Heavy quarks in the quark–gluon plasma

Jon-Ivar Skullerud

Collaborators: Tim Harris Aoife Kelly Dhagash Mehta Buğra Oktay Gert Aarts Chris Allton Maria-Paola Lombardo Seyong Kim Sinéad Ryan Don Sinclair

NUI Maynooth, FASTSUM

INT, 14 March 2012

Outline

[Background](#page-2-0)

[Charm](#page-7-0)

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

[Beauty](#page-23-0)

[Correlators](#page-25-0) [Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

[Nonzero density](#page-35-0)

[Summary and outlook](#page-38-0)

Background

- \blacktriangleright J/ ψ suppression a probe of the quark–gluon plasma?
- \triangleright Sequential suppression \rightarrow quarkonia as QGP thermometers?
- \triangleright c, b quarks created in primordial collisions, hard probes?
- \triangleright To what extent do c, b quarks thermalise?
- \triangleright Quenched lattice results suggest that S-waves survive well into the plasma phase
- \triangleright Sequential charmonium suppression $+$ recombination explains experimental results?
- \triangleright Uncertainty about which potential to use in potential models, how to treat continuum
- \blacktriangleright How reliable are quenched lattice simulations?

Quenched vs dynamical

Are quenched lattice results reliable?

- $\blacktriangleright T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- ► No $D \bar{D}$ threshold in quenched QCD
- In Light quarks can catalyse $Q\bar{Q}$ dissociation so it occurs at lower temperature
- In Lower T_c , lower T_d conspire to give the same T_d / T_c ?
- \triangleright Potential models indicate little change in T_d / T_c

Quenched vs dynamical

Are quenched lattice results reliable?

- $\blacktriangleright T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- ► No $D \bar{D}$ threshold in quenched QCD
- In Light quarks can catalyse $Q\bar{Q}$ dissociation so it occurs at lower temperature
- In Lower T_c , lower T_d conspire to give the same T_d / T_c ?
- \triangleright Potential models indicate little change in T_d / T_c
- \triangleright Only dynamical lattice calculations can give the answer

Dynamical anisotropic lattices

- \triangleright A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- **Far too expensive with isotropic lattices** $a_s = a_t!$
- \blacktriangleright Fixed-scale approach \rightarrow need only 1 $T = 0$ calculation for renormalisation
- \blacktriangleright Independent handle on temperature

- \blacktriangleright Introduces 2 additional parameters
- \triangleright Non-trivial tuning problem [PRD 74 014505 (2006)] [See also Edwards, Joó, Lin, PRD 78 054501 (2008)]

Spectral functions

 \blacktriangleright $\rho_{\Gamma}(\omega,\overrightarrow{p})$ related to euclidean correlator $G_{\Gamma}(\tau,\overrightarrow{p})$ according to

$$
G_{\Gamma}(\tau, \overrightarrow{p}) = \int \rho_{\Gamma}(\omega, \overrightarrow{p}) \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} d\omega
$$

- \blacktriangleright an ill-posed problem
- **If** use Maximum Entropy Method to determine most likely $\rho(\omega)$
- \triangleright requires a large number of time slices to have any chance of a reliable determination
- **If** must introduce model function $m_0(\omega)$
- \triangleright we have used continuum free spectral function $+$ others

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Simulation parameters

[PRD 76 194513 (2007), arXiv:1005.1209]

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

S-wave T dependence (η_c)

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

S-wave T dependence (J/ψ)

 J/ψ (S-wave) melts at $T \sim 370 - 400$ MeV or $1.7 - 1.9T_c$? 9/41

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

P-waves

P-waves melt at $T < 250$ MeV or $1.2T_c$?

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Reconstructed correlators

Reconstructed correlator is defined as

$$
G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega
$$

where K is the kernel

$$
\mathcal{K}(\tau, \omega, \, \mathcal{T}) = \frac{\text{cosh}[\omega(\tau - 1/2\, \mathcal{T})]}{\text{sinh}(\omega/2\, \mathcal{T})}
$$

If $\rho(\omega;T) = \rho(\omega;T_r)$ then $G_r(\tau;T,T_r) = G(\tau;T)$

We use $N_\tau = 32$ as our reference temperature since the spectral function is most reliably determined there

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

S-waves

12 / 41

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

P-waves

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Nonzero momentum

[With MB Oktay, arXiv:1005.1209]

- \triangleright Charmonium is produced at nonzero momentum
- \triangleright Transverse momentum (and rapidity) distributions important to distinguish between models
- \blacktriangleright Momentum dependent binding?
- \triangleright Gives an additional window to transport properties
- \blacktriangleright Related to screening masses

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Reconstructed correlators

15 / 41

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Reconstructed correlators

16 / 41

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Towards the physical limit

Anisotropic clover-improved Wilson fermions, 2+1 flavours [HadSpec Collab, PRD 79 034502 (2009)]

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Polyakov loop (Unrenormalised)

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Pseudoscalar spectral function

 η_c (α_{τ} m_c= 0.087)

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Vector spectral function

J/ψ (α_πm_c = 0.087)

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Charm diffusion

How fast do charm quarks thermalise? The heavy quark diffusion constant D is given by

$$
D=\frac{1}{\chi^{00}}\lim_{\omega\to 0}\frac{\rho_{V}(\omega)}{\omega},
$$

 ρ_V is the spectral function of the conserved-current operator $V_i(\overrightarrow{x},t)$

$$
\chi^{00}=\frac{1}{T}\int \langle V_0(\overrightarrow{x},t) V_0(\overrightarrow{0},t)d^3x
$$

Preliminary results using default model $m(\omega) = m_0 \omega (b + \omega)$

[Temperature dependence](#page-8-0) [Reconstructed correlators](#page-11-0) [Nonzero momentum](#page-14-0) [Towards the physical limit](#page-17-0) [Charm diffusion](#page-21-0)

Results

[Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

Beauty (and the beast?)

- \triangleright Many b quarks will be produced at LHC
	- \rightarrow Recent results from CMS, ATLAS (+ STAR)
- \triangleright Cold nuclear matter effects, recombination less important \rightarrow cleaner probes?
- $\blacktriangleright \;\; {\mathcal T}_d^{\, \Upsilon} \sim 3-5 \, {\mathcal T}_c$ hard to do on the lattice
- $\blacktriangleright \ \chi_b$ melts at $T_d^{\chi_b} \lesssim 1.2 T_c$?
- \triangleright Use NRQCD and relativistic action, compare two approaches

[Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

NRQCD

Scale separation $M_{\odot} \gg T$, M_{\odot} v Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity **v**; we use $\mathcal{O}(\mathbf{v}^4)$ action Advantages

- ► No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- \blacktriangleright No zero-modes
- \blacktriangleright Longer euclidean time range
- \triangleright Appropriate for probes not in thermal equilibrium

Disadvantages

- \triangleright Not renormalisable, requires $Ma_{s} \geq 1$
- \triangleright Does not incorporate transport properties

[Correlators](#page-25-0) [Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

Correlators

[PRL 106 061602 (2011)] Bound state

$$
G(\tau)\sim e^{-\Delta E\tau}
$$

Effective mass $a_{\tau} m_{\text{eff}}(\tau) = \log(G(\tau - a_{\tau})/G(\tau))$

Noninteracting quarks

S-waves:
$$
G_S(\tau) \sim \tau^{-3/2}
$$

P-waves: $G_P(\tau) \sim \tau^{-5/2}$

Effective power $\alpha_{\text{eff}}(\tau) = -\tau G'(\tau)/G(\tau)$

[Correlators](#page-25-0) [Spectral functions](#page-30-0)

Correlator ratios (S-waves)

Note: Changes are entirely due to changes in spectral density $\qquad \qquad _{26/41}$

[Correlators](#page-25-0) [Spectral functions](#page-30-0)

Correlator ratios (P-waves)

[Background](#page-2-0) [Charm](#page-7-0) [Beauty](#page-23-0) [Summary and outlook](#page-38-0)

[Correlators](#page-25-0) [Spectral functions](#page-30-0)

Effective mass

28 / 41

[Correlators](#page-25-0) [Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

Effective power

For bound state: $G(\tau) \sim A \exp(-\Delta E \tau) \Longrightarrow \alpha_{\text{eff}}(\tau) \sim \Delta E \tau$ S-waves consistent with bound state, minimal thermal effects P-waves approach constant α_{eff} with noninteracting value at highest T.

[Spectral functions](#page-30-0)

Spectral functions

Υ (1S), $\hat{\tau}$ (2S) clearly identified

[Spectral functions](#page-30-0)

Spectral functions — T-dependence

Υ (2S) melts, but ground state remains robust

[Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

Mass shift and width

Fit (left side of) peaks to gaussian → determine peak position (mass) and width Width is upper bound

Results are consistent with perturbation theory,

$$
\frac{\Gamma}{T} = \frac{1156}{81} \alpha_s^3, \qquad \frac{\delta E}{M} = \frac{17\pi}{9} \alpha_s T^2 M^2,
$$

with $\alpha_s \sim 0.4$.

[Spectral functions](#page-30-0)

Mass shift and width: uncertainties

[Spectral functions](#page-30-0) [Relativistic beauty](#page-34-0)

Results from relativistic beauty

- \triangleright Used the same action as for charm (and light quarks)
- \triangleright Used both point and derivative operators for P-waves

Qualitative agreement with NRQCD results Derivative operators better behaved — smaller constant mode?

Nonzero density (but not QCD. . .) [with S.Hands, S.Kim, arXiv:1202.4353]

NRQC₂D correlators and energies

$NRQC_2D$ correlators and energies

36 / 41

Summary

- ► Charmonium S-waves survive to $T \sim 1.6 2T_c$
- \blacktriangleright P-waves melt at $T < 1.3T_c$
- ▶ Significant momentum dependence in reconstructed correlators
- \blacktriangleright Transverse vector correlators are more sensitive to temperature and momentum
- Beautonium S-wave ground states survive up to $T \geq 2T_c$
- \triangleright Mass shift and width consistent with perturbation theory
- ► P-waves approach free power-law behaviour at $T \sim 2T_c$
- \triangleright Relativistic beauty results compatible with NRQCD
- \triangleright Simulations on finer lattices with realistic quark content underway
- \triangleright Charm diffusion calculation in progress
- \triangleright 2+1 flavours with larger anisotropy planned \rightarrow higher T

Backup slides

Pseudoscalar effective mass

Vector effective mass

Default model, t-range dependence

