0(\omega)$
- ▶ we have used continuum free spectral function + others

Background Temperat Charm Reconstru Beauty Nonzero Nonzero density Towards 1 Summary and outlook Charm di

Simulation parameters

[PRD 76 194513 (2007), arXiv:1005.1209]

_							
	ξ	<i>as</i> (fm)	a_t^{-1} (GeV	/) $m_{\pi}/$	$m_{ ho}$ Λ	l _s L	<i>s</i> (fm)
_	6.0	0.162	7.3	35 0	.54 1	2	1.94
		$N_{ au}$	T (MeV)	T/T_c	∦ cor	nfigs	
		80	92	0.42		250	
		32	230	1.05	1	000	
		28	263	1.20	1	000	
		24	306	1.40		500	
		20	368	1.68	1	000	
		18	408	1.86	1	000	
		16	459	2.09	1	000	

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

S-wave T dependence (η_c)

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

S-wave T dependence (J/ψ)

 J/ψ (S-wave) melts at $T\sim 370-400$ MeV or $1.7-1.9T_c$?

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

P-waves

P-waves melt at T < 250 MeV or $1.2T_c$?

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

Reconstructed correlators

Reconstructed correlator is defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$\mathcal{K}(au, \omega, T) = rac{\cosh[\omega(au - 1/2T)]}{\sinh(\omega/2T)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

We use $N_{\tau} = 32$ as our reference temperature since the spectral function is most reliably determined there

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

S-waves

12 / 41

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

P-waves

Temperature dependence Reconstructed correlators **Nonzero momentum** Towards the physical limit Charm diffusion

Nonzero momentum

[With MB Oktay, arXiv:1005.1209]

- Charmonium is produced at nonzero momentum
- Transverse momentum (and rapidity) distributions important to distinguish between models
- Momentum dependent binding?
- Gives an additional window to transport properties
- Related to screening masses

Temperature dependence Reconstructed correlators **Nonzero momentum** Towards the physical limit Charm diffusion

Reconstructed correlators

15 / 41

Temperature dependence Reconstructed correlators **Nonzero momentum** Towards the physical limit Charm diffusion

Reconstructed correlators

16/41

Background Tempera Charm Reconstr Beauty Nonzero Nonzero density Towards Summary and outlook Charm d

Temperature dependence Reconstructed correlators Nonzero momentum **Towards the physical limit** Charm diffusion

Towards the physical limit

Anisotropic clover-improved Wilson fermions, 2+1 flavours [HadSpec Collab, PRD **79** 034502 (2009)]

	ξ	<i>as</i> (fm)	a_t^{-1} (G	eV) m_{π}/m	$n_{ ho} N_s$	L_s (fm)
	3.5	0.122	Ę	5.68 0.4	5 24	2.93
-						
Γ	$V_{ au}$	T (MeV)	T/T_c	# configs	used (c)) used (b)
12	25	35	0.25	100		- 100
4	40	142	0.8	380		- 103
3	36	158	0.9	193	<u> </u>	- 67
3	32	177	1.0	1000	38	680
2	28	203	1.1	835	100) 703
2	24	237	1.3	1000	57	7 735
2	20	284	1.6	1000	539) 1000
-	16	355	20	395	102	> 290

Temperature dependence Reconstructed correlators Nonzero momentum **Towards the physical limit** Charm diffusion

Polyakov loop (Unrenormalised)

Temperature dependence Reconstructed correlators Nonzero momentum **Towards the physical limit** Charm diffusion

Pseudoscalar spectral function

 $\eta_{c} (a_{\tau}m_{c} = 0.087)$

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

Vector spectral function

 $J/\psi (a_{\tau}m_{c} = 0.087)$

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit **Charm diffusion**

Charm diffusion

How fast do charm quarks thermalise? The heavy quark diffusion constant D is given by

$$D = \frac{1}{\chi^{00}} \lim_{\omega \to 0} \frac{\rho_V(\omega)}{\omega} \,,$$

 ρ_V is the spectral function of the conserved-current operator $V_i(\overrightarrow{x},t)$

$$\chi^{00} = \frac{1}{T} \int \langle V_0(\overrightarrow{x},t) V_0(\overrightarrow{0},t) d^3 x$$

Preliminary results using default model $m(\omega) = m_0 \omega (b + \omega)$

Temperature dependence Reconstructed correlators Nonzero momentum Towards the physical limit Charm diffusion

Results

Correlators Spectral functions Relativistic beauty

Beauty (and the beast?)

- Many b quarks will be produced at LHC
 - \rightarrow Recent results from CMS, ATLAS (+ STAR)
- Cold nuclear matter effects, recombination less important

 → cleaner probes?
- $T_d^{\Upsilon} \sim 3 5T_c$ hard to do on the lattice
- χ_b melts at $T_d^{\chi_b} \lesssim 1.2 T_c$?
- Use NRQCD and relativistic action, compare two approaches

NRQCD

Scale separation $M_Q \gg T$, $M_Q v$ Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action Advantages

- No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- No zero-modes
- Longer euclidean time range
- Appropriate for probes not in thermal equilibrium

Disadvantages

- \blacktriangleright Not renormalisable, requires $\mathit{Ma_s}\gtrsim 1$
- Does not incorporate transport properties

Correlators Spectral functions Relativistic beauty

Correlators

[PRL **106** 061602 (2011)] Bound state

$$G(au) \sim e^{-\Delta E au}$$

Effective mass $a_{ au} m_{\text{eff}}(au) = \log(G(au - a_{ au})/G(au))$

Noninteracting quarks

S-waves:
$$G_S(au) \sim au^{-3/2}$$

P-waves: $G_P(au) \sim au^{-5/2}$

Effective power $\alpha_{\text{eff}}(\tau) = -\tau G'(\tau)/G(\tau)$

Correlators Spectral functions Relativistic beauty

Correlator ratios (S-waves)

Note: Changes are entirely due to changes in spectral density

Correlators Spectral functions Relativistic beauty

Correlator ratios (P-waves)

Correlators Spectral functions Relativistic beauty

Effective mass

Correlators Spectral functions Relativistic beauty

Effective power

For bound state: $G(\tau) \sim A \exp(-\Delta E \tau) \Longrightarrow \alpha_{eff}(\tau) \sim \Delta E \tau$ S-waves consistent with bound state, minimal thermal effects P-waves approach constant α_{eff} with noninteracting value at highest T.

Correlators Spectral functions Relativistic beauty

Spectral functions

 Υ (1S), Υ (2S) clearly identified

Correlators Spectral functions Relativistic beauty

Spectral functions — T-dependence

 Υ (2S) melts, but ground state remains robust

Correlators Spectral functions Relativistic beauty

Mass shift and width

- Fit (left side of) peaks to gaussian
- \longrightarrow determine peak position (mass) and width
- Width is upper bound

W

Results are consistent with perturbation theory,

$$\frac{\Gamma}{T} = \frac{1156}{81} \alpha_s^3 , \qquad \frac{\delta E}{M} = \frac{17\pi}{9} \alpha_s T^2 M^2 ,$$
 ith $\alpha_s \sim 0.4$.

Correlators Spectral functions Relativistic beauty

Mass shift and width: uncertainties

Correlators Spectral functions Relativistic beauty

Results from relativistic beauty

- Used the same action as for charm (and light quarks)
- Used both point and derivative operators for P-waves

Qualitative agreement with NRQCD results Derivative operators better behaved — smaller constant mode?

Nonzero density (but not QCD...) [with S.Hands, S.Kim, arXiv:1202.4353]

NRQC₂D correlators and energies

NRQC₂D correlators and energies

36 / 41

Summary

- Charmonium S-waves survive to $T \sim 1.6 2T_c$
- P-waves melt at $T < 1.3T_c$
- Significant momentum dependence in reconstructed correlators
- Transverse vector correlators are more sensitive to temperature and momentum
- Beautonium S-wave ground states survive up to $T\gtrsim 2T_c$
- Mass shift and width consistent with perturbation theory
- P-waves approach free power-law behaviour at $T \sim 2T_c$
- Relativistic beauty results compatible with NRQCD
- Simulations on finer lattices with realistic quark content underway
- Charm diffusion calculation in progress
- ▶ 2+1 flavours with larger anisotropy planned \rightarrow higher *T*

Backup slides

Pseudoscalar effective mass

Vector effective mass

Default model, t-range dependence

