
Complex Langevin: A universal
solution for the sign problem?

Erhard Seiler

Max-Planck-Institut für Physik, München

(Werner-Heisenberg-Institut)

work done in collaboration with

D. Sexty and I. O. Stamatescu (Heidelberg), G. Aarts and F. James (Swansea)

INT Seattle, March 2012 – p.1/54



1.The Sign problem
Via Wick rotation Quantum Field Theory
‘reduced to quadratures’:

Euclidean functional integral←→ probability measure µ.

dµ(φ) = 1
Z exp(−S(φ))

provided action S is real.
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Numerical simulation
Ergodic stochastic process which has µ as its equilibrium
measure.

Example:
dµ(φ) = 1

Z exp(−S(φ))

(real) Langevin equation

dφ = −∇Sdt+ dw .

dw increment of Wiener process.
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Difficulty
Sometimes
Euclidean functional integral←→ complex measure:
‘Sign problem’

Where:

• Real time Feynman integral

• Topological terms – nonzero vacuum angle θ

• Finite density - chemical potential

• . . .
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Question
Complex measure ρ ‘representable’ by probability
measure P?

For holomorphic observables sign problem solved
in principle by complex Langevin:

〈O〉 ≡

∫

Mr

Odµ =

∫

Mc

OdP

First proposed:
G. Parisi 1983, J. Klauder 1983
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Successes and Failures
In some simple cases good convergence to the right limit.
Example: U(1) LGT in 2D (Ambjørn et al 1986).

Practical Problems:

• Runaways (divergence)

• convergence to wrong limit.

Mathematical questions unresolved:
Quotes: . . . conspicuous absence of general spectral theorems

. . . (Klauder&Petersen 1984)

. . . a rather experimental character: for some situations the method

works, while it fails for other choices of the action

. . . (Haymaker&Wosiek 1988)
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Revival

Berges&Stamatescu 2005, Berges et al 2007: Simulation
of Minkowski space QFT
(Hüffel&Rumpf 1984, Nakamoto&Yamanaka 1986)

Finite density: Aarts&Stamatescu 2008
Complex relativistic Bose gas: Aarts 2009
XY model: Aarts&James 2010
Effective potential: Guralnik&Pehlevan 2008-2009

– Some impressive numerical impressive results
– But problems lingering; sometimes wrong results.
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Closer look:
Diseases: etiology, diagnostics, (therapy?) :

Aarts, Seiler, Stamatescu, Phys. Rev. D 81 (2010)
054508 [arXiv:0912.3360 [hep-lat]],

Aarts, Seiler, Stamatescu, Phys. Lett. B 687 (2010) 154
[arXiv:0912.0617 [hep-lat]],

Aarts, Seiler, Stamatescu, James, to appear in Eur. J.
Phys., [arXiv:1101.3270 [hep-lat]],

Aarts, Seiler, Stamatescu, James, Sexty, work in
progress
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2. Formal justification
‘Flat’ case: defined onMr = Rn orMr = Sn

1 , analytically
continued toMc.

Complex Langevin onMc

dz = −∇Sdt+ dw

dw increment of real Wiener process on Mr (formally

dw = η(t)dt, η white noise).
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This means

dx =Kxdt+ dw,

dy =Kydt

Kx = −Re∇xS(x+ iy)

Ky = −Im∇xS(x+ iy)

Slight generalization:

dx =Kxdt+
√

NR dwR,

dy =Kydt+
√

NI dwI ,

dwR, dwI independent Wiener processes,
NI ≥ 0 and NR = NI + 1.
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Real stochastic process
By Ito calculus (〈dw2〉 ∝ dt)

d
dt 〈f(x(t), y(t))〉 = 〈Lf(x(t), y(t))〉 ,

Langevin operator

L = [NR∇x +Kx]∇x + [NI∇y +Ky]∇y

=⇒ Dual Fokker-Planck equation

∂
∂tP (x, y; t) = LTP (x, y; t) ; P (x, y; 0) = δ(x−x0)δ(y−y0) ,

P probability density inMc,

INT Seattle, March 2012 – p.11/54



Real Fokker-Planck operator:

LT ≡ ∇x[NR∇x −Kx] +∇y[NI∇y −Ky]

Complex Fokker-Planck Equation:
ρy0(x; t) complex density on e.g. Rn + iy0;

∂
∂tρy0(x; t) = LT

y0ρy0(x; t) ,

LT
y0 ≡ ∇x [∇x + (∇xS(x+ iy0))] .
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Special case

If S(x) real for x real, NI = 0:

Complex FPE =⇒ standard real FPE;

real FPE still lives inMc, but stationary solution

P (x, y) ∝ exp[−S(x)]δ(y) .
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Zoo of operators:
‘Complex’ operators on functions onMr:

Ly0 = [∇x − (∇xS(x+ iy0))]∇x

LT
y0 = ∇x[∇x + (∇xS(x+ iy0))]

‘Real’ operators on functions onMc:

L = [NR∇x +Kx]∇x + [NI∇y +Ky]∇y

LT = ∇x[NR∇x −Kx]−∇y[NI∇y −Ky]

On holomorphic observables LO = L̃O where

L̃ = [∇z − (∇zS)]∇z = [∇z + (Kx + iKy)]∇z
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Goal
Produce expectation values of holomorphic observables:

〈O〉 ≡
∫
O(x+iy0)e

−S(x+iy0)dx∫
e−S(x+iy)dx

;

(independent of y0 by Cauchy’s theorem).

Hope: obtainable as long time limit of

〈O〉P,t ≡
∫
O(x+iy)P (x,y;t)dx dy∫

P (x,y;t)dx dy
;

and by ergodicity as

lim
t→∞

1
T

∫ T

0

O(z(t))dt .
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Relation of ‘P -expectations’ to ‘ρ-expectations’?

〈O〉ρ,t ≡
∫
O(x+iy0)ρ(x;t)dx∫

ρy0(x;t)dx
.

Two time evolutions:

∂t〈O〉ρ,t =

∫

dxO(x+ iy0)L
T
y0ρ(x; t)

∂t〈O〉P,t =

∫

dxdyO(x+ iy)LTP (x, y; t) .

Consistent?
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Result (semi-rigorous)
Assume

• P (x, y; 0) = δ(y)ρ(x; 0) (ρ(x; 0) ≥ 0)

• L0, L
T
0 generate exponentially bounded holomorphic

semigroup (i.e. ‖etL0‖ ≤ C1e
C2t)

• L,LT generate exponentially bounded (strongly
continuous) semigroup on L2(Mc)

• O(x) ∈ L2(Mr).

Then
〈O〉ρ,t = 〈O〉P,t ∀ , t ≥ 0
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"Proof"
1. Initial conditions agree.

2. Let O(x+ iy; t) ≡ exp [tL]O(x+ iy) be unique solution
of DE

∂tO(x+ iy; t) = L0O(x+ iy; t) = L̃O(x+ iy; t) (t ≥ 0) ;

3. Consider F (t, τ) ≡
∫

P (x, y; t− τ)O(x+ iy; τ).
Interpolates between 〈O〉P,t and 〈O〉ρ,t:

F (t, 0) = 〈O〉P,t; F (t, t) = 〈O〉ρ,t
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Formally: F (t, τ) independent of τ :

∂
∂τF (t, τ) = −

∫

LTP (x, y; t− τ)O(x+ iy; τ)dxdy

+

∫

P (x, y; t− τ)LO(x+ iy; τ)dxdy

Integration by parts⇒ crucial identity:

∂
∂τF (t, τ) = 0 (CI)

Justified? Boundary terms?
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Historical remark
Early attempt at formal justification Nakazato 1986:

Requires P (x, y; t) to continue to entire function in x.

Not known.

Known: P (x, y; t) not analytic in y in example.
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Extension to manifolds
Gausterer&Thaler 1998, Aarts&Stamatescu 2008:
Compact connected Lie groups.

Examples:
U(1) complexified to U(1)× R

SU(N) complexified to SL(N,C)

More generally:
–Mr Riemannian manifold⇒ ∃Wiener process⇒

noise in real directions well defined
– Real manifoldMr has to have complexificationMc.

Formal arguments carry over; problems remain.
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3. Consistency condition
Recall (CI)

0 = ∂
∂τF (t, τ) =−

∫

LTP (x, y; t− τ)O(x+ iy; τ)dx dy

+

∫

P (x, y; t− τ)L̃O(x+ iy; τ)dx dy .

Take τ = 0, t→∞, assume convergence to equilibrium:

exp(tLT )P (x, y; t)→ P (x, y;∞); LTP (x, y;∞) = 0 ,

〈L̃O〉 ≡

∫

P (x, y;∞)L̃O(x+ iy)dx dy = 0. (CC)
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(CC) Manifestly weaker than (CI).

But: If

• (CC) holds for sufficiently many observables O,

• a certain bound holds,

• spectral conditions assuring convergence hold

then

〈O〉P (∞) =
1
Z

∫

Mr

O(x) exp[−S(x)]dx .

i.e. Equilibrium measure correct.
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Proof
uses density argument and Riesz-Markov theorem.

Morally (CC) equivalent to Schwinger-Dyson equations
(SDE).
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4. Summary of Problems
Mathematical and practical difficulties:

• Existence of the semigroups exp(tL) etc.?
Not known; Operators not dissipative.
But seems ok in examples.
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4. Summary of Problems
Mathematical and practical difficulties:

• Existence of the semigroups exp(tL) etc.?
Not known; Operators not dissipative.
But seems ok in examples.

• Spectrum: Spectrum of Langevin and FP
operators in left half plane?
In relevant examples: seems to be the case.

(Note: Convergence of P (x, y; t) not strictly
necessary, Need only convergence of ρ(x; t)).
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• Runaways: In typical cases deterministic motion
can go to∞ in finite time.
Reason: Repulsive fixed points, drift ∇S grows in
imaginary directions, drift not a gradient.
In practice: problem solved by adaptive step size
(Aarts, Seiler, Stamatescu 2009).
With noise: Equilibrium measure seems to exist.
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• Runaways: In typical cases deterministic motion
can go to∞ in finite time.
Reason: Repulsive fixed points, drift ∇S grows in
imaginary directions, drift not a gradient.
In practice: problem solved by adaptive step size
(Aarts, Seiler, Stamatescu 2009).
With noise: Equilibrium measure seems to exist.

• Convergence to wrong limit (Noticed
already by Klauder&Petersen 1985, Ambjørn et al
1986, Haymaker&Wosiek 1987).
Most serious, under investigation, see below.
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5. Toy models
Example 1: Quadratic Actions (cf. Ambjørn&Yang
1985, Haymaker&Peng 1989)
Setting:

S = 1
2(x,Ax), x ∈ R

n ,

A = Ar + iAi complex symmetric matrix; Ar and Ai real
symmetric matrices.
Assume: Ar =

1
2(A+ A†) > 0.

Only fixed point at x = 0, attractive, explicit solution
(Gaussian).
No problems.
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Example 2 ("one-link U(1)")
(Aarts&Stamatescu 2008, Aarts, S., Stamatescu 2009,
2011)

S = −β cosx− κ cos(x− iµ) = −a cos(x− ic)

a =
√

(β + κeµ)(β + κe−µ), c = 1
2 ln

β+κeµ

β+κe−µ

From now: κ = 0 ⇒ CLE becomes

dx = Kxdt+ dw, dy = Kydt

where

Kx = −β sinx cosh y, Ky = −β cos x sinh y
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Properties of drift:
Attractive fixed point: x+ iy = 0
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Properties of drift:
Attractive fixed point: x+ iy = 0

2 Sources of trouble:

• Repulsive fixed point: x+ iy = ±π)

• Drift grows as |y| → ∞
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Properties of drift:
Attractive fixed point: x+ iy = 0

2 Sources of trouble:

• Repulsive fixed point: x+ iy = ±π)

• Drift grows as |y| → ∞

Without noise: ∃ trajectories reaching∞ after finite time.
With noise: for |y| large noise irrelevant.
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Properties of drift:
Attractive fixed point: x+ iy = 0

2 Sources of trouble:

• Repulsive fixed point: x+ iy = ±π)

• Drift grows as |y| → ∞

Without noise: ∃ trajectories reaching∞ after finite time.
With noise: for |y| large noise irrelevant.
Expect:

• large excursions,

• slow decay of equilibrium measure
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Simulation

β = 100.

κ = 0.0

NI = 1.0

≈ classical trajectories
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Problem
Convergence to wrong limit for NI > 0.

β = 1.0

κ = 0.25

µ = 0.5
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Example 3 (“GP”: Guralnik&Pehlevan 2009)

S = −iβ(z + 1
3z

3)

Attractive fixed point: z = i

Repulsive fixed point: z = −i, drift grows as |z| → ∞

Classical orbits: Circles z(t) = zo+i tanh t
1−izo tanh t

∗)

z0 = −iy , y > 1 : escape to∞ in finite time.

Expect trouble: large excursions, slow decay of
equilibrium measure

∗) Möbius transf. tanh t ≡ w 7→ z(t) ; z(0) = zo , z(∞) = i
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Simulation

NI = 1.0, β = 1.0

≈ classical trajectories
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Problem
Convergence to wrong limit for NI > 0.

β = 1.
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6. Etiology I: finite times
Revisiting ‘crucial identity’ (CI):

Recall

F (t, τ) ≡

∫

P (x, y; t− τ)O(x+ iy; τ)dxdy

(CI)
∂
∂τF (t, τ) = 0

But is this true?
Fails in U(1) toy model for NI > 0:
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Numerical test for U(1) via FPE
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f(t,tau) vs tau, NI=0.1, Y=3.162, taumax =< t =< 10 (from up)

F (t, τ) vs. τ
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Explanation
Langevin evolution of observables:

L̃ = d2

dz2
− a sin(z − ic) d

dz .

But exp(tL̃)O grows super-exponentially:

sup
x
|O(x+ iy; t)| = |O(π − iy)| & exp [const exp(y/c)] .

for t > 0.

P (x, y; t) (presumably) decays only like Gaussian⇒
formal argument fails, F (t, τ) not well defined.

Formal argument collapses.
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7. Etiology II: equilibrium
Slow decay for NI > 0

U(1) one-link model:
Analytic and numerical studies reveal (for NI > 0)

∫

dxP (x, y;∞) ∼ e−2|y|

no super-exponential decay!
⇒ exp(ikz)P (x, y;∞) not absolutely integrable for k ≥ 2.

⇒ 〈exp(ikz)〉 ambiguous.
Numerically: Large excursions⇒ Huge fluctuations.
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Numerics: U(1) model

β = 1.

κ = 0.0
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Falloff of modes:

Pk(y; t) ≡

∫

dx
2π eikxP (x, y; t)

Analytic and numerical studies indicate for NI > 0

Pk(y) ∼ cke
(−|k|+2)|y| .

Hence
∫

Pk(y)e
−kydy exists

But
∫

exp(ikz)P (x, y;∞)dxdy ambiguous (k ≥ 2).
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GP model:

r ≡
√

x2 + (y − 1)2

P (r;∞) density with respect to dr:
Numerical study indicates for NI > 0

P (r;∞) dr ∼ r−1.5 dr

⇒ z not absolutely integrable. 〈z〉 Ambiguous.
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Numerics: GP model

NI = 0
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8. CC as diagnostic tool
Recall:

lim
t→∞

d
dτF (t, τ)

∣

∣

∣

∣

τ=0

= 0 .

reduces to (CC):

〈L̃O(x+ iy; 0)〉 ≡

∫

P (x, y;∞)L̃O(x+ iy; 0)dx dy = 0

for ‘all’ observables O.

In practice: test a few observables.
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For NI > 0 results incorrect, (CC) violated:
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Test results for toy models

• Simple test successful to select correct simulations.
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Test results for toy models

• Simple test successful to select correct simulations.

• NI = 0 preferable, but no guarantee for correctness.
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9. Lattice models – examples
• Mean field relativistic Bose gas (G. Aarts, JHEP

0905 (2009) 052): success.
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9. Lattice models – examples
• Mean field relativistic Bose gas (G. Aarts, JHEP
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• 3D XY model with finite chemical potential (G. Aarts
and F. James, JHEP 1008 (2010) 020): CLE works at
large β, fails at small β – slow decay found.
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• SU(3) spin model at nonzero chemical potential
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9. Lattice models – examples
• Mean field relativistic Bose gas (G. Aarts, JHEP

0905 (2009) 052): success.

• 3D XY model with finite chemical potential (G. Aarts
and F. James, JHEP 1008 (2010) 020): CLE works at
large β, fails at small β – slow decay found.

• SU(3) spin model at nonzero chemical potential
(G. Aarts and F. James, JHEP 1201 (2012) 118):
success at all β; test works.

• Four-fermion models (J. Pawlowski,
I. O. Stamatescu, C. Zielinski, in preparation):
Consistency Criterion tricky.
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10. Generalizations as therapy?
Equilibrium measure P (x, y)dxdy) not fixed by

∫

Cn

dx dy P (x, y)O(x+ iy) =

∫

n

dxρ(x)O(x)

for holomorphic O.

Freedom: P → P +Q with
∫

Cn

dx dy Q(x, y)O(x+ iy) = 0 .
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Ignoring boundary terms

Q(x, y) = (∂xj
+ i∂yj)Hj(x, y) (j = 1, . . . , n) .

More detailed characterization of Q possible, but useful?

Problem: How to modify process?
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Modifying the CL process
Try:

L→ L+ Lm

s.t.
LmO = 0

for holomorphic O.
Ansatz:

Lm ≡
∑

j

F 2
j ∂

2
xj

+
∑

j

G2
j∂

2
yj + Rx · ∇x +Ry · ∇y ⇒

(1) G2
j = F 2

j , j = 1, . . . n ,
(2) Rx = Ry = 0 .
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Stochastic process:

dx =Kxdt+ (1 + F )dwx,

dy =Kydt+ Fdwy .

Need
F → 0 for |yj | → ∞ .

because of problem with NI > 0.

Useful?
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Holomorphic kernel
cf. Okamoto et al 1989 H(z) holomorphic onMc.

Generalized CLE:

dx =K̂x dt+ ReHdw,

dy =K̂y dt+ ImHdw

where

K̂ ≡ −H2∇zS +∇zH
2 ,

K̂x ≡ Re K̂ ,

K̂y ≡ Im K̂
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LH =
(

(ReH)2∇x + K̂x

)

∇x +
(

(ImH)2∇y + K̂y

)

∇y

+ 2(ReH)(ImH)∇x∇y ,

LT
H =∇x

(

∇x(ReH)2 − K̂x

)

+∇y

(

∇y(ImH2 − K̂y

)

+ 2∇x∇y(ReH)(ImH) .

LT
H,0 = ∇xH

2 (∇x + (∇xS))

LT
H,0 = ∇xH

2 (∇x + (∇xS))

L̃H = H2∆z + K̂∇z .

Formal argument unchanged, but many problems for
nonconstant kernel. INT Seattle, March 2012 – p.52/54



Reweighting
Idea:
Shift weight between ‘bare’ measure and Boltzmann
factor exp(−S)

e−S(φ)dν(φ) = e−Sr(φ)dν1(φ) .

Some success in toy models
Berges and Sexty 2007, Sexty 2008, 2009, Stamatescu
2007
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11. Conclusions and outlook
• Method shows some promise
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