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The (lattice) calculable region of the phase diagram
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Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

Upper region: equation of state, screening masses, quark number susceptibilities etc.
under control

Here: phase diagram itself, so far based on models, most difficult! 

µ/T <∼ 1 (µ = µB/3)

order of p.t.
at zero density
depends on Nf, quark mass



Much harder: is there a QCD critical point?

12

Some methods trying (1) give indications of critical point, but systematics not yet controlled 



On coarse lattice exotic scenario: 
no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks                                                               Fromm, Langelage, Lottini, O.P. 11

-Light quarks with finite isospin density                           Kogut, Sinclair 07

-Electroweak phase transition with finite lepton density   Gynther 03

de Forcrand, O.P.   08,09 



Continuation to imaginary chemical potential

No sign problem, computable by straightforward Monte Carlo

Blue points tricritical, lower four have been calculated! de Forcrand, O.P. 10 
D’Elia, Sanfilippo 10

shape determined by tric. scaling!



Large densities?     Try effective theories!

Example e.w. phase transition: success with dimensional reduction!

Scale “separation”
Integrate hard scale perturbatively, treat eff. 3d theory on lattice, 
valid for sufficiently weak coupling

Does not work for the QCD transition, breaks Z(3) symmetry of  Yang-Mills 
theory 

Bottom up construction of Z(N)-invariant theory by matching couplings: 
works for SU(2), not finished for SU(3) 
Vuorinen, Yaffe; de Forcrand, Kurkela; ....  

Here: solution by strong coupling expansion!



Starting point:  Wilson’s lattice YM action

Plaquette:



The strong coupling expansion



Here: effective lattice theory, general strategy



The effective theory for SU(2)
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Generalisation to SU(3)

L



Subleading couplings



Numerical evaluation of effective theories

Monte Carlo simulation of scalar model, Metropolis update

Search for criticality:

Binder cumulant:

Susceptibility:

Finite size scaling:



Numerical results for SU(3)
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First order phase transition for SU(3) in the thermodynamic limit!
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The influence of a second coupling

...gets very small for large       !Nτ
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Numerical results for SU(2), one coupling
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Second order (3d Ising) phase transition for SU(2) in the thermodynamic limit!



Mapping back to 4d finite T Yang-Mills

Inverting

λ1(Nτ , β)→ βc(λ1,c, Nτ ) ...points at reasonable convergence 

SU(3)
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Comparison with 4d Monte Carlo
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Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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Including heavy, dynamical Wilson fermions

Similar to de Pietri, Feo, Seiler, Stamatescu 07







QCD: first order deconfinement transition region
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Phase boundary at zero density

First order transition: coexistence of phases



 Phase boundary, numerically
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Observable to identify order of p.t.:

δBQ = B4(δQ) =
〈(δQ)4〉
〈(δQ)2〉2

B4(x) = 1.604 + bL1/ν(x− xc) + . . .
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The critical point

Mapping back to QCD:
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"4, resum.Convergence properties:



Finite density: sign problem!

cf. Gattringer et al.



Phase boundary at finite density

Line of critical end points:

(not exact, but within errors)



Critical quark mass as function of chemical potential



The fully calculated deconfinement transition
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Conclusions

Proposal for two-step treatment of QCD phase transition:

I. Derivation of effective action by strong-coupling expansion
II. Simulation of effective theory

Z(N)-invariant effective theory for Yang-Mills, correct order of p.t.,
crit. temperature ~10% accurate in the continuum limit

Deconfinement transition plus end point for heavy fermions and all 
chemical potentials

Hope for finite density QCD:  cold and dense regime, light fermions?


