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First, the connection with the Fokker-Planck equation: for
dX = b(X)dt + o(X)dw(t),

where X(0) = x, the distribution function p(x, 0; X, t) for X
satisfies the forward Fokker-Planck equation:

op 0 1 62
9 ax b(X)p} + Ew{a(x)l?},

where a(X) = o(X)o(X)". This can be easily generalized to
include a potential V/(X), indeed even quasi-linear potentials, via
the Feyman-Kac formula. All of this follows from [t6's formula
because dw(t)dw(t) = dt.
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Example numerical methods: Euler-Maruyama

Zk+1 = 2k + b(zx)h + o(zx) Aw
is strong order 1/2, weak order 1. Milstein’s method
Zy41 =2z + b(zi)h + o(zx) Aw
+ 502000 (@)((Bw) ~ h)

is strong order 8 = 1, and weak order 1. Higher order weak
methods require modeling

h h
/ij = / w,-dwj, /,'0 = / w,-(s)ds,
0 0

h h
2
/ijk_/ w,-wjdwk, /,','0_/ Wi ds.
0 0
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A very simple O(h?) accurate model for Aw is

& = +/3h  with probability 1/6,
—+/3h with probability 1/6,
=0 with probability 2/3.

Important facts about these bounded increments:

> they introduce Fourier spectra with wave vectors = kv/3h,
where k € Z9.

» in d > 1 dimensions, Aw is not isotropic.
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Figure: 3-D distribution of bounded increments
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We can make these isotropic using Pete Stewart’s random
rotations: S = diag(sign(u1)) (for each u below)

U=SUU;...Uy_2

where

H; = Householder transforms,

UUT

Hi=1l—2—
T T2

with j—length vectors u
u=x—||x||es,

each x; € N(0,1), i=1,....J.

W. Petersen INT, 5-18 Mar. 2012



A quasi-symplectic method in three stages beginning at xp,

h
Xy /2 = Xo + Z(b(xl/z) + b(x0)), solve for xq /5, (1a)

h
X1 = X1/2 +/ o(x(s))dw(s), starting at xq o, (1b)
0
Xp = X1+ g(b(xh) + b(x1)), solve for xp. (1c)

Two simple complex scalar cases where the martingale stage
x1/2 + foh o(x(s))dw(s) is easy to compute:
» o = constant, then
X1 = x1/2 + 0Aw,
when o = 1, we'll call this N1.
» o(x) = 7x, then
2h/2
)

X1 = X1/2 eVAw—Y

when v =1, call this N2.



A complex example:
dX = (ag+ a1 X)dt + (co + aa X)dw(t), initially X(0) = Xp. (2)

A formal solution to this problem is
t
X(t) = Xo®(t)+ (ap — Cgcl)d)(t)/ &~ 1(s)ds
0

+eod(t) /O " 0-1(s)dw(s),

where
(D(t) — eclw(t)+(alfc12/2)t.

Its inverse is ®~1(t) = e~a«()—(a1—-/2)t To see how our method
works, we need a test statistic

E[X(t)] = <x0 + :’) ent — %0

W. Petersen INT, 5-18 Mar. 2012



Notice that E[X(t)] is independent of coefficients cp, c1, but the
distributions for X(t) are very different. For our examples, a; = i,
so E[X(t)] rotates.

N1: X scatter t=1

’5 0 5
Re [X]

Figure: Distribution for X(t = 1) when ag =1,a; =i,co =1and ¢; =0
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For this additive noise case (cp = 1, c; = 0), the variance grows
linearly with t.

N1: X scatter t=z

Im [X]

4 0 5

Re [X]

Figure: Distribution for X(t = 2) when ag =1,a; =i,co =1and ¢; =0
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For a multiplicative noise case (cp = 0, ¢c; = 1), the variance grows
exponentially in t.

N2: X scatter t=1
10

"

Im [X]

-5

10 5 0 5 10
Re [X]

Figure: Distribution for X(t = 1) when ag =1,a; =i,co =0and ¢ =1
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Again, the multiplicative noise case (cp = 0,c; = 1), at t = 2:

N2: X scatter t==

10 %
T
5 g
& tay
= :
E 0
5
-10 5 0 5 10
Re [X]

Figure: Distribution of X(t =2) when ap =1,a =i, =0and ¢; =1
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For the additive noise ¢; = 0 case, our test statistic E[X(t)] for
0<t<obris:

3 stages soln X(t) of N1 weak global error

1072 e
o

h=17100

— — — h=11000
— h=1710000

Im X0

| XO-EX] |

10
-1 0 1 o 5 10 15

Re X(t)O t

Figure: E[X(t)] when ag =1,a1 =i,co=1and ¢ =0
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For the additive noise ¢; = 0 case, the test statistic E[X(t)] for
0 <t < 67 using Higham, Mao, and Stuart's 2-stage split-step
backward Euler method:

HMS soln X(t) of N1 0 weak global error
2.5 p—— 10
)
g 15/ h=rv100 =3 N
X 1 -~ ~h=Tv1000 u
c —— h=1710000 g
- 05 é
0
-0.5 - 10
-1 0 1 0 5 10 15
Re X(HO t

Figure: E[X(t)] when ag =1,a1 =i,co=1and ¢ =0
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For the additive noise ¢; = 0 case, the test statistic E[X(t)] for
0 < t < 67 using the forward Euler method,

Milstein soln X(t) of N1 0 weak global error
10

2 —
2 | h=r7100 3 T
%1y || h=mioo0 ; w07 T
£ \ | — h=1v10000 = ",‘

o =l

10"
-1 0 1 0o 5 10 15
Re (X(H)0 t

Figure: E[X(t)] when ap =1,a1 =i,co=1and ¢ =0
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Our test statistic E[X(t)] for the multiplicative noise case and
0<t<2m:

3 stages soln X(t) of N2 o weak global error
0

h=1/100
- — —h=11000

— h=1v10000
exact

Im X0

| XO-EX] |

Re X(t)O

Figure: E[X(t)] when ap =1,a1 =i,co=0and ¢; =1
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A simple example with drift:
dX = —ib X dt + /pi X duw(t).
The explicit (but formal) 1t solution is
X(t) = Xoe—i(b+ﬂ/2)f+\/l7w(f),
with explicit mean
(X(2)) = EIX(£)] = Xoe ™.

The awkward part is the variance: using the modulus

IX(8)] = Xl exp (1/5e(1)).
E[IX () — EX()]] = [XoX(e" ~ 1),

which grows exponentially.
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The simplest example, with complex Brownian motion:
dz =zdw

where 1
dw = —(dwi + idwy).

V2

Here each wy, wy are real and uncorrelated. The formal solution is
a conformal martingale,

2(t) = z0e*) = zyexp (1(w1 + iw2)>.

V2

Compare this to the real case dx = x dw1(t), whose solution is
xo exp (w1(t) — t/2). Both have constant mean but growing
variances:

E[x(t)] = xo, E[z(t)] = z0, and,
Ellx(0)—Elx()]2] = Pol2(e~1),  Elz(t)~E[()] = a0 (e'~1).
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