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First, the connection with the Fokker-Planck equation: for

dX = b(X )dt + σ(X )dω(t),

where X (0) = x , the distribution function p(x , 0; X , t) for X
satisfies the forward Fokker-Planck equation:

∂p

∂t
= − ∂

∂X
{b(X )p}+

1

2

∂2

∂X 2
{a(X )p},

where a(X ) = σ(X )σ(X )T . This can be easily generalized to
include a potential V (X ), indeed even quasi-linear potentials, via
the Feyman-Kac formula. All of this follows from Itô’s formula
because dω(t)dω(t) = dt.
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Example numerical methods: Euler-Maruyama

zk+1 = zk + b(zk)h + σ(zk)∆ω

is strong order 1/2, weak order 1. Milstein’s method

zk+1 =zk + b(zk)h + σ(zk)∆ω

+
1

2
σ(zk)σ′(zk)((∆ω)2 − h)

is strong order β = 1, and weak order 1. Higher order weak
methods require modeling

Iij =

∫ h

0
ωidωj , Ii0 =

∫ h

0
ωi (s)ds,

Iijk =

∫ h

0
ωiωjdωk , Iii0 =

∫ h

0
ω2
i ds.
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A very simple O(h2) accurate model for ∆ω is

ξ =
√

3h with probability 1/6,

= −
√

3h with probability 1/6,
= 0 with probability 2/3.

Important facts about these bounded increments:

I they introduce Fourier spectra with wave vectors = k
√

3h,
where k ∈ Zd .

I in d > 1 dimensions, ∆w is not isotropic.
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Figure: 3-D distribution of bounded increments
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We can make these isotropic using Pete Stewart’s random
rotations: S = diag(sign(u1)) (for each u below)

U = SU0U1 . . .UN−2

where

Uk =

(
Ik

HN−k

)
Hj = Householder transforms,

Hj = Ij − 2
uuT

||u||2

with j−length vectors u

u = x− ||x||e1,

each xi ∈ N (0, 1), i = 1, . . . , j .
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A quasi-symplectic method in three stages beginning at x0,

x1/2 = x0 +
h

4
(b(x1/2) + b(x0)), solve for x1/2, (1a)

x1 = x1/2 +

∫ h

0
σ(x(s))dω(s), starting at x1/2, (1b)

xh = x1 +
h

4
(b(xh) + b(x1)), solve for xh. (1c)

Two simple complex scalar cases where the martingale stage
x1/2 +

∫ h
0 σ(x(s))dω(s) is easy to compute:

I σ = constant, then

x1 = x1/2 + σ∆ω,

when σ = 1, we’ll call this N1.

I σ(x) = γx , then

x1 = x1/2eγ∆ω−γ2h/2,

when γ = 1, call this N2.
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A complex example:

dX = (a0 + a1X )dt + (c0 + c1X )dω(t), initially X (0) = X0. (2)

A formal solution to this problem is

X (t) = X0Φ(t) + (a0 − c0c1)Φ(t)

∫ t

0
Φ−1(s)ds

+c0Φ(t)

∫ t

0
Φ−1(s)dω(s),

where
Φ(t) = ec1ω(t)+(a1−c2

1/2)t .

Its inverse is Φ−1(t) = e−c1ω(t)−(a1−c2
1/2)t . To see how our method

works, we need a test statistic

E[X (t)] =

(
X0 +

a0

a1

)
ea1t − a0

a1
.
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Notice that E[X (t)] is independent of coefficients c0, c1, but the
distributions for X (t) are very different. For our examples, a1 = i ,
so E[X (t)] rotates.

Figure: Distribution for X (t = 1) when a0 = 1, a1 = i , c0 = 1 and c1 = 0
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For this additive noise case (c0 = 1, c1 = 0), the variance grows
linearly with t.

Figure: Distribution for X (t = 2) when a0 = 1, a1 = i , c0 = 1 and c1 = 0
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For a multiplicative noise case (c0 = 0, c1 = 1), the variance grows
exponentially in t.

Figure: Distribution for X (t = 1) when a0 = 1, a1 = i , c0 = 0 and c1 = 1
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Again, the multiplicative noise case (c0 = 0, c1 = 1), at t = 2:

Figure: Distribution of X (t = 2) when a0 = 1, a1 = i , c0 = 0 and c1 = 1
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For the additive noise c1 = 0 case, our test statistic E[X (t)] for
0 ≤ t ≤ 6π is:
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Figure: E[X (t)] when a0 = 1, a1 = i , c0 = 1 and c1 = 0
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For the additive noise c1 = 0 case, the test statistic E[X (t)] for
0 ≤ t ≤ 6π using Higham, Mao, and Stuart’s 2-stage split-step
backward Euler method:
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Figure: E[X (t)] when a0 = 1, a1 = i , c0 = 1 and c1 = 0
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For the additive noise c1 = 0 case, the test statistic E[X (t)] for
0 ≤ t ≤ 6π using the forward Euler method,
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Figure: E[X (t)] when a0 = 1, a1 = i , c0 = 1 and c1 = 0
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Our test statistic E[X (t)] for the multiplicative noise case and
0 ≤ t ≤ 2π:
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Figure: E[X (t)] when a0 = 1, a1 = i , c0 = 0 and c1 = 1
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A simple example with drift:

dX = −ib X dt +
√
µi X dω(t).

The explicit (but formal) Itô solution is

X (t) = X0e−i(b+µ/2)t+
√
µi ω(t),

with explicit mean

〈X (t)〉 = E[X (t)] = X0e−ibt .

The awkward part is the variance: using the modulus

|X (t)| = |X0| exp (
√

µ
2ω(t)),

E[|X (t)− E[X (t)]|2] = |X0|2(eµt − 1),

which grows exponentially.
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The simplest example, with complex Brownian motion:

dz = z dω

where

dω =
1√
2

(dω1 + idω2).

Here each ω1, ω2 are real and uncorrelated. The formal solution is
a conformal martingale,

z(t) = z0eω(t) = z0 exp

(
1√
2

(ω1 + iω2)

)
.

Compare this to the real case dx = x dω1(t), whose solution is
x0 exp (ω1(t)− t/2). Both have constant mean but growing
variances:

E[x(t)] = x0, E[z(t)] = z0, and,

E[|x(t)−E[x(t)]|2] = |x0|2(et−1), E|z(t)−E[z(t)]|2 = |z0|2(et−1).
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