Complex Langevin: A universal
solution for the sign problem?

Erhard Seller

Max-Planck-Institut fir Physik, MUinchen

(Werner-Heisenberg-Institut)

work done in collaboration with

D. Sexty and |. O. Stamatescu (Heidelberg), G. Aarts and F. James (Swansea)



1.The Sign problem

Via Wick rotation Quantum Field Theory
‘reduced to quadratures’:

Euclidean functional integral «<— probability measure ..

dp(¢) = 4 exp(—S(¢))

provided action S is real.



Numerical simulation

Ergodic stochastic process which has p as its equilibrium
measure.

Example:
dp(¢) = 7 exp(—5(6))
(real) Langevin equation

do = —V Sdt + dw .

dw Increment of Wiener process.



Difficulty

Sometimes
Euclidean functional integral«— complex measure:
‘Sign problem’

Where:
Real time Feynman integral
Topological terms — nonzero vacuum angle ¢

Finite density - chemical potential



Question

Complex measure p ‘representable’ by probability
measure P?

For holomorphic observables sign problem solved
In principle by complex Langevin:

(O) = //\/lr Ody = /Mc OdP

First proposed:
G. Parisi 1983, J. Klauder 1983



Successes and Failures

In some simple cases good convergence to the right limit.
Example: U(1) LGT in 2D (Ambjgrn et al 1986).

Practical Problems:
Runaways (divergence)
convergence to wrong limit.

Mathematical questions unresolved:
Quotes: ... conspicuous absence of general spectral theorems

... (Klauder&Petersen 1984)
... a rather experimental character: for some situations the method

works, while it fails for other choices of the action
... (Haymaker&Wosiek 1988)



Revival

Berges&Stamatescu 2005, Berges et al 2007: Simulation

of Minkowski space QFT
(HUffel&Rumpf 1984, Nakamoto&Yamanaka 1986)

Finite density: Aarts&Stamatescu 2008

Complex relativistic Bose gas: Aarts 2009

XY model: Aarts&James 2010

Effective potential: Guralnik&Pehlevan 2008-2009

— Some impressive numerical impressive results
— But problems lingering; sometimes wrong results.



Closer look:
Diseases: etiology, diagnostics, (therapy?) :

Aarts, Seiler, Stamatescu, Phys. Rev. D 81 (2010)
054508 [arXiv:0912.3360 [hep-lat]],

Aarts, Seller, Stamatescu, Phys. Lett. B 687 (2010) 154
[arXiv:0912.0617 [hep-lat]],

Aarts, Seiler, Stamatescu, James, to appear in Eur. J.
Phys., [arXiv:1101.3270 [hep-lat]],

Aarts, Seiler, Stamatescu, James, Sexty, work Iin
progress



2. Formal justification

‘Flat’ case: defined on M, = R" or M, = ST, analytically
continued to M..

Complex Langevin on M.

dz = —V.S5dt + dw

dw Increment of real Wiener process on M, (formally

dw = n(t)dt, n white noise).



This means

dr =K., dt + dw,
dy =K, dt

K, = —ReV,.S(x + iy)
K, = —-ImV,S(x + iy)

Slight generalization:
dex =K dt +/ Nr dwg,
dy =K,dt + +/ Ny duwy,

dwg, dwr Independent Wiener processes,
leOandNR:NIJrl.



Real stochastic process

By Ito calculus ((dw?) o dt)
g (Fa(), y(0)) = (Lf (1), y(1)) .
Langevin operator
L =|NgV,+ K|V, + NV, + K|V,
—> Dual Fokker-Planck equation
O P(x,y;t) = L' P(z,y;t);  P(x,y;0) = 6(z —20)d(y — yo) ,

P probability density in M.,



Real Fokker-Planck operator:
L' = V.[NrV.: — K] + V,[N/V, — K]
Complex Fokker-Planck Equation:
pyo (23 t) complex density on e.g. R™ + dyp;
S0yo () = Ly pyo (3 1)

L;; =V, Ve + (VaS(x +iyo))] -



Special case

If S(x) real for x real, Ny = 0:
Complex FPE — standard real FPE;

real FPE still lives in M., but stationary solution

P(x,y) oc exp[—=5(x)]0(y) .



Z00 of operators:

‘Complex’ operators on functions on M,.:
Ly, = Ve — (VS +1y0))|Va
L%Z) = V[V + (Vi S(z +iy0))]
‘Real’ operators on functions on M..:

L = [NRVQ; + Km]Vx + [N]Vy + Ky]Vy
L' =V, [NpV, — K;] — V,[N;V, — K]

On holomorphic observables LO = LO where

~

L=1[V.—(V.9)V.=[V.+ (K, +iK,)]V.



Goal

Produce expectation values of holomorphic observables:

Oy = [O(tiyo)e > 0V da
< > — fe—S(aH—iy)dx )

(independent of y, by Cauchy’s theorem).

Hope: obtainable as long time limit of

_ | O(z+iy) P(zy;t)dz dy |
\O)pi = J P(z,y;t)dx dy !

and by ergodicity as

lim 7 [ O(z(t))dt.

t—00 O



Relation of ‘ P-expectations’ to ‘p-expectations’?

_ [ O(z+iyo)p(x;t)dx
(Ot = =, w00

Two time evolutions:
01(O) pt = /dx@(x + 1Y) La)p(x; t)
0(O) pt = /d:vdy@(flf +iy) L' P(x,y;t).

Consistent?



Result (semi-rigorous)

Assume

P(z,y;0) = 6(y)p(x;0)  (p(x;0) > 0)

Lo, LY generate exponentially bounded holomorphic
semigroup (i.e. [[e't]| < Cye2t)

L. L' generate exponentially bounded (strongly
continuous) semigroup on L?(M..)

O(x) € L*(M,.).
Then

(O)pt =O)pr V,12>0




"Proof”

1. Initial conditions agree.

2. Let O(x +iy;t) = exp [tL] O(x + iy) be unique solution
of DE

0,0(x + iy: t) = LoO(z +iy;t) = LO(x +iy;t) (¢t >0);
3. Consider F(t,7) = [ P(z,y;t — 7)O(x + iy; 7).
Interpolates between (O)py and (O)

F(t,0) =(O)py;  F(t,t) = (O)ps



Formally: F'(¢, 7) independent of 7:
a%F(t, T) = — / LTP(CU, y;t — 7)0(x + iy; 7)dxdy

+ / P(x,y;t — 7)LO(x + iy; 7)dxdy

Integration by parts = crucial identity:

D F(t,7)=0| (CI)

Justified? Boundary terms?



Historical remark

Early attempt at formal justification Nakazato 1986:
Requires P(z,y;t) to continue to entire function in z.
Not known.

Known: P(x,y;t) not analytic in y in example.



Extension to manifolds

Gausterer&Thaler 1998, Aarts&Stamatescu 2008:
Compact connected Lie groups.

Examples:
U(1) complexified to U(1) x R
SU(N) complexified to SL(N,C)

More generally:

— M, Riemannian manifold = 3 Wiener process =
noise In real directions well defined

— Real manifold M, has to have complexification M...

Formal arguments carry over; problems remain.



3. Consistency condition

Recall (Cl)

0= a%F(t, T) = — /LTP(x, y;t — 7)0(x +iy; 7)dx dy

+ /P(z, yit — 7)LO(x + dy; 7)dx dy .

Take 7 = 0,t — oo, assume convergence to equilibrium:

exp(tL1)P(z,y;t) — P(x,y;00);

(LO)

-/

~

P(x,y;00)LO(x + 1y)dx dy = 0.

L' P(x,y;00) =0,

(CC)



(CC) Manifestly weaker than (Cl).

But: If
(CC) holds for sufficiently many observables O,
a certain bound holds,
spectral conditions assuring convergence hold

then
O)reo =% [ OWw)expl=5(w)ldz.

l.e. Equilibrium measure correct.



Proof

uses density argument and Riesz-Markov theorem.

Morally (CC) equivalent to Schwinger-Dyson equations
(SDE).



4. Summary of Problems

Mathematical and practical difficulties:

EXistence of the semigroups exp(tL) etc.?
Not known; Operators not dissipative.
But seems ok in examples.



4. Summary of Problems

Mathematical and practical difficulties:

EXistence of the semigroups exp(tL) etc.?
Not known; Operators not dissipative.
But seems ok in examples.

Spectrum: Spectrum of Langevin and FP
operators in left half plane?
In relevant examples: seems to be the case.

(Note: Convergence of P(z,y;t) not strictly
necessary, Need only convergence of p(x;1)).



Runaways: In typical cases deterministic motion
can go to oo In finite time.

Reason: Repulsive fixed points, drift V.S grows in
Imaginary directions, drift not a gradient.

In practice: problem solved by adaptive step size
(Aarts, Seller, Stamatescu 2009).

With noise: Equilibrium measure seems to exist.



Runaways: In typical cases deterministic motion
can go to oo In finite time.

Reason: Repulsive fixed points, drift V.S grows in
Imaginary directions, drift not a gradient.

In practice: problem solved by adaptive step size
(Aarts, Seller, Stamatescu 2009).

With noise: Equilibrium measure seems to exist.

Convergence to Wrong limit (voticed

already by Klauder&Petersen 1985, Ambjgrn et al
1986, Haymaker&Wosiek 1987).
Most serious, under investigation, see below.



5. Toy models

Example 1: Quadratic Actions (cf. Ambjarn&Yang
1985, Haymaker&Peng 1989)
Setting:

S = %(m,A:z:), xr e R",

A = A, +1A; complex symmetric matrix; A, and A; real
symmetric matrices.

Assume: A, = £(A+ AT) > 0.

Only fixed point at = = 0, attractive, explicit solution
(Gaussian).

No problems.



Example 2 ("one-link U(1)")

(Aarts&Stamatescu 2008, Aarts, S., Stamatescu 20009,
2011)

S = —fcosx — kcos(x —iu) = —acos(x — ic)

a=/(B+rer)(B+rer), c=3n e

Fromnow: x =0 = CLE becomes
dv = Kpdt +dw, dy= K,dt
where

K, = —f sinx coshy, K, = —f cosz sinhy



Properties of drift:

Attractive fixed point: = + iy =0
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Properties of drift:

Attractive fixed point: = + i1y =0

2 Sources of trouble:
Repulsive fixed point: = + iy = +7)

Drift grows as |y| — oo

Without noise: 3 trajectories reaching oo after finite time.
With noise: for |y| large noise irrelevant.
Expect:

large excursions,

slow decay of equilibrium measure



Simulation

£ = 100.
k =0.0
N;y=1.0

'~ classical trajectories




Problem

0.9

0.8

(plaq)
o
\2

0.6

Convergence to wrong limit for N; > 0.

0.5

s =1.0
k = 0.25
= 0.5



Example 3 (“GP”: Guralnik&Pehlevan 2009)
S =—i6(z+ %23)

Attractive fixed point. z =i
Repulsive fixed point: z = —q, drift grows as |z| — o

Classical orbits: Circles z(t) = fetitamhl =)

20 = —iy,y > 1 : escape to oo In finite time.

Expect trouble: large excursions, slow decay of
equilibrium measure

*) M6bius transf. tanht = w — 2(t) ; 2(0) = 2, , 2(c0) = i



Simulation

<00 —

N;=1.0,8=1.0

~ ~ classical trajectories




Problem

Convergence to wrong limit for N; > 0.

12 T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T
¥
1.19 = —
Cl
E
1.18 — —
X
]17 | ‘ | ‘ | | | ‘ | | ‘ | ‘ | ‘
0 0.2 0.4 0.6 0.8 1
NI



6. Etiology I: finite times
Revisiting ‘crucial identity’ (CI):
Recall
Ft, 1) = / P(z,y;t — 7)O(x + iy; 7)dzdy
(CI)

%F(tﬂ') =0

But is this true?
Falls in U(1) toy model for N; > 0:



Numerical test for U(1) via FPE

0.6 T

' f(t,tau) vs tad, NI=0.1, Y:3.'162, tau =<t=<10 (from'up) —o—

max

0.58 - -

0.56 ¢ - -

0.54 .

0.48

0.46

0.44 |- .

0.42 | | | | | |




Explanation

Langevin evolution of observables:

d

L= j—; —asin(z —ic) 7 .

But exp(tL)O grows super-exponentially:

sup [O(z +iy; )| = [O(m —iy)| £ exp [constexp(y/c)] .

fort > 0.

P(x,y;t) (presumably) decays only like Gaussian =
formal argument fails, F'(¢, 7) not well defined.

Formal argument collapses.



/. Etiology II: equilibrium
Slow decay for N; > 0

U(1) one-link model:
Analytic and numerical studies reveal (for N; > 0)

/da;P(:zz,y; 00) ~ e 2

Nno super-exponential decay!
= exp(tkz) P(x,y; 00) not absolutely integrable for & > 2.

= (exp(ikz)) ambiguous.
Numerically: Large excursions = Huge fluctuations.



— 0 OO
cCo— o >
TR _

N:NnNan 4
Lo _

((£x)d "X)ul

Numerics: U(1) model

>N



Falloff of modes:

/dw zkazpl, y7

Analytic and numerical studies indicate for N; > 0

Pi(y) ~ cpel~IF+2lyl

Hence [ Py.(y)e *dy exists
But [ exp(ikz) P(z,y; o0)dxzdy ambiguous (k > 2).



GP model:

r=+/22+ (y—1)2

P(r; c0) density with respect to dr:
Numerical study indicates for N; > 0

P(r;o0)dr ~ 12 dr

= 2 not absolutely integrable. (z) Ambiguous.



Numerics: GP model

=z
||
-



8. CC as diagnostic tool

Recall:

reduces to (CC):
(LO(x +iy;0)) = /P(x, y: 00)LO(z + i1y; 0)da dy = 0
for ‘all’ observables O.

In practice: test a few observables.



For N; > 0 results incorrect, (CC) violated:

|
0.04 — <exp(iz)>—exact 7]
0.02 — _
0 _
—-0.02 _
i o i
-0.04 _

| | | | | | | | | | |

0 0.05 0.1



Test results for toy models

Simple test successful to select correct simulations.



Test results for toy models

Simple test successful to select correct simulations.

N7 = 0 preferable, but no guarantee for correctness.
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9. Lattice models — examples

* Mean field relativistic Bose gas (G. Aarts, JHEP
0905 (2009) 052): success.

e 3D XY model with finite chemical potential (G. Aarts
and F. James, JHEP 1008 (2010) 020): CLE works at
large (3, fails at small 5 — slow decay found.

* SU(3) spin model at nonzero chemical potential
(G. Aarts and F. James, JHEP 1201 (2012) 118):
success at all 3; test works.

* Four-fermion models (J. Pawlowski,
|. O. Stamatescu, C. Zielinski, in preparation):
Consistency Criterion tricky.



10. Generalizations as therapy?

Equilibrium measure P(z,y)dxdy) not fixed by

/n dx dy P(x,y)O(x + iy) = /dajp(x)(’)(x)

n

for holomorphic O.

Freedom: P — P + () with

/ dx dy Q(z,y)O(x +1y) =0.



Ignoring boundary terms

Q(z,y) = Oy, +10y,)Hj(z,y) (J=1,...,n).

More detailed characterization of () possible, but useful?

Problem: How to modify process?



Modifying the CL process
Try:
L — L+ Ly,

S.t.
Ln,O =0

for holomorphic O.
Ansatz:

Lm=Y» F0; +» Gi0p + Ry Vot Ry V, =
j j

LG =F;, j=1,...n,
(2) R, =R, =0.



Stochastic process:

dr =K;dt + (1 + F)dw,,
dy =K,dt + Fdw, .

Need
F—0 for |y;]— oc0.

because of problem with N; > 0.

Useful?



Holomorphic kernel

cf. Okamoto et al 1989 H(z) holomorphic on M...
Generalized CLE:

dr =K, dt + Re Hdw,
dy =K, dt + Im Hduw

where

K=-H?V,S+V,H?
K, = Ref(,
[A(y =ImK



Ly = ((Re H)?V, + K:,,.) V. + ((Im H)2V, + Ky) v,
+2(Re H)(Im H)V,V,,,

le; =V (V;,;(Re H)2 - f(w) + Vy (Vy(lm H* — f(?/)
+2V,V,(ReH)(Im H) .

Ho—v H* (Vy + (V.5))
Lo = VeH? (Vi + (VaS))

Ly =H?A, + KV, .

Formal argument unchanged, but many problems for
nonconstant kernel.



Reweighting

ldea.
Shift weight between ‘bare’ measure and Boltzmann

factor exp(—.95)
e du(¢) = e Pdu(¢) .

Some success in toy models
Berges and Sexty 2007, Sexty 2008, 2009, Stamatescu

2007
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